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Plasma sources come in many varieties…

Active plasma lens



Plasma sources come in many varieties…

AWAKE alkali vapor oven



Plasma sources come in many varieties…

Capillary discharge waveguide



Plasma sources come in many varieties…

Multi-compartment plasma cell



Plasma sources come in many varieties…

Gas jet
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Lecture Series on Plasma Sources and Diagnostics

�8

> Plasma Sources I 
- Thursday, March 14, 9:00 - 10:00 
- Conceptual aspects 

> Plasma Sources II 
- Friday, March 15, 9:00 - 10:00 
- Technical aspects 

> Plasma Diagnostics 
- Tuesday, March 19, 10:00 - 11:00 
- Diagnostics: how to measure plasmas

http://forward.desy.de
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Outline - Plasma Sources I - Concepts
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Plasma source
Witness

e-

Driver

length? density? temperature? constituents?  
shape? fluctuations? homogeneity?  

technical compatibility?

Laser-pulse driven  
“Laser wakefield acceleration” 

LWFA

Particle-beam driven 
“Plasma wakefield acceleration” 

PWFA

e- +[        ]

http://forward.desy.de
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Outline - Plasma Sources I - Concepts
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> Design aspects for a plasma source 

> Plasma generation mechanisms 

> Tailoring plasma properties to control wakefield and plasma processes

Plasma source
Witness

e-

Driver

length? density? temperature? constituents?  
shape? fluctuations? homogeneity?  

technical compatibility?

Laser-pulse driven  
“Laser wakefield acceleration” 

LWFA

Particle-beam driven 
“Plasma wakefield acceleration” 

PWFA

e- +[        ]

http://forward.desy.de


Jens Osterhoff  |  Twitter: @FForwardDESY  |  Web: forward.desy.de  |  Sesimbra  |  March 14, 2019  |  Page 00 

Design aspects
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> Adjustable plasma density ne 
> Tailored density profile ne (x,t) 
> Defined (and adjustable) length L 
> Controlled species composition 
> Controlled plasma temperature profile Te (x,t) 

> Spatial uniformity 
> Temporal stability

> Durability (# of events) 

> Support traversing of driver and witness 

> Accessible to diagnostics 

> Materials and gas flow compatible  
with vacuum requirements 

> Cost

http://forward.desy.de


Plasma generation: ionization
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How to create a plasma

�12

Plasma can be formed by different mechanisms 

> Collisional ionization

- discharges, laser-heated electrons, particle beams

http://forward.desy.de
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> Single-photon ionization

- high-energy photons: h ν >  Ip
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> Single-photon ionization

- high-energy photons: h ν >  Ip

How to create a plasma

�12

Plasma can be formed by different mechanisms 

> Collisional ionization

- discharges, laser-heated electrons, particle beams

Keldysh parameter: 

> γK  > 1 → Multi-photon ionization


> γK  ≪ 1 → Field ionization (tunneling or barrier suppression)

http://forward.desy.de
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Multi-photon ionization (MPI)

�13

> MPI typically relevant only for moderate laser intensities (or in temporal and spatial wings) 

- Example: γK  > 1 for I < 1.1×1014 W cm-2 and λ = 800 nm


> Ionization rate 

> Cross-section from Fermi’s Golden Rule

http://forward.desy.de
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Tunneling ionization
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> External E-field comparable to binding field  

> External field distorts atomic potential  

> Valence electron can tunnel through barrier  

> Accurate solution can be found by solving the 
Schrödinger equation → complex 

> Described by simplified models, popular: ADK 
(Ammosov, Delone, and Krainov)

> ADK ionization rate

M. V. Ammosov et al. Sov. Phys. JETP 64 1191 (1986) 
P. B. Corkum Phys. Rev. Lett. 71 1994 (1993)

http://forward.desy.de
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Tunneling ionization

�15

> ADK ionization rate

M. V. Ammosov et al. Sov. Phys. JETP 64 1191 (1986) 
P. B. Corkum Phys. Rev. Lett. 71 1994 (1993)

> ADK ionization model only valid below 

> (Special case) model extensions exist. Care needed!

http://forward.desy.de
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Tunneling ionization

�15
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Barrier suppression ionization
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> At high fields the barrier is completely suppressed 
(Barrier Suppression Ionization)

http://forward.desy.de
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Field ionization by particle beams
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> Coulomb fields of particle beams can trigger ionization 

> Field maximum is off-axis for symmetric beams

http://forward.desy.de
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Field ionization by particle beams
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> Coulomb fields of particle beams can trigger ionization 

> Field maximum is off-axis for symmetric beams

http://forward.desy.de


Tailoring plasma properties  
to control wakefield processes
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What do we want to control?

�20

> Control: set parameters with high precision 
> Stability: small event fluctuations

> Plasma density ne (x,t), ni (x,t) 

- injection (ne density down-ramps)

- dephasing (ne density up-ramps)

- laser guiding (transverse ne  profiles)

- emittance preservation in beam release (tailored plasma to vacuum transition)

- emittance preservation in beam capturing/matching (tailored vacuum to plasma transition)

- hosing seed mitigation (tailored vacuum to plasma transition)

- head-erosion mitigation (preionized beam-driven)

- decoupled acceleration and focussing fields (hollow-core channels)

- positron acceleration (hollow-core channels)

- chirp mitigation (alternating plasma densities)

http://forward.desy.de
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> Plasma temperature Te (x,t), Ti (x,t) 

- usually of lesser concern: Te/i ≈ Ip ≪ Up

- important for non-wakefield applications, e.g. active plasma lenses
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> Plasma temperature Te (x,t), Ti (x,t) 

- usually of lesser concern: Te/i ≈ Ip ≪ Up

- important for non-wakefield applications, e.g. active plasma lenses

> Plasma constituents (also from gas mixtures) 
- unionized electronic levels → ionization injection, ionization defocussing

- ion mass → ion motion effects, thermal conductivity

- tracer atoms → diagnostics 

What do we want to control?

�20

> Control: set parameters with high precision 
> Stability: small event fluctuations
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reduced 

phase velocity

acceleration

Plasma density control

�21

> Plasma density ne (x,t) governs 
acceleration process 

> Usually: flat acceleration section

http://forward.desy.de
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reduced 

phase velocity

acceleration

Plasma density control - down-ramp injection

�22

> Plasma density ne (x,t) governs 
acceleration process

v�
c

� 1 ⇡ � ⇠

2ne

dne

dz

> Phase velocity of plasma wake 
reduced on density down-slope 

> Velocity of plasma electrons may 
exceed vΦ, leads to trapping 

> Trapping possible in multiple buckets

idea: 
experiment:

S.Bulanov et al., Phys. Rev. E 58, R5257 (1998)
C.G.R.Geddes et al., Phys. Rev. Lett. 100, 215004 (2008)

http://forward.desy.de
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reduced 

phase velocity

Plasma density control - phase locking

�23

> Plasma density ne (x,t) governs 
acceleration process

> Phase velocity of plasma wake 
increased on density up-slope 

> Plasma wave phase velocity vΦ 
may be locked to velocity of injected beam 

> Electrons can be locked in acceleration phase
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reduced 

phase velocity

Plasma density control - beam release

�24

> Beams at plasma exit 
- ~% level energy spread 
- ≾ mm beta function, ~mrad divergence 

> Leads to transverse emittance growth in free drift

release

Phase space ellipses  
during drift

initial

final

→ K. Floettmann, Phys. Rev. STAB 6, 034202 (2003)
 

✏ =
q

hx2ihx02i � hxx0i2

x0 = px/pzwith

> Plasma density ne (x,t) governs 
acceleration process

http://forward.desy.de
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reduced 

phase velocity

Plasma density control - beam release

�25

> Beams at plasma exit 
- ~% level energy spread 
- ≾ mm beta function, ~mrad divergence 

> Leads to transverse emittance growth in free drift 
> Plasma-to-vacuum transition length ≫ β 

for adiabatic mitigation of emittance growth 
> Strong focussing elements for beam capturing required

release
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Emittance growth depends on transition length

→ T. Mehrling et al., NIM A 829, 367 (2016)

> Plasma density ne (x,t) governs 
acceleration process
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reduced 

phase velocity

Plasma density control - beam capturing/matching

�26

> External beams need to be matched to wakefield 
to preserve normalized emittance
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Electron self-injection

The effects taking place when focusing a relativistic laser pulse into underdense plasma not
only enable relativistic electron acceleration due to high longitudinal fields, but inherently
provide the mechanism of the electron placement in the accelerating phase of the wakefield.
This inherent injection is called self-injection.

Different mechanisms for self-injection or self-trapping of electrons in the accelerating phase
of the wake exist. The one-dimensional fluid theory cannot provide a full description but the
understanding for some of these mechanisms.

The energy of an electron in presence of the vector potential a(ξ) of a laser pulse and the
scalar potential φ(ξ) induced by a plasma wave in accordance to the one-dimensional fluid

12
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transverse field

Beam slice energy & focusing forces 
may vary in plasmas in z 

> Plasma density ne (x,t) governs 
acceleration process
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reduced 

phase velocity

Plasma density control - beam capturing/matching

�27
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> External beams need to be matched to wakefield 
to preserve normalized emittance

> Plasma density ne (x,t) governs 
acceleration process
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reduced 

phase velocity

Plasma density control - beam capturing/matching
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> External beams need to be matched to wakefield 
to preserve normalized emittance 

> Matching conditions 

> Matched β (~ mm) can be challenging to achieve 
> If matching technically difficult, 

adiabatic up-ramp may help

0 2 4 6 8 10
0

0.5

1

1.5

2

z (mm)

ε n (µ
m

)

 

 
L
β,mix

Matched case (CM)
Miss−matched case (C1)
Miss−matched case (C2)

εn,fin,C1

εn,fin,C2

Only beta matched 
Only alpha matched
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> Plasma density ne (x,t) governs 
acceleration process
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Plasma density control - hosing seed mitigation

�29

*D. H. Whittum, et al. Phys. Rev. Lett. 67, 991 (1991).
**C. Huang, et al. Phys. Rev. Lett. 99, 255001 (2007). 

Beam centroid deviations are amplified 
exponentially in time and along the beam!

Dramatic implications for PWFA

Mitigation of the hose instability in plasma-wakefield accelerators

T.J. Mehrling,1, 2 R.A. Fonseca,2, 3 A. Martinez de la Ossa,1 and J. Vieira2

1
Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany

2
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,

Universidade de Lisboa, 1049-001 Lisboa, Portugal
3
DCTI/ISCTE Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal

(Dated: July 15, 2016)

Plasma-wakefield accelerators have remarkable features, such as accelerating fields three orders of
magnitude greater than those in conventional accelerators. However, current models predict that
the hose instability will crucially limit their applicability. This work demonstrates that the evolution
of the electron-beam driver in the plasma can self-consistently suppress the hose instability. The
energy change occurring as the beam drives the plasma wave, along with its initial correlated and
uncorrelated energy spread, detune the betatron oscillations, and thereby damp the hose instability.
It is also shown that realizable longitudinally tapered plasma profiles can strongly mitigate the
initial hosing seeds. Hence, this work demonstrates that the propagation of a particle beam driver
can be stabilized over long propagation distances, allowing for high quality particle acceleration in
plasma. We find excellent agreement between our models and particle-in-cell simulations.

PACS numbers: 52.40.Mj, 41.75.Ht, 29.27.Bd, 52.35.-g, 52.65.Rr

Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
Xc(⇠, t) and the beam centroid Xb(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]

@2Xc

@⇠2
+

k2pc (⇠)cr(⇠)

2
(Xc �Xb) = 0 , (1)

@2Xb

@t2
+ !2

� (Xb �Xc) = 0 , (2)

with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
kp = !p/c, and the betatron frequency by !� = !p/

p
2�,

with the Lorentz factor �, where !p =
p
4⇡n0e2/m is

the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coe�cients c (⇠) and cr(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of Xc couples
back to the temporal evolution of Xb. For c = cr = 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(kp⇠ ⌧ !�t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c cr < 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.
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Universidade de Lisboa, 1049-001 Lisboa, Portugal
3
DCTI/ISCTE Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal

(Dated: July 26, 2016)

Plasma-wakefield accelerators have remarkable features, such as accelerating fields three orders of
magnitude greater than those in conventional accelerators. However, current models predict that
the hose instability will crucially limit their applicability. This work demonstrates that the evolution
of the electron-beam driver in the plasma can self-consistently suppress the hose instability. The
energy change occurring as the beam drives the plasma wave, along with its initial correlated and
uncorrelated energy spread, detune the betatron oscillations, and thereby damp the hose instability.
It is also shown that realizable longitudinally tapered plasma profiles can strongly mitigate the
initial hosing seeds. Hence, this work demonstrates that the propagation of a particle beam driver
can be stabilized over long propagation distances, allowing for high quality particle acceleration in
plasma. We find excellent agreement between our models and particle-in-cell simulations.

PACS numbers: 52.40.Mj, 41.75.Ht, 29.27.Bd, 52.35.-g, 52.65.Rr

Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
Xc(⇠, t) and the beam centroid Xb(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]
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@⇠2
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k2p
2

(Xc �Xb) = 0 , (1)

@2Xb

@t2
+ !2

� (Xb �Xc) = 0 , (2)

with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
kp = !p/c, and the betatron frequency by !� = !p/

p
2�,

with the Lorentz factor �, where !p =
p
4⇡n0e2/m is

the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coe�cients c (⇠) and cr(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of Xc couples
back to the temporal evolution of Xb. For c = cr = 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(kp⇠ ⌧ !�t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c cr < 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.
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Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
Xc(⇠, t) and the beam centroid Xb(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]
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(Xc �Xb) = 0 , (1)

@2Xb
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� (Xb �Xc) = 0 , (2)

with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
kp = !p/c, and the betatron frequency by !� = !p/

p
2�,

with the Lorentz factor �, where !p =
p
4⇡n0e2/m is

the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coe�cients c (⇠) and cr(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of Xc couples
back to the temporal evolution of Xb. For c = cr = 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(kp⇠ ⌧ !�t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c cr < 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.

Beam centroid equation

Channel centroid equation assuming linear 
plasma sheath response*

Channel centroid equation including 
relativistic sheath electrons and varying 

current and blowout radius along beam**

3

f?(x0, px,0) f�(�0). While the distribution f?(x0, px,0)
is arbitrary (apart from assuming f? = 0 outside the
channel) with a mean spatial value x0 = Xb,0, the energy
distribution considered here complies with a Gaussian
distribution f� = (

p
2⇡��)�1 exp

�
���2/2�2

�

�
. Averag-

ing over the initial transverse phase space distribution
and over the Gaussian energy distribution, neglecting the
variation of A owed to ��, yields

Xb(⇠, t) ' (6)
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⇥ sin ['(⇠, t)� '(⇠, t0)]Xc(⇠, t
0)!�,0(⇠) dt

0 ,

with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use
a two-particle model beam, such that Xb(⇠, t) =
Xb,1(⇠, t)�(⇠�⇠1)+Xb,2(⇠, t)�(⇠�⇠2), so as to understand
the physical predictions of Eqs. (1) and (6). Assuming
the absence of an initial correlated and uncorrelated en-
ergy spread and neglecting the impact of A, one finds
that the oscillation of the trailing particle at ⇠2 is in the
beginning temporally resonantly driven by the transverse
motion of the first particle at ⇠1. Thus, the amplitude of
oscillation grows initially. At time !�,0td,✏ '

p
3⇡/�✏,

with �✏ = |✏(⇠1)� ✏(⇠2)|, the amplitude of the trailing
particle has a maximum, and subsequently saturates at
⇠ 0.746 times the maximum value. This indicates that
the oscillations of two slices within the beam are decou-
pled approximately from time td,✏ for a given �✏. The
energy-depletion time for a witnessing slice at ⇠2 is given
by !�,0ted = �1/✏(⇠2). Hence, assuming the seeding slice
is located at a position with a comparative small acceler-
ation rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1, decoupling of the slices
occurs before depletion, i.e. td,✏ < ted, suggesting that
the growth of the hose instability of the drive beam is
typically significantly mitigated during the acceleration
process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
�b and !�,b refer to the initial beam-averaged Lorentz
factor and according betatron frequency, respectively.

Additionally, equation (6) indicates that for a finite
uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the second
term in Eq. (6) stops growing and the exponential damp-
ing dominates. It may be noted that the damping from a
finite energy spread always dominates for times consider-
ably greater than the decoherence time !�,0td,� ' 1/��.
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FIG. 2. Absolute value of the beam centroid at kp⇠ = 3.0
for the physical setup described in the text. Depicted are the
numerical results of equation (7) for no energy change ✏ = 0
(green solid) and with energy change ✏(⇠) 6= 0 (blue solid)
and for energy change and a relative initial energy spread of
�� = 0.05 (red solid). The numerical curves are compared
with the results of PIC simulations (dashed).

Numerical results & comparison to PIC simulations -
Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (6), given by

@2Xb

@t2
+
!�

2

!�,0

�
✏+ 1��

2
� @Xb

@t

+ !�
2(1 + 2��

2)(Xb �Xc) = 0 ,

(7)

with 1 = (!�/!�,0 � (!�/!�,0)2)/✏, and 2 =
(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
We consider a Gaussian electron beam with �b =

1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
energy chirp. The dimensions of the simulation box are
9 ⇥ 9 ⇥ 9k�3

p and the number of cells 512 ⇥ 320 ⇥ 320.
The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = 4Ib(⇠)/IA(kpR(⇠))2

and c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠)
for Eq. (7) are computed numerically using the di↵er-
ential equations for the blowout model in Refs. [19–21].
Here, R refers to the unperturbed (in terms of the hose
instability) blowout radius,  = (��Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,

4

The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = ⇤b(⇠)/(kpR(⇠))2 and
c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠) for
Eq. (6) are computed numerically using the di↵erential
equations for the blowout model in Refs. [19–21]. Here,
R refers to the unperturbed (in terms of the hose insta-
bility) blowout radius,  = (� � Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,
with the electrostatic potential � and longitudinal vector
potential Az.

Numerical results of equations (1) and (6) for the above
described physical setup are depicted in Fig. 2 for the
cases C1: ✏ = 0, �� = 0.0; C2: ✏ 6= 0, �� = 0.0; and
C3: ✏ 6= 0, �� = 0.05, together with results from PIC
simulations for the two latter cases. Case C1 is equiva-
lent to the model in Ref. [11], and Fig. 2 illustrates the
expected exponential growth rate. In contrast, in case
C2 the detuning of the slices leads to a saturation of the
hose instability. According to the two-particle model, the
maximum amplitude for C2 is expected to occur at time
!�,0td,✏ ⇡ 22.7 (�✏ taken between kp⇠ = 0 to the de-
picted slice at kp⇠ = 3.0), which is in good agreement
with the numerical result and the PIC result. Moreover,
in C3, the centroid oscillations are damped because of the
energy spread induced betatron decoherence within the
slices for case C3. A relative energy spread of �� = 0.05
for case C3 corresponds to !�,0td,� = 20, and the expo-
nential damping for times t > td,� is in good agreement
with the observations in Fig. 2 for both, the numerical
result and the PIC simulation.

We have shown that the energy change along the beam
and finite energy spread can have a dramatic impact in
the evolution of the beam centroid. For beams with
a large hose seed, the instability might lead to beam
breakup before saturation. However, mitigating the ini-
tial hose seed is therefore crucial to fully stabilize the
driver. In order to address this challenge, we propose be-
low a novel concept for the reduction of the initial seed
for the hose instability.

Mitigation of hosing with plasma-density tapers - We
consider a taper of the plasma density with length L =
z0 � zv from the vacuum-plasma interface at position zv
to the flat-top plasma profile starting from position z0, so
as to reduce the initial seed for the hose instability. Here,
the functional dependence of the betatron wavenumber
k� = !�/c on z is chosen as k�(z) = k�,0(1�(z�z0)/�)�2

for zv < z  z0, k�(z) = k�,0 for z > z0 and k�(z) = 0
otherwise, where � is the characteristic scale length of
the taper (compare [22, 23], where this functional de-
pendence was used for the matching of the beam beta-
tron function). Such density profiles (n = n0k2�/k

2
�,0) can

be experimentally realized in appropriate gas capillaries
[24, 25]. The beam centroid during the propagation in

the tailored vacuum-to-plasma transition is described by

d2Xb

dz2
+ k�(z)

2Xb = 0 , (7)

when neglecting the channel centroid displacement, the
beam-energy change and e↵ects from energy spread. Us-
ing the initial condition Xb(zv) = Xb,v and assuming
that the initial centroid potential energy dominates over
the initial centroid kinetic energy, i.e. k�,vXb,v � X 0

b,v,
where X 0

b,v = dXb/dz|zv , one obtains the solution for
this di↵erential equation (compare e.g. [22])

Xb(z) = Xb,v

✓
1�

z � z0
�

◆✓
� cos(')

L+ �
+

sin(')

k�,0�

◆
, (8)

with the phase advance '(z) =
R z
zv

k�(z0)dz0. Equation
(8) predicts that the taper can reduce the initial hose
seed. In order to determine the optimal taper scale length
� which minimizes the initial hose-seed, we minimize the
square root of kinetic plus potential energy of the oscil-
lator using a tapered profile compared to a pure flat-top
profile

⌘0 =

q
k2�,0X

2
b,0 +X 02

b,0

k�,0Xb,v
, (9)

for a given Xb,v and for varying �. This minimization
yields the optimum parameter �opt ' L/

p
k�,0L for long

taper length compared to a betatron length, k�,0L �

1. When presuming this optimized taper parameter, the
asymptotic expression for ⌘0 in the limit k�,0L � 1 is
given by ⌘0,asympt '

p
2/(1 +

p
k�,0L). The hose seed

reduction ⌘0 and the asymptotic solution ⌘0,asympt are
depicted in Fig. 3(a) for varying taper lengths k�,0L. The
graph predicts a reduction of the hose seed to ⌘0 ⇠ 0.5 for
a taper length on the order of k�,0L ⇠ 10 and ⌘0 ⇠ 0.2
for a taper length on the order of k�,0L ⇠ 100.

This analytical prediction is benchmarked against re-
sults from PIC simulations. The physical setup corre-
sponds to the above case C2, whilst in the present simu-
lations, a background plasma density profile as described
before is used instead of an uniform density profile. The
PIC results in Fig. 3(a) are in good agreement with the
analytical prediction for ⌘0 for k�,0L . 1. For k�,0L � 1,
the PIC results and analytical model deviate owed to
the occurrence of hosing in the tapered profile. Corre-
sponding centroids, obtained from PIC simulations are
depicted in Fig. 3(b), qualitatively illustrating the sub-
stantial reduction of the hose instability as a result of the
plasma tapering. The amplitude of the centroid oscilla-
tions is considerably reduced when using taper lengths
of k�,0L & 1 compared to the case for which no taper is
used.

Summary and conclusion - This work demonstrates
that self-consistent e↵ects occurring during excitation of
the plasma-wave and initial properties of the beam sub-
stantially mitigate the hose instability in PWFA. The
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Beam centroid deviations are amplified 
exponentially in time and along the beam!

Dramatic implications for PWFA
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Plasma-wakefield accelerators have remarkable features, such as accelerating fields three orders of
magnitude greater than those in conventional accelerators. However, current models predict that
the hose instability will crucially limit their applicability. This work demonstrates that the evolution
of the electron-beam driver in the plasma can self-consistently suppress the hose instability. The
energy change occurring as the beam drives the plasma wave, along with its initial correlated and
uncorrelated energy spread, detune the betatron oscillations, and thereby damp the hose instability.
It is also shown that realizable longitudinally tapered plasma profiles can strongly mitigate the
initial hosing seeds. Hence, this work demonstrates that the propagation of a particle beam driver
can be stabilized over long propagation distances, allowing for high quality particle acceleration in
plasma. We find excellent agreement between our models and particle-in-cell simulations.
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Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
Xc(⇠, t) and the beam centroid Xb(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]

@2Xc

@⇠2
+

k2pc (⇠)cr(⇠)

2
(Xc �Xb) = 0 , (1)

@2Xb

@t2
+ !2

� (Xb �Xc) = 0 , (2)

with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
kp = !p/c, and the betatron frequency by !� = !p/

p
2�,

with the Lorentz factor �, where !p =
p
4⇡n0e2/m is

the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coe�cients c (⇠) and cr(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of Xc couples
back to the temporal evolution of Xb. For c = cr = 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(kp⇠ ⌧ !�t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c cr < 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.

Mitigation of the hose instability in plasma-wakefield accelerators

T.J. Mehrling,1, 2 R.A. Fonseca,2, 3 A. Martinez de la Ossa,1 and J. Vieira2

1
Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany

2
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,
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Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
Xc(⇠, t) and the beam centroid Xb(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]
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(Xc �Xb) = 0 , (1)

@2Xb

@t2
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� (Xb �Xc) = 0 , (2)

with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
kp = !p/c, and the betatron frequency by !� = !p/

p
2�,

with the Lorentz factor �, where !p =
p
4⇡n0e2/m is

the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coe�cients c (⇠) and cr(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of Xc couples
back to the temporal evolution of Xb. For c = cr = 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(kp⇠ ⌧ !�t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c cr < 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.
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Introduction - Plasma-based accelerators provide ac-
celerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of lever-
aging a dramatic miniaturization of future accelerators
and to prevent the current scientific progress from fal-
tering in terms of provided beam energy, versatility and
availability of accelerator facilities. In plasma-wakefield
accelerators (PWFA) [3–5], charged particle beams are
used as drivers to excite high amplitude plasma waves.
Of particular interest is the blowout regime, in which a
particle beam with a charge density much greater than
the ambient plasma density expels all plasma electrons
from its vicinity, thereby generating ion-channels with
linear focusing properties for electron-witness beams and
with extreme accelerating fields [6].

While the large amplitude longitudinal electric field
enables rapid acceleration, the comparable magnitude of
the transverse fields entails large growth rates for the hose
instability. The hose instability was early identified as a
crucial challenge for stable acceleration in PWFA [7]. It
is seeded by an initial transverse asymmetry of the beam
charge density which couples to the electrons surrounding
the ion channel. According to current models, an initial
beam centroid deviation is thereby amplified exponen-
tially during the acceleration process [7–11], resulting in
unstable propagation or beam-breakup for not perfectly
symmetric beams in PWFA.

The coupled evolution of the ion-channel centroid
Xc(⇠, t) and the beam centroid Xb(⇠, t) in the blowout
regime using the rigid beam model is given by the di↵er-
ential equations [11]
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with the time t, the co-moving coordinate ⇠ = ct � z,
where z is the longitudinal coordinate and c is the speed
of light. The inverse plasma skin depth is denoted by
kp = !p/c, and the betatron frequency by !� = !p/
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with the Lorentz factor �, where !p =
p
4⇡n0e2/m is

the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coe�cients c (⇠) and cr(⇠) account for a rel-
ativistic motion of electrons in the plasma sheath, and
for a ⇠-dependence of the blowout radius and the beam
current [11]. Equations (1) and (2) infer that a beam
centroid deviation results in a change of the ion-channel
centroid along the beam and the deviation of Xc couples
back to the temporal evolution of Xb. For c = cr = 1,
i.e. for a linear response of the sheath electrons, asymp-
totic solutions in the short-beam, long-propagation limit
(kp⇠ ⌧ !�t) can be found [8, 9], suggesting an expo-
nential growth of the instability. As demonstrated in
Ref. [11], the exponential growth rate is reduced for
c cr < 1. However, according to these models the hose
instability can pose a strong constraint for the applica-
bility of plasma-wakefield accelerators.

In this work, we show that initial properties of the
electron-beam driver along with the dynamics during its
propagation in the plasma can self-consistently suppress
the hose instability. The energy gain/loss, occurring as
the beam excites the plasma wave, or an initial beam
energy chirp, detune the betatron oscillations along the
beam, therefore resulting in a damping of the hose in-
stability. In addition, a finite uncorrelated energy spread
leads to a betatron decoherence of the electrons within
the beam slices and hence to a reduction of the hose in-
stability. Moreover, we present that the hose seed can be
vitally reduced by the use of tailored vacuum-to-plasma
transitions, which can be produced in the laboratory.

Beam centroid equation

Channel centroid equation assuming linear 
plasma sheath response*

Channel centroid equation including 
relativistic sheath electrons and varying 

current and blowout radius along beam**

3

f?(x0, px,0) f�(�0). While the distribution f?(x0, px,0)
is arbitrary (apart from assuming f? = 0 outside the
channel) with a mean spatial value x0 = Xb,0, the energy
distribution considered here complies with a Gaussian
distribution f� = (

p
2⇡��)�1 exp

�
���2/2�2

�

�
. Averag-

ing over the initial transverse phase space distribution
and over the Gaussian energy distribution, neglecting the
variation of A owed to ��, yields

Xb(⇠, t) ' (6)

Xb,0(⇠)A(⇠, t) exp
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◆
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A(⇠, t)A(⇠, t0) exp


�
��2(↵(⇠, t)2 � ↵(⇠, t0)2)

2

�

⇥ sin ['(⇠, t)� '(⇠, t0)]Xc(⇠, t
0)!�,0(⇠) dt

0 ,

with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use
a two-particle model beam, such that Xb(⇠, t) =
Xb,1(⇠, t)�(⇠�⇠1)+Xb,2(⇠, t)�(⇠�⇠2), so as to understand
the physical predictions of Eqs. (1) and (6). Assuming
the absence of an initial correlated and uncorrelated en-
ergy spread and neglecting the impact of A, one finds
that the oscillation of the trailing particle at ⇠2 is in the
beginning temporally resonantly driven by the transverse
motion of the first particle at ⇠1. Thus, the amplitude of
oscillation grows initially. At time !�,0td,✏ '

p
3⇡/�✏,

with �✏ = |✏(⇠1)� ✏(⇠2)|, the amplitude of the trailing
particle has a maximum, and subsequently saturates at
⇠ 0.746 times the maximum value. This indicates that
the oscillations of two slices within the beam are decou-
pled approximately from time td,✏ for a given �✏. The
energy-depletion time for a witnessing slice at ⇠2 is given
by !�,0ted = �1/✏(⇠2). Hence, assuming the seeding slice
is located at a position with a comparative small acceler-
ation rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1, decoupling of the slices
occurs before depletion, i.e. td,✏ < ted, suggesting that
the growth of the hose instability of the drive beam is
typically significantly mitigated during the acceleration
process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
�b and !�,b refer to the initial beam-averaged Lorentz
factor and according betatron frequency, respectively.

Additionally, equation (6) indicates that for a finite
uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the second
term in Eq. (6) stops growing and the exponential damp-
ing dominates. It may be noted that the damping from a
finite energy spread always dominates for times consider-
ably greater than the decoherence time !�,0td,� ' 1/��.

t (ω−1
β,0)

0 10 20 30 40 50 60

∣ ∣ ∣

X
b/
X̂

0

∣ ∣ ∣

0

5

10

15

20
C1: ϵ = 0, ∆γ = 0.0

C2: ϵ ̸= 0, ∆γ = 0.0

C3: ϵ ̸= 0, ∆γ = 0.05

PIC: C2

PIC: C3

FIG. 2. Absolute value of the beam centroid at kp⇠ = 3.0
for the physical setup described in the text. Depicted are the
numerical results of equation (7) for no energy change ✏ = 0
(green solid) and with energy change ✏(⇠) 6= 0 (blue solid)
and for energy change and a relative initial energy spread of
�� = 0.05 (red solid). The numerical curves are compared
with the results of PIC simulations (dashed).

Numerical results & comparison to PIC simulations -
Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (6), given by

@2Xb

@t2
+
!�

2

!�,0

�
✏+ 1��

2
� @Xb

@t

+ !�
2(1 + 2��

2)(Xb �Xc) = 0 ,

(7)

with 1 = (!�/!�,0 � (!�/!�,0)2)/✏, and 2 =
(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
We consider a Gaussian electron beam with �b =

1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
energy chirp. The dimensions of the simulation box are
9 ⇥ 9 ⇥ 9k�3

p and the number of cells 512 ⇥ 320 ⇥ 320.
The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = 4Ib(⇠)/IA(kpR(⇠))2

and c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠)
for Eq. (7) are computed numerically using the di↵er-
ential equations for the blowout model in Refs. [19–21].
Here, R refers to the unperturbed (in terms of the hose
instability) blowout radius,  = (��Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,
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The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = ⇤b(⇠)/(kpR(⇠))2 and
c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠) for
Eq. (6) are computed numerically using the di↵erential
equations for the blowout model in Refs. [19–21]. Here,
R refers to the unperturbed (in terms of the hose insta-
bility) blowout radius,  = (� � Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,
with the electrostatic potential � and longitudinal vector
potential Az.

Numerical results of equations (1) and (6) for the above
described physical setup are depicted in Fig. 2 for the
cases C1: ✏ = 0, �� = 0.0; C2: ✏ 6= 0, �� = 0.0; and
C3: ✏ 6= 0, �� = 0.05, together with results from PIC
simulations for the two latter cases. Case C1 is equiva-
lent to the model in Ref. [11], and Fig. 2 illustrates the
expected exponential growth rate. In contrast, in case
C2 the detuning of the slices leads to a saturation of the
hose instability. According to the two-particle model, the
maximum amplitude for C2 is expected to occur at time
!�,0td,✏ ⇡ 22.7 (�✏ taken between kp⇠ = 0 to the de-
picted slice at kp⇠ = 3.0), which is in good agreement
with the numerical result and the PIC result. Moreover,
in C3, the centroid oscillations are damped because of the
energy spread induced betatron decoherence within the
slices for case C3. A relative energy spread of �� = 0.05
for case C3 corresponds to !�,0td,� = 20, and the expo-
nential damping for times t > td,� is in good agreement
with the observations in Fig. 2 for both, the numerical
result and the PIC simulation.

We have shown that the energy change along the beam
and finite energy spread can have a dramatic impact in
the evolution of the beam centroid. For beams with
a large hose seed, the instability might lead to beam
breakup before saturation. However, mitigating the ini-
tial hose seed is therefore crucial to fully stabilize the
driver. In order to address this challenge, we propose be-
low a novel concept for the reduction of the initial seed
for the hose instability.

Mitigation of hosing with plasma-density tapers - We
consider a taper of the plasma density with length L =
z0 � zv from the vacuum-plasma interface at position zv
to the flat-top plasma profile starting from position z0, so
as to reduce the initial seed for the hose instability. Here,
the functional dependence of the betatron wavenumber
k� = !�/c on z is chosen as k�(z) = k�,0(1�(z�z0)/�)�2

for zv < z  z0, k�(z) = k�,0 for z > z0 and k�(z) = 0
otherwise, where � is the characteristic scale length of
the taper (compare [22, 23], where this functional de-
pendence was used for the matching of the beam beta-
tron function). Such density profiles (n = n0k2�/k

2
�,0) can

be experimentally realized in appropriate gas capillaries
[24, 25]. The beam centroid during the propagation in

the tailored vacuum-to-plasma transition is described by

d2Xb

dz2
+ k�(z)

2Xb = 0 , (7)

when neglecting the channel centroid displacement, the
beam-energy change and e↵ects from energy spread. Us-
ing the initial condition Xb(zv) = Xb,v and assuming
that the initial centroid potential energy dominates over
the initial centroid kinetic energy, i.e. k�,vXb,v � X 0

b,v,
where X 0

b,v = dXb/dz|zv , one obtains the solution for
this di↵erential equation (compare e.g. [22])

Xb(z) = Xb,v

✓
1�

z � z0
�

◆✓
� cos(')

L+ �
+

sin(')

k�,0�

◆
, (8)

with the phase advance '(z) =
R z
zv

k�(z0)dz0. Equation
(8) predicts that the taper can reduce the initial hose
seed. In order to determine the optimal taper scale length
� which minimizes the initial hose-seed, we minimize the
square root of kinetic plus potential energy of the oscil-
lator using a tapered profile compared to a pure flat-top
profile

⌘0 =

q
k2�,0X

2
b,0 +X 02

b,0

k�,0Xb,v
, (9)

for a given Xb,v and for varying �. This minimization
yields the optimum parameter �opt ' L/

p
k�,0L for long

taper length compared to a betatron length, k�,0L �

1. When presuming this optimized taper parameter, the
asymptotic expression for ⌘0 in the limit k�,0L � 1 is
given by ⌘0,asympt '

p
2/(1 +

p
k�,0L). The hose seed

reduction ⌘0 and the asymptotic solution ⌘0,asympt are
depicted in Fig. 3(a) for varying taper lengths k�,0L. The
graph predicts a reduction of the hose seed to ⌘0 ⇠ 0.5 for
a taper length on the order of k�,0L ⇠ 10 and ⌘0 ⇠ 0.2
for a taper length on the order of k�,0L ⇠ 100.

This analytical prediction is benchmarked against re-
sults from PIC simulations. The physical setup corre-
sponds to the above case C2, whilst in the present simu-
lations, a background plasma density profile as described
before is used instead of an uniform density profile. The
PIC results in Fig. 3(a) are in good agreement with the
analytical prediction for ⌘0 for k�,0L . 1. For k�,0L � 1,
the PIC results and analytical model deviate owed to
the occurrence of hosing in the tapered profile. Corre-
sponding centroids, obtained from PIC simulations are
depicted in Fig. 3(b), qualitatively illustrating the sub-
stantial reduction of the hose instability as a result of the
plasma tapering. The amplitude of the centroid oscilla-
tions is considerably reduced when using taper lengths
of k�,0L & 1 compared to the case for which no taper is
used.

Summary and conclusion - This work demonstrates
that self-consistent e↵ects occurring during excitation of
the plasma-wave and initial properties of the beam sub-
stantially mitigate the hose instability in PWFA. The
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f?(x0, px,0) f�(�0). While the distribution f?(x0, px,0)
is arbitrary (apart from assuming f? = 0 outside the
channel) with a mean spatial value x0 = Xb,0, the energy
distribution considered here complies with a Gaussian
distribution f� = (
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. Averag-

ing over the initial transverse phase space distribution
and over the Gaussian energy distribution, neglecting the
variation of A owed to ��, yields
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with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use
a two-particle model beam, such that Xb(⇠, t) =
Xb,1(⇠, t)�(⇠�⇠1)+Xb,2(⇠, t)�(⇠�⇠2), so as to understand
the physical predictions of Eqs. (1) and (6). Assuming
the absence of an initial correlated and uncorrelated en-
ergy spread and neglecting the impact of A, one finds
that the oscillation of the trailing particle at ⇠2 is in the
beginning temporally resonantly driven by the transverse
motion of the first particle at ⇠1. Thus, the amplitude of
oscillation grows initially. At time !�,0td,✏ '
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with �✏ = |✏(⇠1)� ✏(⇠2)|, the amplitude of the trailing
particle has a maximum, and subsequently saturates at
⇠ 0.746 times the maximum value. This indicates that
the oscillations of two slices within the beam are decou-
pled approximately from time td,✏ for a given �✏. The
energy-depletion time for a witnessing slice at ⇠2 is given
by !�,0ted = �1/✏(⇠2). Hence, assuming the seeding slice
is located at a position with a comparative small acceler-
ation rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1, decoupling of the slices
occurs before depletion, i.e. td,✏ < ted, suggesting that
the growth of the hose instability of the drive beam is
typically significantly mitigated during the acceleration
process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
�b and !�,b refer to the initial beam-averaged Lorentz
factor and according betatron frequency, respectively.

Additionally, equation (6) indicates that for a finite
uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the second
term in Eq. (6) stops growing and the exponential damp-
ing dominates. It may be noted that the damping from a
finite energy spread always dominates for times consider-
ably greater than the decoherence time !�,0td,� ' 1/��.
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numerical results of equation (7) for no energy change ✏ = 0
(green solid) and with energy change ✏(⇠) 6= 0 (blue solid)
and for energy change and a relative initial energy spread of
�� = 0.05 (red solid). The numerical curves are compared
with the results of PIC simulations (dashed).

Numerical results & comparison to PIC simulations -
Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (6), given by
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with 1 = (!�/!�,0 � (!�/!�,0)2)/✏, and 2 =
(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
We consider a Gaussian electron beam with �b =

1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
energy chirp. The dimensions of the simulation box are
9 ⇥ 9 ⇥ 9k�3

p and the number of cells 512 ⇥ 320 ⇥ 320.
The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = ⇤b(⇠)/(kpR(⇠))2 and
c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠) for
Eq. (7) are computed numerically using the di↵erential
equations for the blowout model in Refs. [19–21]. Here,
R refers to the unperturbed (in terms of the hose insta-
bility) blowout radius,  = (� � Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,
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with the initial relative energy spread �� = ��/�0 and
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is located at a position with a comparative small acceler-
ation rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1, decoupling of the slices
occurs before depletion, i.e. td,✏ < ted, suggesting that
the growth of the hose instability of the drive beam is
typically significantly mitigated during the acceleration
process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
�b and !�,b refer to the initial beam-averaged Lorentz
factor and according betatron frequency, respectively.

Additionally, equation (6) indicates that for a finite
uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the second
term in Eq. (6) stops growing and the exponential damp-
ing dominates. It may be noted that the damping from a
finite energy spread always dominates for times consider-
ably greater than the decoherence time !�,0td,� ' 1/��.
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for the physical setup described in the text. Depicted are the
numerical results of equation (7) for no energy change ✏ = 0
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and for energy change and a relative initial energy spread of
�� = 0.05 (red solid). The numerical curves are compared
with the results of PIC simulations (dashed).

Numerical results & comparison to PIC simulations -
Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (6), given by
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1956.95, a peak current of Ib = IA/4, where IA '
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kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
energy chirp. The dimensions of the simulation box are
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The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = ⇤b(⇠)/(kpR(⇠))2 and
c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠) for
Eq. (7) are computed numerically using the di↵erential
equations for the blowout model in Refs. [19–21]. Here,
R refers to the unperturbed (in terms of the hose insta-
bility) blowout radius,  = (� � Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,
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with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use a
two-particle model beam, such that

Xb(⇠, t) = Xb,1(⇠, t)�(⇠ � ⇠1) + Xb,2(⇠, t)�(⇠ � ⇠2), so
as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
time !�,0td,✏ '

p
3⇡/�✏, with �✏ = |✏(⇠1)� ✏(⇠2)|, the

amplitude of the trailing particle has a maximum, and
subsequently saturates at ⇠ 0.746 times the maximum
value. This indicates that the oscillations of two slices
within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
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for the physical setup described in the text. Depicted are the
numerical results of equation (6) for no energy change ✏ = 0
(green solid) and with energy change ✏(⇠) 6= 0 (blue solid)
and for energy change and a relative initial energy spread of
�� = 0.05 (red solid). The numerical curves are compared
with the results of PIC simulations (dashed).

�b and !�,b refer to the initial beam-averaged Lorentz
factor and according betatron frequency, respectively.
Additionally, equation (??) indicates that for a finite

uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (??), given by
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with 1 = (!�/!�,0 � (!�/!�,0)2)/✏, and 2 =
(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
We consider a Gaussian electron beam with �b =

1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
energy chirp. The dimensions of the simulation box are
9 ⇥ 9 ⇥ 9k�3

p and the number of cells 512 ⇥ 320 ⇥ 320.
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f?(x0, px,0) f�(�0). While the distribution f?(x0, px,0)
is arbitrary (apart from assuming f? = 0 outside the
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distribution considered here complies with a Gaussian
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and over the Gaussian energy distribution, neglecting the
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with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use a
two-particle model beam, such that

Xb(⇠, t) = Xb,1(⇠, t)�(⇠ � ⇠1) + Xb,2(⇠, t)�(⇠ � ⇠2), so
as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
time !�,0td,✏ '
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amplitude of the trailing particle has a maximum, and
subsequently saturates at ⇠ 0.746 times the maximum
value. This indicates that the oscillations of two slices
within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
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�� = 0.05 (red solid). The numerical curves are compared
with the results of PIC simulations (dashed).

�b and !�,b refer to the initial beam-averaged Lorentz
factor and according betatron frequency, respectively.
Additionally, equation (??) indicates that for a finite

uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (??), given by
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with 1 = (!�/!�,0 � (!�/!�,0)2)/✏, and 2 =
(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
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1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
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with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use a
two-particle model beam, such that

Xb(⇠, t) = Xb,1(⇠, t)�(⇠ � ⇠1) + Xb,2(⇠, t)�(⇠ � ⇠2), so
as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
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subsequently saturates at ⇠ 0.746 times the maximum
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within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
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Additionally, equation (??) indicates that for a finite

uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
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assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.
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damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
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plex, we complement the analysis of the two-particle
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two-particle model beam, such that
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as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
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subsequently saturates at ⇠ 0.746 times the maximum
value. This indicates that the oscillations of two slices
within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.
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p d�/d⇠ one finds that two spatially resonant beam
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damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
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beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (??), given by
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kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
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as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
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within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
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slices are decoupled and oscillations stop growing at time
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damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
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Interpretation using a two-particle beam - We use a
two-particle model beam, such that

Xb(⇠, t) = Xb,1(⇠, t)�(⇠ � ⇠1) + Xb,2(⇠, t)�(⇠ � ⇠2), so
as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
time !�,0td,✏ '

p
3⇡/�✏, with �✏ = |✏(⇠1)� ✏(⇠2)|, the

amplitude of the trailing particle has a maximum, and
subsequently saturates at ⇠ 0.746 times the maximum
value. This indicates that the oscillations of two slices
within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
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Additionally, equation (??) indicates that for a finite

uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (??), given by
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by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
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as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
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amplitude of the trailing particle has a maximum, and
subsequently saturates at ⇠ 0.746 times the maximum
value. This indicates that the oscillations of two slices
within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
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p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
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uncorrelated energy spread, the centroid oscillations are
damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (??), given by
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(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
We consider a Gaussian electron beam with �b =

1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
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with the initial relative energy spread �� = ��/�0 and
the amplitude A = (�0/�)1/4 and ↵ = '!�/2!�,0.

Interpretation using a two-particle beam - We use a
two-particle model beam, such that

Xb(⇠, t) = Xb,1(⇠, t)�(⇠ � ⇠1) + Xb,2(⇠, t)�(⇠ � ⇠2), so
as to understand the physical predictions of Eqs. (1)
and (??). Assuming the absence of an initial correlated
and uncorrelated energy spread and neglecting the im-
pact of A, one finds that the oscillation of the trailing
particle at ⇠2 is in the beginning temporally resonantly
driven by the transverse motion of the first particle at
⇠1. Thus, the amplitude of oscillation grows initially. At
time !�,0td,✏ '
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amplitude of the trailing particle has a maximum, and
subsequently saturates at ⇠ 0.746 times the maximum
value. This indicates that the oscillations of two slices
within the beam are decoupled approximately from time
td,✏ for a given �✏. The energy-depletion time for a wit-
nessing slice at ⇠2 is given by !�,0ted = �1/✏(⇠2). Hence,
assuming the seeding slice is located at a position with a
comparative small acceleration rate |✏(⇠1)| ⌧ |✏(⇠2)| ⌧ 1,
decoupling of the slices occurs before depletion, i.e. td,✏ <
ted, suggesting that the growth of the hose instability of
the drive beam is typically significantly mitigated during
the acceleration process in PWFA.

For a beam with an initial linear energy chirp � =
��1
b k�1

p d�/d⇠ one finds that two spatially resonant beam
slices are decoupled and oscillations stop growing at time
!�,btd,� ' 2/ |�| when using the two-particle model beam
as described above, assuming crc = 1 and ✏ = 0. Here,
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damped exponentially as ��2↵(t)2 increases with time.
Specifically for times t & td,✏, the amplitude of the sec-
ond term in Eq. (??) stops growing and the exponential
damping dominates. It may be noted that the damp-
ing from a finite energy spread always dominates for
times considerably greater than the decoherence time
!�,0td,� ' 1/��.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
beam with numerical solutions of our model and de-
tailed comparisons with PIC simulations using the osiris
framework [12–14]. We numerically solve Eq. (1) to-
gether with the di↵erential form of Eq. (??), given by
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with 1 = (!�/!�,0 � (!�/!�,0)2)/✏, and 2 =
(!�/!�,0)4/2 � (!�/!�,0)3/4, and where terms O(��4)
and O(✏2) were neglected.
We consider a Gaussian electron beam with �b =

1956.95, a peak current of Ib = IA/4, where IA '

17 kA is the Alfvén current, transverse dimensions of
kp�x = kp�y = 0.1, and longitudinal dimension of
kp�z = 1.0 traverses a plasma target with a flat-top den-
sity n0 and drives a plasma wave in the blowout regime
(cf. Fig. 1). The initial centroid along the beam is given
by kpXb,0(⇠) = 0.01⇥⇥(⇠), where ⇥(⇠) is the Heaviside-
step function. The centroid o↵set is introduced from the
peak current location at ⇠ = 0. The beam has no initial
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FIG. 4. Beam centroid at kp⇠ = 1.0 for a tilted beam with
�0 = 2000 for three di↵erent scenarios. In blue solid the
initially monoenergetic beam, experiencing an energy change
according to equation (38) with E0 = 0.3!p, kp⇠0 = 1, kpL⇠ =
1. The green solid curve shows the same case, now with an
uncorrelated energy spread of ��/�0 = 0.008. The dashed
purple curve represents the case with no energy spread and
no energy change.
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FIG. 5. Beam centroid at kp⇠ = 2.0 for a tilted beam with
�0 = 2000 for three di↵erent scenarios. In blue solid the
initially monoenergetic beam, experiencing an energy change
according to equation (38) with E0 = 0.3!p, kp⇠0 = 1, kpL⇠ =
1. The green solid curve shows the same case, now with an
uncorrelated energy spread of ��/�0 = 0.008.. The dashed
purple curve represents the case with no energy spread and
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with ⇠0 = 3.0.

D. Beam with initial chirp - BNS-damping

Example with �� 6= 0, E 6= 0, i.e. � = �0(⇠)+E(⇠)t+��.
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FIG. 6. Beam centroid at kp⇠ = 7.0 for beam with o↵set at
kp⇠ = 3.5 [...] �0 = 2000 for three di↵erent scenarios. In
blue solid the initially monoenergetic beam, experiencing an
energy change according to [...]. The green solid curve shows
the same case, now with an uncorrelated energy spread of
��/�0 = 0.02.. The orange curve represents the case with no
energy spread and no energy change.

V. TAPERING OF VACUUM-TO-PLASMA
TRANSITION

Taper (compare [8–10]):

n(z) =

8
><

>:

0 if z  zv,

n0(1� (z � z0)/�)�4 if zv < z  z0,

n0 if z > z0

(40)

or, equivalently

k�(z) =
k�,0

(1� (z � z0)/�)2
, (41)

with k� = !�/c for zv < z  z0. ODE for beam centroid
evolution during propagation in the tapered vacuum-to-
plasma transition, neglecting energy change (although
beneficial because of chirp), channel centroid evolution
and e↵ects from energy spread
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Solution of this ODE (compare [8])
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where ' is the phase advance starting from the interface
of the vacuum to the taper profile at position zv
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The chosen time step is !p�t = 0.0169 using a numeri-
cal Cherenkov-radiation suppressing field solver [18]. The
plasma is modeled with 4 particles per cell and the beam
with 18 particles per cell using quadratic charge inter-
polation. The coe�cients cr(⇠) = ⇤b(⇠)/(kpR(⇠))2 and
c (⇠) = 1/(1 +  (⇠)) in Eq. (1), as well as Ez(⇠) for
Eq. (6) are computed numerically using the di↵erential
equations for the blowout model in Refs. [19–21]. Here,
R refers to the unperturbed (in terms of the hose insta-
bility) blowout radius,  = (� � Az)e/mc2 to the un-
perturbed normalized wakefield potential in the sheath,
with the electrostatic potential � and longitudinal vector
potential Az.

Numerical results of equations (1) and (6) for the above
described physical setup are depicted in Fig. 2 for the
cases C1: ✏ = 0, �� = 0.0; C2: ✏ 6= 0, �� = 0.0; and
C3: ✏ 6= 0, �� = 0.05, together with results from PIC
simulations for the two latter cases. Case C1 is equiva-
lent to the model in Ref. [11], and Fig. 2 illustrates the
expected exponential growth rate. In contrast, in case
C2 the detuning of the slices leads to a saturation of the
hose instability. According to the two-particle model, the
maximum amplitude for C2 is expected to occur at time
!�,0td,✏ ⇡ 22.7 (�✏ taken between kp⇠ = 0 to the de-
picted slice at kp⇠ = 3.0), which is in good agreement
with the numerical result and the PIC result. Moreover,
in C3, the centroid oscillations are damped because of the
energy spread induced betatron decoherence within the
slices for case C3. A relative energy spread of �� = 0.05
for case C3 corresponds to !�,0td,� = 20, and the expo-
nential damping for times t > td,� is in good agreement
with the observations in Fig. 2 for both, the numerical
result and the PIC simulation.

We have shown that the energy change along the beam
and finite energy spread can have a dramatic impact in
the evolution of the beam centroid. For beams with
a large hose seed, the instability might lead to beam
breakup before saturation. However, mitigating the ini-
tial hose seed is therefore crucial to fully stabilize the
driver. In order to address this challenge, we propose be-
low a novel concept for the reduction of the initial seed
for the hose instability.

Mitigation of hosing with plasma-density tapers - We
consider a taper of the plasma density with length L =
z0 � zv from the vacuum-plasma interface at position zv
to the flat-top plasma profile starting from position z0, so
as to reduce the initial seed for the hose instability. Here,
the functional dependence of the betatron wavenumber
k� = !�/c on z is chosen as k�(z) = k�,0(1�(z�z0)/�)�2

for zv < z  z0, k�(z) = k�,0 for z > z0 and k�(z) = 0
otherwise, where � is the characteristic scale length of
the taper (compare [22, 23], where this functional de-
pendence was used for the matching of the beam beta-
tron function). Such density profiles (n = n0k2�/k

2
�,0) can

be experimentally realized in appropriate gas capillaries
[24, 25]. The beam centroid during the propagation in

the tailored vacuum-to-plasma transition is described by

d2Xb

dz2
+ k�(z)

2Xb = 0 , (7)

when neglecting the channel centroid displacement, the
beam-energy change and e↵ects from energy spread. Us-
ing the initial condition Xb(zv) = Xb,v and assuming
that the initial centroid potential energy dominates over
the initial centroid kinetic energy, i.e. k�,vXb,v � X 0

b,v,
where X 0

b,v = dXb/dz|zv , one obtains the solution for
this di↵erential equation (compare e.g. [22])

Xb(z) = Xb,v

✓
1�

z � z0
�

◆✓
� cos(')

L+ �
+

sin(')

k�,0�

◆
, (8)

with the phase advance '(z) =
R z
zv

k�(z0)dz0. Equation
(8) predicts that the taper can reduce the initial hose
seed. In order to determine the optimal taper scale length
� which minimizes the initial hose-seed, we minimize the
square root of kinetic plus potential energy of the oscil-
lator using a tapered profile compared to a pure flat-top
profile

⌘0 =

q
k2�,0X

2
b,0 +X 02

b,0

k�,0Xb,v
, (9)

for a given Xb,v and for varying �. This minimization
yields the optimum parameter �opt ' L/

p
k�,0L for long

taper length compared to a betatron length, k�,0L �

1. When presuming this optimized taper parameter, the
asymptotic expression for ⌘0 in the limit k�,0L � 1 is
given by ⌘0,asympt '

p
2/(1 +

p
k�,0L). The hose seed

reduction ⌘0 and the asymptotic solution ⌘0,asympt are
depicted in Fig. 3(a) for varying taper lengths k�,0L. The
graph predicts a reduction of the hose seed to ⌘0 ⇠ 0.5 for
a taper length on the order of k�,0L ⇠ 10 and ⌘0 ⇠ 0.2
for a taper length on the order of k�,0L ⇠ 100.

This analytical prediction is benchmarked against re-
sults from PIC simulations. The physical setup corre-
sponds to the above case C2, whilst in the present simu-
lations, a background plasma density profile as described
before is used instead of an uniform density profile. The
PIC results in Fig. 3(a) are in good agreement with the
analytical prediction for ⌘0 for k�,0L . 1. For k�,0L � 1,
the PIC results and analytical model deviate owed to
the occurrence of hosing in the tapered profile. Corre-
sponding centroids, obtained from PIC simulations are
depicted in Fig. 3(b), qualitatively illustrating the sub-
stantial reduction of the hose instability as a result of the
plasma tapering. The amplitude of the centroid oscilla-
tions is considerably reduced when using taper lengths
of k�,0L & 1 compared to the case for which no taper is
used.

Summary and conclusion - This work demonstrates
that self-consistent e↵ects occurring during excitation of
the plasma-wave and initial properties of the beam sub-
stantially mitigate the hose instability in PWFA. The

Optimum taper parameter

* T. J. Mehrling et al., PRL 118, 174801 (2017)
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Plasma density control - laser waveguide

�31

> Linear scalings for LWFAs 

- Accelerating field


- Dephasing length


- Energy gain

Accelerating field : Ez / !p /
p
ne

Dephasing length : Ld ⇡
�3
p

�2
/ 1

n3/2
e

Energy gain : �W = EzLd / 1

ne

Accelerating field : Ez / !p /
p
ne

Dephasing length : Ld ⇡
�3
p

�2
/ 1

n3/2
e

Energy gain : �W = EzLd / 1

ne

Accelerating field : Ez / !p /
p
ne

Dephasing length : Ld ⇡
�3
p

�2
/ 1

n3/2
e

Energy gain : �W = EzLd / 1

ne

> Simple scaling (in linear regime) shows, 
factor 10 increase in energy requires:


- Factor 10 decrease in electron density: 
1019 cm-3 → 1018 cm-3 → 1017 cm-3


- Factor 30 increase in length: 
1 - 2 mm → 30 - 60 mm → 900 - 1800 mm
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Plasma density control - laser waveguide

�31

> Linear scalings for LWFAs 

- Accelerating field


- Dephasing length


- Energy gain

Accelerating field : Ez / !p /
p
ne

Dephasing length : Ld ⇡
�3
p

�2
/ 1

n3/2
e

Energy gain : �W = EzLd / 1

ne

Accelerating field : Ez / !p /
p
ne

Dephasing length : Ld ⇡
�3
p

�2
/ 1

n3/2
e

Energy gain : �W = EzLd / 1

ne

Accelerating field : Ez / !p /
p
ne

Dephasing length : Ld ⇡
�3
p

�2
/ 1

n3/2
e

Energy gain : �W = EzLd / 1

ne

> Simple scaling (in linear regime) shows, 
factor 10 increase in energy requires:


- Factor 10 decrease in electron density: 
1019 cm-3 → 1018 cm-3 → 1017 cm-3


- Factor 30 increase in length: 
1 - 2 mm → 30 - 60 mm → 900 - 1800 mm

W0

Example :

w0 = 10µm; � = 1µm

) ZR = 0.3mm

ZR =
⇡w2

0

�

> The laser intensity must be maintained  
over the acceleration length


- limited by laser diffraction

- Rayleigh range typically only millimeters
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> Transverse index of refraction gradient may guide lasers

Plasma density control - laser waveguide

�32

x

n(x)
=
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> Transverse index of refraction gradient may guide lasers

Plasma density control - laser waveguide

�32

x

n(x)
=

> Plasma channel: transverse variation of electron density 
gives correct refractive index profile


- Transverse plasma density gradient gives 
transverse index of refraction gradient


- Changes laser phase velocity vφ = c/η


> Parabolic channel will match Gaussian beam of spot size


> Shape of channel is not very important: 
matched spot size mainly determined by channel depth


- cf. Durfee et al., Opt. Lett. 19, 1937 (1994)

WM =

✓
r2ch

⇡re�ne

◆1/4

x

ne(x)

⌘ =

r
1�

⇣!p

!

⌘2

⇡ 1� 1

2

ne(r)e2

�me✏0!2

ne(r) = ne(0) +�ne (r/rch)
2
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> Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile

- Leads to self-focusing/guiding above a critical power


Plasma density control - laser waveguide

�33

x

n(x)
=

Pc = 17.4

✓
!

!p

◆2

GW x

z

⌘ =

r
1�

⇣!p

!

⌘2

⇡ 1� 1

2

nee2

�(r)me✏0!2

Example :

ne = 1018 cm�3,� = 800 nm

Pc = 8TW
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> Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile

- Leads to self-focusing/guiding above a critical power


Plasma density control - laser waveguide

�33

x

n(x)
=

Pc = 17.4

✓
!

!p

◆2

GW x

z

⌘ =

r
1�

⇣!p

!

⌘2

⇡ 1� 1

2

nee2

�(r)me✏0!2

Example :

ne = 1018 cm�3,� = 800 nm

Pc = 8TW

amplification due to self-focusing. The mean and peak
energies for the 5 mm nozzle and the mean beam energy
for the 10 mm nozzle above this threshold are predicted by
the nonlinear scaling model [8] for a0 ¼ 3:9, close to our
average vacuum laser strength. However, the maximum
Wmax is fitted by a higher a0 ’ 6:0. This indicates that for
ideal guiding, the wakefield amplitude is increased due to
the effects of pulse evolution and intensity amplification.

Intensity (a0) amplification should occur because of
pulse compression [19] and photon deceleration [20], as
well as self-focusing [9]. Evidence for this intensity am-
plification is seen by the multiple lower energy electron
bunches observed at long interaction lengths [e.g.,
Figs. 1(c) and 1(d)]. Monoenergetic beam production in a
self-injecting laser wakefield can be aided by the fact that
continuous injection is inhibited by a reduction of the
plasma wave amplitude by the space-charge field of elec-
trons that have already been injected. A bunch can thus be
localized in space and, consequently, as the electrons are
accelerated by almost the same fields, also in phase space.
Intensity amplification means that the plasma wave ampli-
tude also continues to rise, allowing further injection. The
bunches which are injected when the wakefield amplitude
has increased due to the intensity amplification experience
a larger wake amplitude and thus can be accelerated to
higher energies. Of course, for this to be possible, the laser
pulse must be self-guided over multiple zR.

Figure 3 depicts multiple views of the laser propagation
through the plasma. Interferometry [Fig. 3(a)] shows a
plasma channel whose size is increasing at an angle similar

to that of the F ¼ 20 focusing optic used. Figures 3(d) and
3(e) shows the beam profile after transmission through
10 mm of plasma at high intensity. The profiles show a
central bright spot comparable in size to the initial beam
focus [Fig. 3(b)], with an outer halo that is comparable to
the laser beam profile when the laser is propagated in
vacuum [Fig. 3(c)]. We believe the expanding plasma
cone is produced by the unguided halo, but there is a
central guided filament which propagates at sufficiently
high intensity to drive a large amplitude plasma wave.
Figures 3(d)–3(h) highlight that self-guiding becomes
less effective for decreasing laser powers. Measurements
of the transmitted energy with a calibrated diode show that
there is typically 30% energy transmission at the end of the
interaction, and that half of this transmitted energy is in the
central spot (of 2w0 ¼ 22 !m ’ "p). We calculate that
there is P ’ 5 TW within the guided central filament for
conditions shown in Fig. 3(f). This compares favorably
with the value of Pc for this threshold density.
For the 10 mm nozzle, particle in cell simulations were

performed with parameters matching experimental values
with OSIRIS [21]. Results are for a three-dimensional
simulation of a linearly polarized, diffraction limited laser
pulse with a0 ¼ 3:9 focused at the entrance of the plasma.
The longitudinal profile of the laser electric field is sym-
metric and given by 10#3 " 15#4 þ 6#5, with # ¼
ðt" t0Þ=#FWHM, and #FWHM ¼ 55 fs. The transverse pro-
file of the laser is Gaussian with 2wHWHM ¼ 22 !m. The
plasma density profile increases linearly from zero to ne ¼
5:7 & 1018 cm"3 in the first 650 !m, is constant for
7317 !m, and falls linearly to zero in 1180 !m. In the
transverse direction, ne falls linearly from the center to
5:1 & 1018 cm"3 at the edges of the box. The simulation

FIG. 3 (color online). (a) Typical interferogram obtained by
transverse probing. (b)–(h) background subtracted 2D images of
the laser mode for various conditions: (b) in vacuum at the
position of optimal focus z ¼ 0; (c) in vacuum at z ¼ 10 mm;
(d)–(h) at z ¼ 10 mm with plasma ne ¼ ð5:7 ' 0:2Þ &
1018 cm"3 and input laser powers of: (d) 180 TW, (e) 60 TW,
(f) 30 TW, (g) 20 TW, and (h) 7 TW.
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FIG. 2 (color online). Scaling of electron beam energy as a
function of plasma density. The maximum achievable peak
energy for the 5 mm ([red] squares) and 10 mm nozzle ([blue]
circles) and the average peak energy for the 10 mm nozzle
(dashed [blue] line) are plotted for ð10:0 ' 1:5Þ J on target.
The dotted [black] and solid [black] lines show the predictions
by the nonlinear scaling law [8] for a ’ 3:9 and a ’ 6:0. The rms
energy stability is 40% and 15% for the 10 mm nozzle at 5.7 and
6:3 & 1018 cm"3 averaging over 14 and 7 shots, respectively.
(inset) Maximum observed electron energy as a function of
plasma length. Error bars are explained in the text.

PRL 103, 035002 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

035002-3

S. Kneip et al., 
Phys. Rev. Lett. 103 035002 (2009)
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Plasma density control - hollow core channels

�34

from S. Gessner et al., Nat. Commun. 2016

> focussing fields are zero 
inside the channel 

> external focussing elements required

> decoupling of longitudinal and transverse forces 
> interesting for positron acceleration
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Plasma density control - head erosion mitigation

�35

> Front of drive beam 
not in focussing channel  
→ front is diverging 

> Beam erodes from the front 
“head erosion” 

> Etching speed scales with

from An et al., Phys. Rev. STAB 16, 101301 (2013)
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Plasma density control - head erosion mitigation

�35

> Front of drive beam 
not in focussing channel  
→ front is diverging 

> Beam erodes from the front 
“head erosion” 

> Etching speed scales with

> Laser preionization provides  
focussing plasma for front of beam

from An et al., Phys. Rev. STAB 16, 101301 (2013)
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Plasma density control - chirp mitigation

�36

> Plasma accelerators are operated off-crest (defocussing fields)

> Results in chirped beams (without beamloading)

> Idea: alternate plasma densities and generate 

effective position for stable beam transport and on-crest fields

idea: Brinkmann et al., Phys. Rev. Lett. 118, 214801 (2017)

http://forward.desy.de


Jens Osterhoff  |  Twitter: @FForwardDESY  |  Web: forward.desy.de  |  Sesimbra  |  March 14, 2019  |  Page 00 

Plasma constituents control - ionization injection

�37

idea: 
demonstration:

D.Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996)
A.Pak et al., Phys. Rev. Lett. 104, 025003 (2010)

C.McGuffey et al., Phys. Rev. Lett. 104, 025004 (2010)

> Ionization of dopant gas near laser-pulse peak intensity

> Dopant concentration 

to tune injected charge and beam loading
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Plasma temperature control

�38

> Initial plasma temperature Te (x,t), Ti (x,t) usually small compared to Up → effects usually neglected 

> Influences wave-breaking threshold only at very high plasma temperatures 

> γp is relativistic factor associated  
with phase velocity of wake
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Plasma temperature control - APLs

�39

> Temperature control of crucial importance for active plasma lenses

  cathode (-)    anode (+)  

e--beam
e-p

e-p

e-p
e-p

e-p

azimuthal magnetic field

J. van Tilborg et al., 
Phys. Rev. Lett. 115, 184802 (2015)

 20 kV plasma 
discharge  

→ F = I x B, tunable and symmetric focussing force for e--beam

plasma on

plasma off

kT/m active plasma lens

http://forward.desy.de


Jens Osterhoff  |  Twitter: @FForwardDESY  |  Web: forward.desy.de  |  Sesimbra  |  March 14, 2019  |  Page 00 

Plasma temperature control - APLs

�39

> Temperature control of crucial importance for active plasma lenses

  cathode (-)    anode (+)  

e--beam
e-p

e-p

e-p
e-p

e-p

azimuthal magnetic field

J. van Tilborg et al., 
Phys. Rev. Lett. 115, 184802 (2015)

 20 kV plasma 
discharge  

→ F = I x B, tunable and symmetric focussing force for e--beam

plasma on

plasma off

kT/m active plasma lens

> Plasma heated by current, cooled on walls 
- results in transverse density and temperature gradient 
- ohmic resistance depends on temperature 
- local current density depends on local temperature 
- leads to B-field inhomogeneities 
→ nonlinear focussing fields → emittance growth
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Röckemann et al., 
PRAB 21, 122801 (2018)

Plasma temperature control - APLs

�40

> Temperature control of crucial importance for active plasma lenses
kT/m active plasma lens

> Plasma heated by current, cooled on walls 
- results in transverse density and temperature gradient 
- ohmic resistance depends on temperature 
- local current density depends on local temperature 
- leads to B-field inhomogeneities 
→ nonlinear focussing fields → emittance growth
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Röckemann et al., 
PRAB 21, 122801 (2018)

Plasma temperature control - APLs

�40

> Temperature control of crucial importance for active plasma lenses
kT/m active plasma lens

> Plasma heated by current, cooled on walls 
- results in transverse density and temperature gradient 
- ohmic resistance depends on temperature 
- local current density depends on local temperature 
- leads to B-field inhomogeneities 
→ nonlinear focussing fields → emittance growth

> APLs need to be used long before thermal equilibrium is reached, 
when current density is still uniform
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Plasma temperature control - APLs

�41

> Temperature control of crucial importance for active plasma lenses
kT/m active plasma lens
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> Substitute Hydrogen/Helium with Argon to extend timescale of temperature equilibration ∝ mion 

> Experiment at CLEAR, CERN: 216 MeV electrons, 50 µm rms size, 3 µm norm. emittance, 410 A current at 70 ns 
> Argon: emittance conservation measured  

Helium: emittance not conserved

C. A. Lindstrom et al., 
Phys. Rev. Lett. 121, 194801(2018)
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Summary of Plasma Sources I

> Today 

- Design aspects for a plasma source 
- Concepts: plasma generation mechanisms 
- Concepts: tailoring plasma properties to control wakefield processes 

> Tomorrow: technical implementation and examples


