CAS Sesimbra, Portugal | March 19th, 2019

PLASMA DIAGNOSTICS

Research Group for Plasma Wakefield Accelerators **FLASH**FORWARD Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies Helmholtz Association of German Research Centres, Berlin, Germany

simulation by Alberto Martinez de la Ossa

X

Jens Osterhoff

Many thanks for support and material to...

Malte Kaluza (FSU Jena) **Gregor Loisch (DESY Zeuthen)**

Disclaimer: presentation is only an incomplete and subjective snapshot of the field!

Nicholas Matlis (DESY FS)

Jimmy Garland, Lars Goldberg, Tobias Kleinwächter, Lucas Schaper, Gabriele Tauscher (DESY FH)

Lecture Series on Plasma Sources and Diagnostics

> Plasma Sources I

- Thursday, March 14, 9:00 10:00
- Conceptual aspects
- > Plasma Sources II
 - Friday, March 15, 9:00 10:00
 - Technical aspects
- > Plasma Diagnostics
 - Tuesday, March 19, 10:00 11:00
 - **Diagnostics:** how to measure what is going on in plasmas

Outline - Plasma Diagnostics - What to measure?

> Temperature

Outline - Plasma Diagnostics - What to measure?

> Temperature

Initial gas density distribution

- Raman scattering
- Laser interferometry
 - → plasma density measurements

Laser scattering

> Scattering of (laser) light on bound electrons (gas, plasma) can be used as density diagnostic

Laser scattering

> Scattering of (laser) light on bound electrons (gas, plasma) can be used as density diagnostic

Inelastic scattering (Raman) changes the quantum state of the species energy difference excitation to emission

Stokes Raman

Rot. / vib. mode

Laser scattering

> Scattering of (laser) light on bound electrons (gas, plasma) can be used as density diagnostic

> Rayleigh scattering allows in principle for measuring densities, but scattering off plasma difficult to distinguish from scattering off walls (+ much more intense!)

> Raman scattering photons at species specific wavelength \rightarrow differentiation between scattering sources

Inelastic scattering (Raman) changes the quantum state of the species energy difference excitation to emission

Stokes Raman

species specific Rot. / vib. mode

- > Inelastic process in which energy can be transferred to or from the scatterer
- > When energy is transferred to the scatterer: **Stokes lines**
- > When energy is transferred from the scatterer: Anti-Stokes lines
- > Raman scattering cross section larger than Rayleigh scattering cross section

$$I_{Raman} = I_0 \frac{\partial \sigma}{\partial \Omega} n \Omega_{eff} \qquad \Omega_{eff}: \text{ Optics and}$$

T. Weineisen et al., Phys. Rev. ST Accel. Beams 14, 050705 (2011)

- > Rotational and vibrational Raman scattering modes exist
- > Upper state can be virtual or real electronic transition (resonance Raman spectroscopy)

 $v_{\rm s} = v_0 - v_t$

 $v_{as} = v_0 + v_t$

detector efficiency

R. B. Miles *et al.,* Meas. Sci. Technol. **12**, R33-R51 (2001)

- > Raman scattering allows for species discrimination
- > Raman scattering only works for molecules, no atoms

R. Scannell et al., Rev. Sci. Instrum. 81, 045107 (2010)

laser

L. Schaper et al., NIM A 740, 208 (2014)

Plasma density distribution and constituents

- Schlieren/dark-field imaging
- Laser interferometry
- Two-color phase delay spectral interferometry
- Plasma spectroscopy

Schlieren/dark-field imaging or shadowgraphy

Index of refraction gradients cause distortion of probe phase front \rightarrow intensity structures in beam

Schlieren/dark-field imaging or shadowgraphy

> Angular deviation of ray

$$\varepsilon_y = \frac{1}{n} \int \frac{\partial n}{\partial y} dz$$

- > Sensitive to density gradients
- > Absolute density measurements not straightforward

Schlieren/dark-field imaging or shadowgraphy

- Laser interferometry allows for absolute density measurements
- > Here: setup compatible with dark-field imaging

Laser interferometry allows for absolute density measurements

Dark-Field Imaging

x-position [mm]

Interferometry

Laser interferometry allows for absolute density measurements

Integrated optical path length or phase φ depends on integrated index of refraction

$$\eta = \sqrt{1 - (\omega_{\rm p}/\omega_{\rm L})^2} = \sqrt{1 - n_{\rm e}/n_{\rm c}}$$

> Visualize phase difference to unaffected reference by interference

Michelson interferometer

S,

Mach-Zehnder interferometer

Path lengths need to be within laser coherence length (typical ~ few µm), otherwise no fringes

- Simple-to-align alternative: Wollaston prism (polarizing beam splitter, combination of two birefringent prisms)
- > Probe is polarized under 45° wrt optical axes
- > Two replica, separated by α , polarized \perp
- > Polarizer under 45°, so interference possible
- > Probe and reference sides overlapp

Michelson interferometer

Mach-Zehnder interferometer

> Phase shift difference between probe and reference ray

> If cylindrical symmetry can be assumed → density reconstruction by Abel inversion (otherwise tomography)

$$n_{\rm e}(r) = -\frac{n_{\rm cr}\lambda_{\rm L}}{\pi^2} \int_{r}^{R} \frac{\mathrm{d}\Phi(y)}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\sqrt{y^2 - r^2}}.$$

> Important: Phase shift needs to be measurable, i.e. λ_{L} needs to see significant phase shift, not too far away from critical density n_{cr} or long plasma

> In practice: densities below 10¹⁸ cm⁻³ difficult to diagnose in transverse geometry with 1 µm lasers

(a)

Fourier

> System to be investigated: discharge capillary

- Cylindrical, sapphire milled channel
- Length: 20 mm; Diameter: 1.0 mm
- Electrically discharge-ignited plasma

> System to be investigated: discharge capillary

- Cylindrical, sapphire milled channel
- Length: 20 mm; Diameter: 1.0 mm
- Electrically discharge-ignited plasma

- > Single laser pulse frequency doubled \rightarrow two co-propagating harmonics at 800 and 400 nm (red and blue)
- > Two pulses have different group and phase velocities in plasma \rightarrow the pulses acquire a Δ t and phase shift
- > On exiting the plasma, remaining 800 nm pulse is also doubled (all blue)
- > Spectral interference pattern reveals information about temporal delay, phase shift, and the plasma density

J. Van Tilborg et al, Optics Letters 43, 12 (2018)

> Interference pattern

- > Fringe frequency \rightarrow pulse separation
- > Fringe position \rightarrow phase delay

- > Spatial resolution: longitudinally integrated
- > Temporal resolution: sub-ns (depending on capillary traversal time)

> Plasma emission may be used to acquire information about plasma

> Stark broadening of electric relaxation lines depends on local electric field strength in plasma (Debye shielding) \rightarrow contains information about local plasma electron density

Stark effect for Hydrogen H_{α}

> Number of degenerate states: $g = 2 \sum_{l=1}^{n} (2l+1)$

Line splitting of Balmer Series of Hydrogen

> Stark broadening of electric relaxation lines depends on local electric field strength in plasma (Debye shielding) \rightarrow contains information about local plasma electron density

- > Observe spectroscopic light emission from atoms in plasma
- > Fast-gate intensifier (2 50 ns) before CCD camera
- > Width of spectral lines reveals information about plasma density

> Different capillary with 300 µm inner diameter capillary

"100%" Hydrogen temporal evolution

Internal E- & B-fields, and wake structures

- Polarimetry
- Particle beam probes
- Frequency Domain Holography

Reminder: Shadowgraphy

Index of refraction gradients cause distortion of probe phase front \rightarrow intensity structures in beam

Polarimetry

Polarimetry

Two polarograms from two (almost) crossed polarizers:

 $I_{\text{pol1}} = I_0 \left[1 - \beta_1 \sin^2(90^\circ - \theta_{\text{pol1}} - \phi_{\text{rot}}) \right] \quad I_{\text{pol2}} = I_0 \left[1 - \beta_2 \sin^2(90^\circ + \theta_{\text{pol2}} - \phi_{\text{pol2}}) \right]$

Deduce rotation angle ϕ_{rot} from pixel-by-pixel division of polarogram intensities:

 $I_{\text{pol1}}(x,y)/I_{\text{pol2}}(x,y)$

> Plasma can be an active medium for the Faraday effect

$$\varphi_{\rm rot} = \frac{e}{2m_{\rm e}cn_{\rm c}} \int_l n_{\rm e} \mathbf{B}_{\varphi} \cdot \mathbf{ds}$$

Experimental evidence for B-fields from MeV electrons and bubble! MCK et al., Physical Review Letters 105, 115002 (2010)

$$-\phi_{\rm rot})]$$

Polarimetry

> Bunch length measurements with few cycle laser pulses

<u>Electron bunch length:</u> $\Delta z = 4 \ \mu m$ τ_{FWHM} = (6±2) fs, τ_{RMS} = (2.5±0.9) fs

A. Buck et al., Nature Physics 7, 543 (2011)

> Online observation of electron bunch formation in an LWFA

Back to Shadowgraphy with few-cycle beams

> Few-cycle probe pulse generation with hollow-core-fiber chirped mirror compressor

> 5.9 fs beam generated from 35 fs FWHM Ti:sa pulse

M. Schwab et al., Appl. Phys. Lett. 103, 191118 (2013)

Back to Shadowgraphy with few-cycle beams

- > Few-cycle probe pulse generation with hollow-core-fiber chirped mirror compressor
- > 5.9 fs beam generated from 35 fs FWHM Ti:sa pulse

M. Schwab et al., Appl. Phys. Lett. 103, 191118 (2013)

> Visualize wakefield structure

M. Schnell et al., Nat. Comm. 4, 2421 (2013)

Electron beams: electric field probes

> Relativistic electron beams can act as femtosecond transverse probes to measure electric fields

C. J. Zhang et al., PRL 119, 064801 (2017)

Proton beams: electric field probes

> Probing with laser-accelerated proton beams

- broad energy spectrum (up to 10s of MeV)
- laminar flow \rightarrow excellent imaging properties
- different energies arrive at target at different times \rightarrow single-shot movie

> *Example:* record TNSA-sheath evolution in a single shot deduce sheath-field strength from mesh warping $E_{TNSA} \ge 3 \times 10_{10} \text{ V/m}$

T. E. Cowan, PRL (2004)

Particle beams: self-modulation instability as a probe

- > Transverse modulation of long bunches ($L_{bunch} > \lambda_{plasma}$)
- Initiated by inhomogeneities in focusing forces
- > Provides proton driver trains for AWAKE
- Length scales are plasma density dependent
 - → diagnostic
 - Observe periodicity of longitudinal phase space
 - Dominant Fourier components reflect λ_p
 - Longitudinally integrating technique
 - Works over large range of *n*_e

Particle beams: self-modulation instability as a probe

Frequency Domain Holography

- > Thanks to Nicholas Matlis (DESY) for providing the following slides
- > For detailed info on FDH and its variants TEX and TESS, please refer to
 - FDH: N. H. Matlis et al., Nature Physics 2, 749 (2006)
 - TEX: N. H. Matlis et al., JOSA B 28, 23 (2011)
 - TESS: N. H. Matlis et al., Optics Letters 41, 5503 (2016)

Photon Acceleration

Photon Acceleration

Photon Acceleration

How do pulses that don't overlap

FDI: Temporal Overlap in Spectrometer

FDI: Temporal Overlap in Spectrometer

FDI: Temporal Overlap in Spectrometer

Siders et al. Phys. Rev. Lett. 76, 3570 (1996)

Marques *et al.* Phys. Plasmas **10**, 1124 (1998) Kotaki *et al.* Phys. Plasmas **9**, 1392 (2002)

Ionization Front

0.0

Wavelength [nm]

Experimental Layout

"Reading" the Hologram (Full Electric Field Reconstruction)

BASIC SCHEME

RECONSTRUCTION

TIME DOMAIN

"Reading" the Hologram (Full Electric Field Reconstruction)

BASIC SCHEME

1. Reconstruct spectral E-field of probe pulse from holographic spectrum

$$E_{\text{probe}}(\omega) = |E(\omega)| e^{-i\phi(\omega)}$$

2. Fourier Transform to the time-domain to recover temporal phase

"Reading" the Hologram (Full Electric Field Reconstruction)

BASIC SCHEME

3. Calculate electron density from extracted temporal phase

1. Reconstruct spectral E-field of probe pulse from holographic spectrum

E_{probe}(ω) =
$$|E(ω)| e^{-i\phi(ω)}$$

2. Fourier Transform to the time-domain to recover temporal phase

$$E_{\text{probe}}(t) = |E(t)| e^{-i\delta\phi(t)}$$

Holographic snapshots of laser wakefields P ~10 TW, I ~ 10¹⁸ W/cm²

Holographic snapshots of laser wakefields *P*~10 *TW*, *I*~ 10¹⁸ *W*/*cm*²

Holographic snapshots of laser wakefields *P*~10 *TW*, *I*~ 10¹⁸ *W*/*cm*²

Holographic snapshots of laser wakefields P ~10 TW, I ~ 10¹⁸ W/cm²

Holographic snapshots of laser wakefields *P*~10 *TW*, *I*~ 10¹⁸ *W*/cm²

Holographic snapshots of laser wakefields *P*~10 *TW*, *I*~ 10¹⁸ *W*/cm²

 $n_e = 2.17 \times 10^{18} \text{ cm}^{-3}$

Source of wavefront curvature:

• large wave amplitude = large γ

Radial Distance [µm]

• large wave amplitude = large γ

• small wave amplitude = small γ

 λ_{P} (relativistic) > λ_{P} (non-relativistic)

Plasma temperature

- Inverse compton scattering

Inverse Compton scattering

- Initial plasma temperature T_e (x,t), T_i (x,t) usually small compared to U_p → effects usually neglected, temperature measurements not vigorously pursued
- > Possible method Inverse Compton scattering
- Example from FLASH FEL

R. R. Fäustlin et al., PRL 104, 125002 (2010)

Summary of Plasma Diagnostics

Gas density

- **Raman scattering**
- Interferometry

> Plasma density and constituents

- Schlieren/dark-field imaging
- Laser interferometry
- Two-color phase delay spectral interferometry
- Plasma spectroscopy

Internal E- & B-fields, and wake structures

- Polarimetry
- Particle beam probes
- Frequency Domain Holography

> Plasma temperature

Inverse Compton Scattering

