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PART I: WAKEFIELD GENERATION
AND DETECTION
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Laser pulses
An electromagnetic wave has to 
fulfil Maxwell‘s equations
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A plane wave ansatz for A (Φ =0 in vacuo) yields the fields:
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Laser-driven wakefields

Ingredients:

• intense laser pulse
• ponderomotive force
• wake generation
• surfing electrons
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All electrons in the laser focus are pushed 
away at relativistic velocities ⇒
Laser acts as a repulsive potential and 
excerts a net force
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• monochromatic 
plane wave:
E.S. Sarachik, G.T. Schappert; 
Phys. Rev. D 1, 2738 (1970)

• pulsed plane wave and 
laser focus (numerical)
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While the direct derivation of the relativistic ponderomotive force is quite involving, we can use
identification of the ponderomotive potential as the mean kinetic energy of the quivering
electrons as a short-cut: 

Ekin = Φ pond = −mec
2 γ −1 ∝

γ = 1+
a0
2

2

I

This yields the relativistic ponderomotive force as:

!
Fpond = −mec

2∇ γ = −
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e
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non-relativistic relativistic
Fpond − e#
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The ponderomotive force pushes electrons aside, causing the laser pulse to 
snowplow through the plasma and excite a plasma wave in its wake.
The excitation (which determines the phase velocity of the plasma wave) 
propagates with the laser pulse group velocity:

We see that                has to be fulfilled for a non-evanescent wave

Typical density range for LWFA:  ne=ncr/1000 

⇒ vph,wake = 0.9995 c, λp=10-30µm
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∂ω l
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ω p
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Double ponderomotive push
fpond

fpond

eE x

• Two kicks by the ponderomotive force, 
corresponding to the rising and the falling 
edge of the laser pulse.

• Optimum pulse duration τFWHM=0.37 λp/c.

• Wake excitation is dominated by the rising 
edge kick due to longer interaction between 
co-moving electrons and driver.

• Resulting charge separation separation 
causes electric fields to exhibit a strong 
longitudinal component. 

• The wave structure travels with vph = cη, and 
hence can constantly accelerate a co-moving 
electron. 



Centre for Advanced Laser Applications

Wake generation
Since in plasma the laser pulse interacts with many particles at the same time, it is impractical
to treat each particle individually.  Instead, the motion of electrons driven by an electromagnetic
wave an a plasma can be derived from a set of fluid equations:
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∇
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Poisson equation
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For further derivations, we will also transform to a co-moving frame with speed vgr
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Linear wakefields
For small laser intensities (a0 << 1), the plasma density is only weakly
perturbed δne ≪ ne,0 and the continuity equation can be written as:

∂δne
∂t

+ ne,0∇
!v = 0

The above expression and Poisson’s equation can be now inserted into the derivative of the
Lorentz force. Keeping in mind ∇A = 0 (Coulomb gauge) and p = mev yields for initially resting
electrons at low intensities, i.e., γ = 1 + a2/2:

∂2

∂t2
+ω p

2⎛
⎝⎜

⎞
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δne
ne,0

= c2∇2 a2

2
The RHS represents the driving term of a forced oscilllator, and is proportional to the
ponderomotive force Fpond = mec2∇2a2/2.  With Poisson’s equation we express the charge
imbalance with the scalar wake potential in the moving frame coordinates (ξ=z-vgt , τ=t) 

∂2

∂ξ 2
+ kp

2⎛
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⎞
⎠⎟
φ = kp

2 a2

2
Assuming a radial symmetry, an analytical solution of the inhomogeneous wave equation can
be found in 3D. It is given by

φ r,ξ( ) = −
kp
4

a2
ξ

∞

∫ r, ′ξ( )sin kp ξ − ′ξ( )( )d ′ξ
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Linear wakefields II

For a Gaussian laser envelope a = a0 exp(−ξ2/(cτ0)2)exp(−r2/w02), the solution of the integral for
ξ→ −∞, i.e. after the laser transit is given by: 

Ez
Ep,0

= − 1
kp

∂φ
∂ξ

,        
Er
Ep,0

= − 1
kp

∂φ
∂r

,        
δne
ne,0

= − 1
kp

2

∂2φ
∂ξ 2 ,  

From this scalar potential φ the electric field and the electron density can be derived as: 

φ r,ξ( ) = −a0
2 π
2
kp
4
cτ 0e

− 2r2 w0
2( )e− kpcτ0( )2 8 sin kpξ( )

Ep,0 corresponds to the maximal electric field of the plasma wave in the linear regime, known as
the cold fluid wavebreaking field: 

Ep,0 =
mecω p

e
,        Ep,0 GV/m⎡⎣ ⎤⎦ = 96 ne,0 1018cm−3⎡⎣ ⎤⎦  
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Linear wakefields III

Top: Normalized plasma potential φ, longitudinal electric field Ez/E0
and density perturbation δne/ne,0 on axis (r = 0). Bottom: color
coded plasma density perturbation δne(r,ξ)/ne,0 generated by the
ponderomotive force in the vicinity of a Gaussian laser focus.

top: Spatial extent of the longitudinal Ez (r , ξ ) and botton: the
radial electric field Er (r , ξ ). The green area marks a λp / 4-
phase region of the wakefield with an accelerating and
transverse focusing field.
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Nonlinear regime
No analytic 3-D solution exists for high intensities (a0 > 1), since (δne/ne,0) ∼ 1 and the 
response of the plasma becomes highly nonlinear. However, a solution can be found for the 1D 
nonlinear regime (Esarey et al., 1997a; Sprangle et al., 1990). 

It is convenient to separate the plasma electron motion into parallel and perpendicular com-
ponents relative to the laser propagation direction. The perpendicular equation of motion reads:

d!p
dt

= e
!
E + ve ×

!
B( )

Lorentz force
! "### $###

,        
d
dt

γ mc2( ) = −e !v ⋅
!
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! "### $###
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!
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!
B⊥( ) = e d

!
A⊥
dt

The longitudinal motion can be found by subtracting the longitudinal components of

To proceed, we introduce the normalized quantities:
!
β =
!v
c

,      !a0 =
e
!
A
m0c

,      φ= eΦ
mec

2 ,       γ = E
mec

2 ,        !u =
!p
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Nonlinear regime II

Integration for zero initial velocty yields: !p⊥ = e
!
A⊥    ⇔     !u⊥ = γ  

!
β⊥ = !a

E − cp" = mec
2     ⇔     γ -1= u"

Likewise, it is convenient to split the relativistic gamma factor
into transverse and longitudinal parts and express them in terms of a:

γ = 1+ u!
2 + u⊥

2 = 1 1− β 2

γ 2 = 1+ u⊥
2 + γ −1( )2

             ⇒                γ =1+ a2 2

γ 2 =
1+ γ 2β⊥

2

1− β!
2 ≡ γ ⊥

2γ !
2             ⇒                γ ⊥ = 1+a2

and keeping in mind that the wake is a function of (t-z):

dE
dt

− c
d!p"
dt

= 0
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With we obtain: 

Nonlinear Regime III
Express the Lorentz force in terms of the potential-dependent E and B-fields:

∂
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!
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2
!
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The longitudinal derivative dA/dt (dA/dx) can be neglected (quasistatic approximation) and the
equation of motion is simplified in the laboratory and co-moving frame, respectively:

1
c
∂uz
∂t

= ∂
∂z

φ − γ( ),                1
c
∂uz
∂τ

= ∂
∂ξ

φ − γ 1− β pβz( )( )
where βp = vg / c the normalized plasma wave velocity.  

(only ponderomotive driver) yields:
mec

2  
!
∇γ = !v ⋅

!
∇( ) !p + !v × !∇× !p( )
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Analogous, the continuity equation and Poisson’s equation can be written in the co-moving frame: 

Nonlinear regime IV

∂
∂τ
ne
ne,0

= c ∂
∂ξ

ne
ne,0

β p − βz( )⎛

⎝
⎜

⎞

⎠
⎟ ,             ∂

2φ
∂ξ 2 = kp

2 ne
ne,0

−1
⎛

⎝
⎜

⎞

⎠
⎟

Applying the quasistatic approximation allows to neglect the partial derivative ∂/∂τ relative to
∂/∂ξ. All three equations can be integrated by finding the integration constant in the absence of
the plasma wave, i.e., before the arrival of the pulse ξ→ -∞ 

ne
ne,0

β p − βz( ) = const.          ⇒
n ξ→−∞( )=1

          
ne
ne,0

=
β p

β p − βz

φ − γ 1− β pβz( ) = const.      ⇒
βz ξ→−∞( )=0

φ=0,γ =1

          φ +1= γ 1− β pβz( )    
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Nonlinear regimeV 

γ = γ p
2 1+φ( ) 1− β pΨ( ),         βz = β p −Ψ
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Rearranging these expressions to the following explicit form (Gibbon, 2005)
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Inserting the above expression into Poisson’s equation yields the wake potential in the co-
moving coordinates for arbitrary pump strength:

This non-linear ordinary differential equation can now be solved for any desired laser pulse
shapes a(ξ) numerically
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WAKEFIELD DIAGNOSTICS
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How can we detect and characterize the wakefield?
for a comprehensive review, consult: 
M.C. Downer et al, Reviews of Modern Physics 90 035002 (2018)

Imaging methods Frequency domain methods

• Shadowgraphy
• Multi-plane shadowgraphy
• Electron radiography

require few-fs probe pulse

• Forward Thomson scattering
• Frequency-domain holography
• electron witness bunches

typically require reference pulse 
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Collective Thomson (probe pulse) forward scattering
The photon momentum of co-propagating probe pulse (τprobe>>λp/c) is shifted by the
average wake electron momentum, leading to the creation of Thomson side-bands. 
Alternatively, the probe pulse is modulated by the average wake density perturbation (Raman 
scattering).

Le Blanc, S. P. et al, Phys. Rev. Lett. 77, 5381 (1996)
M.C. Downer et al, Reviews of Modern Physics 90 035002 (2018) 

→ presence of wake, average wavelength

ω sc =ω probe ±ω p
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Raman (pump pulse) side scattering

Maria Reuter, Dissertation, University of Jena, 2018

→Longitudinally resolved plasma wavelength
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Frequency domain interferometry

Marques, J. R et al, Phys. Rev. Lett. 76, 3566 (1996)

τ probe <ω p
−1 :

Δφprobe r,Δt( ) = ω probe / c( ) η r,Δt, z( )dz
0

L

∫
Eprobe t −T( ) = E0,pr t −T( )eiΔφprobe r ,Δt( )

T: probe-reference timing
Δt: probe-driver timing

driver referenceprobe

Radially resolved interferograms
yield 2-D information:

Marques, J. R et al, Phys. Rev. Lett. 78, 3463 (1997)

Δφ is the integral over the longitudinal refractive
index perturbation. Retrieving n(z) requires
scanning the delay Δt
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Single-shot: Frequency-domain holography

idea: 

use many simultaneous probe pulses with variable delay

or ➝

TL short reference pulse andTL long probe pulse

or ➝
chirped probe and reference

longitudinal information is now encoded in probe 
wavelength!

M.C. Downer et al, Reviews of Modern Physics 90 035002 (2018)
Siders et al, IEEE Trans. Plasma Sci. 24,  301 (1996)
Chien, C. Y. at al., Opt. Lett. 25, 578 (2000)
Geindre, J. P. et al., Opt. Lett. 26, 1612 (2001)
Kim, K. Y. et al., Appl. Phys. Lett. 81, 4124 (2002)
Matlis, N. H., et al., Nat. Phys. 2, 749 (2006)
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FDH reconstruction

raw FDH interferogram

lineout

FT of lineout. Inset: Wakefield
information is encoded in 2-ps 
sideband for different densities

Matlis, N. H., et al., Nat. Phys. 2, 749 (2006)
Dong P et al., New J. Phys. 12, 045016 (2010)
Matlis, N. H., et al., Opt. Lett. 41, 5503 (2016)
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FDH reconstruction II

Reconstruction of wakefield from FT-1 

of 2-ps sideband

Simulation of wakefield for conditions
similar to the experiment

Matlis, N. H., et al., Nat. Phys. 2, 749 (2006)
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Longitudinal shadowgraphy: 

The strong index gradients inside a bubble can focus a FDH probe:

Simulation of wakefield with 800 nm driver
evolution (top) and 400 nm FDH probe 
evolution (bottom)

Experiment showing the formation of a 
400 nm FDH probe “ light bullet”
top: no plasma
middle & bottom: bullet trapped inside 
bubble.Dong P et al., New J. Phys. 12, 045016 (2010)
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Few-cycle shadowgraphy: 
90° probe geometry requires few-fs probe duration in order to freeze motion blur.  First 
successful transverse wake imaging experiment with a 7-fs driver laser :

NATURE PHYSICS DOI: 10.1038/NPHYS1942 LETTERS

the plasma wave. The modulation depth is proportional to the
amplitude of the nonlinear plasma wave as calculated by ray tracing
(Fig. 2f). Although, as Fig. 2f indicates, the measured oscillations
are smoothed owing to limited resolution and do not reflect the
strong nonlinearity of the real plasma wave, they still reflect its
original period and position.

In the current study, the electron accelerator was driven by 8.5 fs
(FWHM) laser pulseswith an energy of 65mJ on the target delivered
by Light Wave Synthesizer-20 (LWS-20; ref. 25) focused onto a
supersonic helium gas jet (see Methods), where electron bunches
with a quasi-monoenergetic spectrum of Epeak = (19.2±6.7)MeV
were produced. A 2-mJ probe pulse with the same duration ⌧probe
was split from the beam through a hole in one of the plane mirrors
before focusing and directed onto the gas jet perpendicularly to
the main beam (Fig. 1).

The trapped relativistic electron bunch generates an azimuthal
magnetic field localized around the electron bunch (Fig. 2b,c),
which rotates the probe beam polarization as a result of the Faraday
effect by the angle

'rot =
e

2mecnc

Z

l

neB' ·ds (1)

where B' is the azimuthal magnetic field surrounding the electrons,
e,me,c and nc the electron charge, electron mass, vacuum speed
of light and critical density (here: nc = 1.76⇥1021 cm�3) and ds a
path element along the path l of the probe through the plasma. The
rays of the probe beam passing the electron bunch above or below
the laser axis are rotated in opposite directions. For a sensitive,
low-background measurement of 'rot, this region was also imaged
onto two CCD cameras by using a non-polarizing beam splitter
behind the imaging lenses22 (Fig. 1). Polarizers in front of the CCDs
were rotated away from extinction of the original probe beam
polarization in opposite directions by ✓pol,i =±(7.0±0.3)�, slightly
greater than the expected rotation angles. Thus, the intensity in the
images is modulated and regions with positive polarization rotation
seem brighter on one camera than on the other. The measured
intensity Ipol,i(y,z) on the two cameras (i=1,2) is given by

Ipol,i(y,z)= I0(y,z) ·Ti ·[1��i ·cos2('rot(y,z)�✓pol,i)] (2)

where I0(y,z) is the initial probe beam intensity,Ti the transmission
through/reflection off the beam-splitter, and �i = 1� 1/ER,i, with
ER,i being the polarization contrast of the beam in the corresponding
arm. The rotation angle 'rot can be deduced by inversion of
the intensity ratio of the two images Ipol,1(y,z)/Ipol,2(y,z) (see
Methods). The experimentally obtained polarization rotation is
plotted in Fig. 3a, regions of positive and negative angle stand out
from the background.

A raw image of camera 1 (see Fig. 1) combined with the
polarization rotation signal is plotted in Fig. 3b. The plasma wave
trailing the laser pulse and the electron bunch—visualized by
shadowgraphy (Fig. 2f)—is visible to the left of the region with
rotated polarization. From the large number of plasma oscillations
(typically 10–20), we learn that the plasma wave does not decay
completely after the first wake. This indicates that the wake is not
heavily loaded26, as this would lead to rapid destruction of the
subsequent plasma oscillations. To obtain firm evidence for the
origin of the observed oscillations, we measured their period as a
function of electron density while all other experimental parameters
were kept constant (Fig. 3c). The period of the plasma wave—in the
non-relativistic limit—is given by

Tplasma = 2⇡
r

"0me

e2ne
(3)

where "0 is the vacuum permittivity and ne the electron density. The
good agreement of the time-resolved plasma oscillation period with
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Figure 3 |Visualization of the electron bunch and the plasma wave.
a, Polarization rotation angle of the probe beam due to the Faraday effect.
Insets: Transverse and longitudinal lineout of the rotation angle.
b, Combined rotation angle with background subtracted raw image
showing the plasma wave and the rotated polarization (from the same shot
as in a) at an electron density after fully ionizing the He gas of
3.2⇥1019 cm�3. c, Plasma wavelength/period versus electron density. Error
bars are one standard deviation combined with scaling uncertainty. Each
point is an average of 4–7 shots. The red line shows the theoretical
non-relativistic plasma period according to equation (3).

equation (3) corroborates that the oscillations originate from the
plasmawave and reveal that the period is not significantly elongated
by relativistic effects under our experimental conditions27. This
observation is in agreement with the results of our simulations,
which predict that the plasma period depends only weakly on
the laser intensity (at least) up to Ipeak = 1.0 ⇥ 1019 W cm�2

(a0 = 2.1). Although the unparalleled spatio-temporal resolution
of our probing makes plasma dynamics and accelerated electron
bunching directly observable for the first time, this resolution still
has to be further improved to unravel details of these dynamics such
as non-sinusoidal plasma oscillations.

As shown in Fig. 2c, the electron pulse duration can be
directly inferred from the polarization rotation signal. Averaging
over 85 shots, the rotation signal seems to have a longitudinal
extent of 1rot = (3.8 ± 0.2) µm (FWHM). The deconvolution
(see Methods) of the longitudinal extent yields a mean FWHM
electron bunch duration of ⌧bunch = 5.8+1.9

�2.1 fs (2.5
+0.8
�0.9 fs root mean

square), which is in excellent agreement with the simulated value.
The simulation shows that contributions to the region of rotated
polarization from the electrons constituting the plasma wave at
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Figure 4 | Evolution of the electron bunch and the plasma wave during the acceleration process. The 300 µm He gas jet is centred around z = 150 µm.
a, Evolution of the deconvolved FWHM electron pulse duration (red stars), the original duration of the polarization rotation (grey squares), and the peak
polarization rotation angle (blue diamonds) during the propagation through the plasma. Each point is an average of 4–22 measurements, error bars are
1 s.d. b, Simultaneous evolution of the number of identifiable plasma oscillations in the raw images, for example Fig. 3b, (green circles) and the intensity
modulation depth (brown triangles) in the shadowgraphy images. Each point is an average of five measurements, error bars are one standard deviation c–i,
Representative lineouts along the laser propagation axis (slightly tilted to the z axis) of the intensity modulation due to probe beam refraction (see Fig. 2e)
at the plasma wave (black line) and position and duration of the deconvolved electron pulse duration (red line) for different delay steps. The background
plasma density is 3.2⇥ 1019 cm�3. The nonlinearity of the plasma wave cannot be seen here because of the spatial and temporal resolution. The plasma
wave is detected in all shots at a particular delay, however the modulation visibility and apparent length fluctuate from shot to shot. Individual shots with
both the plasma wave and the electron bunch most clearly visible were selected for these lineouts. The apparent dependence of electron bunch duration on
position is not representative. c, The plasma wave at z = 183 µm, where no polarization rotation due to an injected electron bunch is detected.

the bubble vertex cannot be neglected. Consequently, the actual
bunch duration is expected to be even shorter than the result of
our above analysis.

A change in time delay between the main laser pulse and probe
beam allows snapshots at various stages of the acceleration and thus
tracking the evolution of the electron bunch and the plasma wave
(see Fig. 4c–i and Supplementary Movie). The first polarization
rotation signals are detected after a propagation distance of the
laser pulse of 190 µm in the gas jet, see Fig. 4a. The mean duration
of the polarization rotation signal and the deconvolved electron
bunch duration are also shown in Fig. 4a for each delay step,
that is each position inside of the plasma. It can be seen that
⌧bunch is constant within the error bars, showing an upper limit
of 7–8 fs (FWHM). Also plotted is the peak polarization rotation
angle, which is proportional to the beam current. The nearly
constant bunch duration and peak rotation angle imply that the
total injected charge remains constant in the last third of the
gas jet. The vanishing of 'rot for z < 190 µm and its reaching a
maximum at about z = 220 µm, in combination with a nearly
constant ⌧bunch, indicates that injection is confined to a propagation
length of about 30 µm close to z = 200 µm downstream from the

entrance of the plasma channel28. Over approximately the same
longitudinal range, the accelerating plasma wave exhibits a decrease
in total length as well as in its amplitude that is proportional to
the modulation depth of the probe intensity variations (Fig. 4b).
This reduction in the plasma wave amplitude is caused by the
injected and accelerated electrons that are not located at the regions
of high electron density in the plasma wave but between high
and low density regions. Thus, these electrons do not contribute
to the longitudinal electric field but in contrast damp it. Both
observations are consistent and indicate that our approach provides
real-time access to the electron injection and trapping process
of a laser-driven plasma accelerator. As no polarization rotation
signal is observed before z = 190 µm, where the plasma wave
amplitude is larger, the contribution to the magnetic field of the
displacement current is indeed negligible for the measurement, as
also indicated by the simulation.

Figure 4c–i shows, for different delays, lineouts of the intensity
modulation due to the plasma wave together with the position
and longitudinal extension of the accelerated electron bunch,
with the latter inferred from the time-resolved polarimetry data
under the assumption of a Gaussian temporal shape of the bunch.
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Few-cycle shadowgraphy II: 
at “standard” Ti:Sa lasers, a few-cycle probe has to be generated
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• PIC
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• experiment

good morphology information, difficult to retrieve
wake amplitude (phase object)
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More plasma waves – laser driven vs. beam driven
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