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•  EuPRAXIA@SPARC_LAB
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Future accelerators require high quality beams:   
==>     High Luminosity & High Brightness

==>     High Energy & Low Energy Spread  

– Small spot size => low emittance


– N of particles per pulse => 109


– High rep. rate fr=>  bunch trains


– Little spread in transverse 
momentum and angle => low emittance


– Short pulse (ps to fs)




•  The rms emittance concept




Configuration Space 
Trace Space 

Phase Space 

Typical coordinates to describe the particle motion 
(6 per particle)  
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Trace space of an ideal laminar beam 
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X’ 

Trace space laminar beam 
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X’ 

Trace space of non laminar beam 



In a system where all the forces acting on the particles are linear (i.e., 
proportional to the particle’s displacement x from the beam axis), it is 
useful to assume an elliptical shape for the area occupied by the beam 
in x-x‘ trace space. 

!x!x

x

!!x + k2x = 0



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance:
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εg

€ 

γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

!β = −2α





Phase space evolution

With space charge => no cross over





No space charge => cross over
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rms emittance 

x

x’
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σ x
€ 

σ x'
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σ x
2 = x2 = x2
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+∞

∫
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∫ f x, & x ( )dxd & x 

rms beam envelope: 
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γx2 + 2αx $ x + β $ x 2 = εrms

€ 

σ x = x2 = βεrms    

σ x' = % x 2 = γεrms

Define rms emittance: 

such that: 
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α = −
1

2εrms

d
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εrms
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Since: 
 

it follows: 

!β = −2α
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γβ −α 2 = 1

σ x '
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It holds also the relation: 

Substituting             we get 

€ 

α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms
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" x =
px

pz



Which distribution has no correlations?


x 

x’ 

σ xx ' = x !x = −αεrms = 0?
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εrms
2 = x2 # x 2 − x # x 2

!x =Cxn

εrms
2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0

x

x’

a

a’

What does rms emittance tell us about beam phase space 
distributions under the effect of linear or non-linear forces? 

Assuming a generic            correlation of the type: 
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x, " x 



Constant under linear transformation only


And without acceleration:


€ 

" x =
px

pz



εn,rms = σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( )

Normalized rms emittance:


px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant under conservative forces. 

Rms emittance instead is invariant only under linear forces => 
It is not a Liouvillian invariant 

€ 

pz ≈ p

€ 

εn,rms



Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two 
conjugate variables (x,px). According to Heisenberg:  

This limitation can be expressed by saying that the state of a particle 
is not exactly represented by a point, but by a small uncertainty 
volume of the order of      in the 6D phase space. 
 
In particular for a single electron in 2D phase space it holds: 

σ xσ px
≥
!
2

!3

εn,rms =
1
moc

σ x
2σ px

2 −σ xpx
2    ⇒  

= 0                                                classical limit
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   Where       is the reduced Compton wavelength. ! c



•  The rms emittance concept

•  WARNiNG: Energy spread contribution




εn,rms =
1
moc

x2 px
2 − xpx

2( ) = x2 βγ "x( )2 − xβγ "x 2( ) = βγ εrms

Assuming small energy spread within the beam, the normalized and 
un-normalized emittances can be related by the above approximated 
relation.  

px = pz !x =mocβγ !x

This approximation that is often used in conventional accelerators 
may be strongly misleading when adopted to describe beams with 
significant energy spread, as the one at present produced by plasma 
accelerators.  

Normalized and un-normalized emittances  



When the correlations between the energy and transverse positions are 
negligible (as in a drift without collective effects) we can write:  

εn,rms
2 = β 2γ 2 x2 !x 2 − βγ

2 x !x 2

Considering now the definition of relative energy spread:  

σγ
2 =

β 2γ 2 − βγ
2

βγ
2

which can be inserted in the emittance definition to give:  

εn,rms
2 = β 2γ 2 σγ

2 x2 !x 2 + βγ
2 x2 !x 2 − x !x 2( )

Assuming relativistic electrons (β=1) we get:  

εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( )



At the plasma-vacuum interface is of the same order of magnitude as for 
conventional accelerators at low energies; however, due to the rapid increase of the 
bunch size, it becomes predominant compared to the second term. 

Geometric emittance 

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013) 

εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( )



•  The rms emittance concept

•  Energy spread contribution

•  rms envelope equation
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γβ −α 2 = 1

σ x '
2

εrms
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It holds also the relation: 

Substituting             we get 

€ 

α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms
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" x =
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pz



dσ x

dz
=
d
dz

x2 =
1
2σ x

d
dz

x2 =
1
2σ x

2 x !x =
σ x !x

σ x

d 2σ x

dz2
=
d
dz
σ x !x

σ x

=
1
σ x

dσ x !x

dz
−
σ x !x
2

σ x
3 =

1
σ x

!x 2 + x !x( )−σ x !x
2

σ x
3 =

σ !x
2 + x !!x
σ x

−
σ x !x
2

σ x
3

Envelope Equation without Acceleration


Now take the derivatives: 

!!σ x =
σ x
2σ x '

2 −σ xx '
2

σ x
3 +

x !!x
σ x

=
εrms
2

σ x
3 +

x !!x
σ x

And simplify: 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 

εrms
2

σ x
3 ≈

T
V
≈ P



kBTx =m vx
2             T = 1

3
Tx +Ty +Tz( )           Ek =

1
2
m v2 =

3
2
kBT

Beam Thermodynamics


Kinetic theory of gases defines temperatures in each directions and 
global  as:   

Definition of beam temperature in analogy:  

kBTbeam,x = γmo vx
2

We get: 

vx
2 = β 2c2 !x 2 = β 2c2σ x '

2 = β 2c2 εrms
2

σ x
2 = β

2c2 εrms
βx

kBTbeam,x = γmo vx
2 = γmoβ

2c2 εrms
2

σ x
2 = γmoβ

2c2 εrms
βx

Pbeam,x = nkBTbeam,x = nγmoβ
2c2 εrms

2

σ x
2 = NTγmoβ

2c2 εrms
2

σ Lσ x
2



S = kN log πε( )

kBTbeam,x = γmoβ
2c2 εrms

βx



Lets now consider for example the simple case with   
describing a beam drifting in the free space.  
 
The envelope equation reduces to: 
 

x !!x = 0

σ x
3 !!σ x = εrms

2

σ o, !σ oWith initial conditions               at zo, depending on the upstream 
transport channel, the  equation has a hyperbolic solution:  
 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

Beam drifting in the free space




Considering the case              (beam at waist) 
  
and using the definition  
 
the solution is often written in terms of the       function as:  
 

!σ o = 0

σ x = βεrms

This relation indicates that without any external focusing element the 
 
 beam envelope increases from the beam waist by a factor          with 
 
 a characteristic length  



For an effective transport of a beam with finite emittance is mandatory 
to make use of some external force providing beam confinement in the 
transport or accelerating line.  



At waist holds also the relation:  εrms
2 =σ o,x

2 σ o, !x
2

!σ o = 0

that leads to:  σ x
2 z( ) ≈ σ o, "x

2 z − zo( )2

εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( ) = γ 2 σγ

2σ o, !x
4 z − zo( )2 +εrms2( )

showing that beams with large energy spread an divergence 
undergo a significant normalized emittance growth even in a drift  

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013) 



εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( ) = γ 2 σγ

2σ o, !x
4 z − zo( )2 +εrms2( )

showing that beams with large energy spread an divergence 
undergo a significant normalized emittance growth even in a drift  

 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 

Z

<γ>ε

Simulation 
Formula 



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0

€ 

" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which, unlike in the single particle equation of motion, the rms 
emittance enters as defocusing pressure like term. 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

Envelope Equation with Linear Focusing






Beam transport line simulated with TSTEP 

Beam transport line based on a  
triplet-lattice. 
Beam parameters are: 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 
 
 

Keeping the beam size under  
control is possible, but normalized  
emittance grows throughout the  
beamline.   

G=265 T/m 
L=5cm 

G=-295 T/m 
L=5cm 

G=142 T/m 
L=5cm 

Δεn,rms = γ σγkqlq + "σ o( )σ o
2 +σ o "σ o



Fr = ec
µoIc
2πRc

2

!

"
#

$

%
&r = ec 'Bϑ r

!!σ x +
Kcap

γ
σ x =

εn
2

γ 2σ x
3

Kcap

γ
=
e !Bϑ
γmc

=
2Ic
γ IARc

2

Active Plasma Lens 











•  The rms emittance concept

•  Energy spread contribution

•  rms envelope equation

•  Space charge foces


OUTLINE




Space Charge: What does it mean?
The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects
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σ x,y, z << λD

€ 

σ x,y, z >> λD



Continuous Uniform Cylindrical Beam Model

€ 

J =
I
πa2

€ 

ρ =
I

πa2v

€ 

a

€ 

εoE ⋅ dS = ρdV∫∫
Gauss’s law

€ 

Bϑ =
β
c
Er

€ 

Er =
I

2πεoa
2v
r    for   r ≤ a

Er =
I

2πεov
1
r

     for   r > a

Ampere’s law

€ 

B ⋅ dl = µo J ⋅ dS∫∫

€ 

Bϑ = µo
Ir

2πa2
   for    r ≤ a

Bϑ = µo
I
2πr

   for    r > a



γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt

€ 

Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )

€ 

Ez(0,s,γ ) =
I

2πγε0R
2βc

h s,γ( )

Bunched Uniform Cylindrical Beam Model



Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect. Using R=2σx for a uniform distribution:

is a linear function of the transverse coordinate

€ 

dpr
dt

= Fr =
eEr
γ 2

=
eIr

2πγ 2ε0R
2βc

g s,γ( )

Fx =
eIx

8πγ 2ε0σ x
2βc

g s,γ( )

Lorentz Force


€ 

Bϑ =
β
c
Er

€ 

Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )



Envelope Equation with Space Charge


!!x =
ksc s,γ( )
σ x
2 x

Single particle transverse motion: 

dpx
dt

= Fx              px= p !x = βγmoc !x

d
dt

p !x( ) = βc d
dz

p !x( ) = Fx

!!x =
Fx
βcp

Fx =
eIx

8πγ 2ε0σ x
2βc

g s,γ( )

ksc =
2I
IA
g s,γ( )

IA =
4πεomoc

3

e



x !!x =
ksc
σ x
2 x2 =ksc

!!σ x + k
2σ x =

εn
2

βγ( )2σ x
3
+
ksc
σ x

External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation

€ 

x " " x 

€ 

" " σ x =
εrms

2

σ x
3 −

x " " x 
σ x

Including all the other terms the envelope equation reads:

€ 

ρ =
βγ( )2 kscσ x

2

εn
2Laminarity Parameter: 



€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

€ 

" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

ρ>>1

ρ<<1

Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 



€ 

ρ =
2Iσ 2

γIAεn
2 ≡

2Iσ q
2

γIAεn
2 =

4I 2

' γ 2IA
2εn

2γ 2

€ 

γ tr =
2I
# γ IAεn

Laminarity parameter 

Transition Energy (ρ=1) 

I=100 A

I=1 kA

I=4 kA

ρ

Potential space charge emittance growth 

ρ = 1 

εth = 0.6 µm

Eacc = 25 MV/m



•  The rms emittance concept

•  Energy spread contribution

•  rms envelope equation

•  Space charge forces

•  Beam emittance oscillations


OUTLINE




Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations



Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




Single Component 
Relativistic Plasma


€ 

" " σ + ks
2σ =

ksc s,γ( )
σ

ks =
qB

2mcβγ

€ 

δ # # σ s( ) + 2ks
2δσ s( ) = 0

€ 

σ eq s,γ( ) =
ksc s,γ( )
ks

Equilibrium solution:

€ 

σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:

€ 

σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:

€ 

δσ s( ) = δσ o s( )cos 2ksz( )



σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations


€ 

εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )



Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 

x

px

Projected Phase Space Slice Phase 
Spaces



σ(z)

ε(z)

energy spread induces decoherence




•  The rms emittance concept

•  Energy spread contribution

•  rms envelope equation

•  Space charge forces

•  Beam emittance oscillations

•  Adiabatic plasma matching


OUTLINE




Plasma Accelerator




Continuous Uniform Cylindrical Beam Model with ionized gas 
background

€ 

J =
I
πa2

€ 

ρ =
I

πa2v

€ 

a

Bϑ = µo

I 1− fm( )
2πa2  r   for    r ≤ a

Bϑ = µo

I 1− fm( )
2πa2  a

2

r
  for    r > a

fm : current neutralisation factor

Er =
I 1− fe( )
2πεoa

2v
r     for   r ≤ a

Er =
I 1− fe( )
2πεov

1
r

     for   r > a
fe : charge neutralisation factor



Lorentz Force

Fr = e Er − βcBϑ( ) = eEr

γ 2
1−γ 2 fe + β

2γ 2 fm( )

!!σ +
k2

γ
σ =

2I
IAγ

3σ
1−γ 2 fe +γ

2 fm( )+ εn
2

γ 2σ 3

Generalized Envelope Equation

β =1



Equilibrium solution 

!!σ =
2I

IAγ
3σ

1−γ 2 fe +γ
2 fm( )+ εn

2

γ 2σ 3

!γ = K = 0

1−γ 2 fe +γ
2 fm( ) <

>
0        ⇒ focusing

⇒ defocusing

σ =
IAγεn

2

2I γ 2 fe −γ
2 fm −1( )



σ eq z( ) = 2
γ

4
εn
kp z( )

Adiabatic Plasma Matching 

!!σ =
2I 1−γ 2 fe +γ

2 fm( )
IAγ

3σ
+

εn
2

γ 2σ 3

fe z( ) =
np z( )
ne

fm = 0

!

"
#

$
#

Ls ≡ n0 z( ) / n0& z( ) >> βqeq z( )

I = ecneπσ
2

kp
2 z( ) =

e2np z( )
εomc

2

!!σ +
2I

IAγ σ
np z( )
ne

=
εn
2

γ 2σ 3

!!σ +
kp
2 z( )
2γ

σ =
εn
2

γ 2σ 3
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γ =1000
εn =1µm
Q = 20pC
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fe =1
fm = -1

!
"
#

   ⇒    1−γ 2 −β 2γ 2( ) ≡ −2β 2γ 2 << 0

Self - Pinch in the Final Focus of a e+e- Collider 
  

σ eq =
IAεn

2

4Iγ



Capillary discharge 



•  20	
  images	
  separated	
  by	
  100	
  ns,	
  so	
  2	
  µs	
  of	
  total	
  observa8on	
  8me	
  of	
  the	
  plasma	
  plumes	
  
•  The	
  ICCD	
  camera	
  area	
  is	
  1024	
  x	
  256	
  pixel	
  	
  

Plasma plumes 

Discharge	
  voltage	
  18	
  kV	
  
Capillary	
  

Electrode	
  
Plasma	
  
channel	
  

20	
  mm/2	
  μs	
  

	
  

§  Both	
  plama	
  plumes	
  can	
  reach	
  a	
  total	
  expansion	
  length	
  around	
  40	
  mm	
  (20	
  mm	
  each	
  
one)	
  that	
  is	
  comparable	
  with	
  the	
  channel	
  length	
  of	
  30	
  mm,	
  so	
  they	
  can	
  strongly	
  
affect	
  the	
  beam	
  proper&es	
  that	
  passes	
  through	
  the	
  capillary	
  

§  Temperature,	
  pressure	
  and	
  plasma	
  density,	
  inside	
  and	
  outside	
  the	
  gas-­‐filled	
  
capillary	
  plasma	
  source,	
  represent	
  essen&al	
  parameters	
  that	
  have	
  to	
  be	
  
inves&gated	
  to	
  understand	
  the	
  plasma	
  evolu&on	
  and	
  how	
  it	
  can	
  affect	
  the	
  electron	
  
beam.	
  

Vacuum	
  

 Angelo.Biagioni@lnf.infn.it	
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Tapered capillaries


10°	
  

By monotonically varying the 
radius of the capillary it is possible 
to change the density. 


Kaganovich	
  et	
  al.,	
  Appl.	
  Phys.	
  LeO.	
  75,	
  
772–774	
  (1999).	
  

Local control of the plasma density is required to match the laser/electron beam into the 
plasma. 

Tapering the capillary diameter is the easiest way to change locally the density. 


Studies on plasma tapering are 
currently in progress in the 
SPARC_LAB Plasma lab.
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Tapered capillaries

Local control of the plasma density is required to match the laser/electron beam into the 
plasma. 

Tapering the capillary diameter is the easiest way to change locally the density. 


TAPERING OF:	
   0°	
   5°	
   10°	
   15°	
   CAPILLAR
Y 

TAPERING 
ANGLE




p = βγmoc
dpx
dt

=
d
dt

p !x( ) = βc d
dz

p !x( ) = 0

!!x +
!p
p

!x = 0 !!x = −
βγ( )!

βγ
!x

Envelope Equation with Acceleration


x !!x = −
βγ( )!

βγ
x !x = −

βγ( )!

βγ
σ xx ' = −

βγ( )!

βγ
σ x !σ x

!!σ x +
βγ( )!

βγ
!σ x + k

2σ x =
εn
2

βγ( )2σ x
3
+
ksc
σ x

Other External Focusing Forces
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Looking for an equilibrium solution of the form: σ =σε

We get the matching condition with the plasma: 
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Perturbation around the equilibrium solution: 
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