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Future accelerators require high quality beams:
== High Luminosity & High Brightness

High Energy & Low Energy Spread

-N of particles per pulse => 10°
—-High rep. rate f.=> bunch trains

—-Small spot size => low emittance

—Short pulse (ps to fs)

—-Little spread in transverse
momentum and angle => low emittance




« The rms emittance concept




Typical coordinates to describe the particle motion

(6 per particle)
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Trace space of an ideal laminar beam
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In a system where all the forces acting on the particles are linear (i.e.,
proportional to the particle’s displacement x from the beam axis), it 1s
useful to assume an elliptical shape for the area occupied by the beam
in x-x° trace space.
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Geometric emittance: & o

Ellipse equation:
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Fig. 17: Filamentation of mismatched beam in non-linear force




Phase space evolution
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Define rms emittance:
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such that:
p'==2a

Since:

it follows:



0, = (¥*) =1

0, =(xx")=-ae,,
It holds also the relation: vB-a’ =1
Substituting @, 8,7 we get 0, 0, —(j )2 -1

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

£ = \/ ool -0 = \/ (<x2 ><x’2> = <xx'>2) oo Px




Which distribution has no correlations?
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What does rms emittance tell us about beam phase space
distributions under the effect of linear or non-linear forces?
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Assuming a generic X, X correlation of the type: X "= Cx"

Whenn=1 ==> ¢_.=0
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Constant under linear transformation only

d
d—z<x2><x’2> — (') = 20x') (1) + 2(¢°) () () — 2(ex”) (xx’) = 0
For linear transformations, x” = —kfx_._ and the right-hand side of the

equation 1s
2k2 (x%) (xx) — 2(x?) (xx/)k? = 0,

X
SO

—(x*) (x"?) — (xx)2 =0
dz

And without acceleration: X =




Normalized rms emittance: €, .ms

. / !/
Canonical transverse momentum: P, =P, X = m,cfyx p,=p

o =100, == (()p2) ()

m,c

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px,¥sPy»Z,P,) Temains invariant under conservative forces.

dn

—0
dt

Rms emittance instead is invariant only under linear forces =>
It is not a Liouvillian invariant



Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two
conjugate variables (x,p, ). According to Heisenberg:

OO0 = h

X px _ 2
This limitation can be expressed by saying that the state of a particle
1s not exactly represented by a point, but by a small uncertainty

volume of the order of %’ in the 6D phase space.

In particular for a single electron 1n 2D phase space it holds:

r

classical Iimit

gn,rms -

0
1 h %
m 2

1 \/ 2 2 2
0.0, -0, = 1 .
c v = 2"’ =1.9%x10"m quantum limit

Y,

m,c

Where |&_| 1s the reduced Compton wavelength.
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e The rms emittance concept
« WARNING: Energy spread contribution




Normalized and un-normalized emittances

p,=p.X =mcPyx

£yome =~ ()02 -0 = [N )= (B ) = (B

mc

Assuming small energy spread within the beam, the normalized and
un-normalized emittances can be related by the above approximated
relation.

This approximation that is often used in conventional accelerators
may be strongly misleading when adopted to describe beams with
significant energy spread, as the one at present produced by plasma
accelerators.



When the correlations between the energy and transverse positions are
negligible (as in a drift without collective effects) we can write:

gs,rms _ </32y2><x2><x'2> _ <ﬁy>2 <xx'>2
Considering now the definition of relative energy spread:

. (Bv)-(Br)

L By

which can be inserted in the emittance definition to give:
et = (B )0 ()2 1) () (7) = (o

Assuming relativistic electrons (f=1) we get:

2 2 2 2 2 2
8n,rms = <y >(Gy OxOx’ + 8rms)




2 2 2 2 2 2
gn,rms = <)/ >(Gy Ux Gx’ + grms)

N

At the plasma-vacuum interface 1s of the same order of magnitude as for
conventional accelerators at low energies; however, due to the rapid increase of the
bunch size, it becomes predominant compared to the second term.

Geometric emittance

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013)



e The rms emittance concept
 Energy spread contribution
* rms envelope equation




0, = () =1

0, =(xx")=-ae,,
It holds also the relation: vB-a’ =1
Substituting @, 8,7 we get 0, 0, —(j )2 -1

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

£ = \/ ool -0 = \/ (<x2 ><x’2> = <xx'>2) oo Px




Now take the derivatives:

d(fx:d _Li<x>__2 xx>_(7xx,
dz |dz 20 dz o
do. |d o, 1 do_ 5 ,
A | dz o o dz (<x >+<xx >)_
" 2
And simplify: | o7 = - () _ L
o. | o

Envelope Equation without Acceleration

()

O

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.
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Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and

global as:
1

kyT, =m(v?) T=§(Tx+Ty+TZ) Ek=—m<v2>=§kBT

Definition of beam temperature in analogy:
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Property Hot beam Cold beam

ion mass (m,) heavy ion light ion

ion energy (By) high energy low energy

beam emittance (g) large emittance small emittance

lattice properties (yxy=~1/Bxy) strong focus (low ) high B

P

hot cold
beam beam

phase space portrait foens 3 0 .

U

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving
cold (light) electron beam.

Particle Accelerators © Gordon and Breach, Science Publishers Ltd.
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Beam drifting in the free space

.X.X” 82
GZ_<G >= (;n;s

X X

Lets now consider for example the simple case with ~ (xx")=0
describing a beam drifting in the free space.

. 3 _n 2
The envelope equation reduces to: |0,0, =€,

With initial conditions o ,0/ atz, depending on the upstream
transport channel, the equation has a hyperbolic solution:




Considering the case o) =0 (beam at waist)
and using the definition O, =./p¢,,,

the solution 1s often written in terms of the [3’ function as:

G(:)=a 1+

S

This relation indicates that without any external focusing element the

beam envelope increases from the beam waist by a factor \/5 with

2

0

a characteristic length 3, = —2

rms



For an effective transport of a beam with finite emittance 1s mandatory
to make use of some external force providing beam confinement in the
transport or accelerating line.




.
. . 2 ) ,

At waist holds also the relation: Ems = 0,0,y o =0

that leads to: oX(z)~0’.(z-2,)

2 2 2 2 2 2 2 2 4 2 2
8n,rms =<y >(0y0x0x’+grms)=<y >(Gyao,x'(z_zo) +8rms)

showing that beams with large energy spread an divergence
undergo a significant normalized emittance growth even in a drift

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013)



2 2 2 2 2 2 2 2 4 2 2
gn,rms =<y >(0y0x0x’+8rms)=<y >(Gyoo,x’(z_zo) +8rms)

showing that beams with large energy spread an divergence
undergo a significant normalized emittance growth even in a drift

Simulation
Formula
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Norm E [mm mrad]
~
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Energy 350 MeV

Beam divergence 1 mrad
* Energy spread 1%
Beam spot-size 1 um

N
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Envelope Equation with Linear Focusing

" 2
" <xx > _ grms
O,.— = 3
Ox Ox

Assuming that each particle is subject only to a linear focusing

. . 2
force, without acceleration: x"+k.x=0

take the average over the entire particle ensemble (xx")=—k; <x2>

2
&

rms
3
Oy

" 2
O.+k,0, =

We obtain the rms envelope equation with a linear focusing force
in which, unlike in the single particle equation of motion, the rms

emittance enters as defocusing pressure like term.



MAGNETIC QUADRUPOLE

Quadrupoles are used to focalize the beam in the transverse

plane. It is a 4 poles magnet:

—B=0 in the center of the quadrupole

—The B intensity increases linearly with the off-axis

displacement.

—=If the quadrupole is focusing in one plane is defocusing in the

other plane

B.=G- F,=qvG-
: y:> y=qvio-y

By=G-x sz—qu-x

G = quadrupole gradient [

m

.

Electromagnetic quadrupoles G <100 T/m

F D F .
L_ Focal point
S — /
—— ]
J/'__
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Figure 8.8 Improved stigmatic propertics of a quadrupole triplet lens. Orbits of particles initially
parallel to the axis projected in the x and y planes.



Beam transport line simulated with TSTEP

0.35

—X| | Beam transport line based on a
| triplet-lattice.

Beam parameters are:

 Energy 350 MeV

« Beam divergence 1 mrad

* Energy spread 1%

« Beam spot-size 1 um
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Keeping the beam size under
control is possible, but normalized
emittance grows throughout the
beamline.

N
T

Normalized Emittance [mm mrad]

OO

20 40 60 80 100 120 140

Z [cm]

2 /
—<y>‘ okl +0,)0; +O'OO'0‘

I’l rms



Active Plasma Lens

Magnetic Field (Bq,) vs Force on electrons (F)




Experimental layout
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Results vs simulations
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Nonlinear focusing field
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Experimental results

Demonstration of emittance preservation

Demonstration of emittance growth
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Space Charge: What does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects

?T;T% éCW @



The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

e kT

Oy << Ap

* N e'n

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects,
Single Component Cold Plasma




Continuous Uniform Cylindrical Beam Model

Gauss’ s law

[e,E-dS= [ pdv

Ampere’ s law

[B-di=u,[J-ds

o |



Bunched Uniform Cylindrical Beam Model

I

E (0,s,y)=
- ! ZnysoRZ/J’c

h(s,y)

y=1

R,(t) At




Ir ¢
2me,R? fe

E,,(F,S,)/) =

(5.7)

L.orentz Force

F,,=e(Er—ﬁcBﬁ)=e(1—/3’2)Er=e)§r Bﬁ=§E

1s a linear function of the transverse coordinate

dp, _F ek,

dt Ty _ZJT)/ZSORZ[D’C

elr

g(s.7)

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect. Using R=20, for a uniform distribution:

elx

F = ,
! Snyzeoaiﬁcg(s 7)




Envelope Equation with Space Charge

Single particle transverse motion:

dp, =F p.=p x'=Pym cx’
dt
d d
s ! — I ! — F
&)= pe L px)-F,
" F elx
X = = F = R
pep Y 8my’e,02Bc 8(s:7)
x” — kSC (S’)/) X ksc = %g(S,)/)
o’ A




Now we can calculate the term (xx")that enters in the envelope equation

o' = gfms _ <XX”> <XX”> _

<x2>=ksc

k sC
2
Gx

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

2 Ir'd

£
o' +k’0, =—21 —+-x
o> O

” (By) or o,

\

Emittance Pressure

External Focusing Forces

Laminarity Parameter: |0 =




The beam undergoes two regimes along the accelerator

Fig. 10: Particle trajectories in laminar beam

Fig. 11: Particle trajectories in non-zero emittance bea
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OUTLINE

The rms emittance concept
Energy spread contribution
rms envelope equation
Space charge forces

Beam emittance oscillations



Surface charge density

o =endx

Surface electric field

E, = —0/eyg = —endx/ey

Restoring force

Plasma oscillations

Ox = (0x)o cos (wy t)




Neutral Plasma, Single Component
Cold Relativistic Plasma,

e Ogcillations
e Instabilities

e EM Wave propagation




ko (s,7) Single Component
o' +kioc =220 e s
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:

o(8)=0,,(s)+d0(s)

(5()'”(S) + 2/{5,2(50'( ) =0 60(s) =d0,(s) cos(\/gksz)

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

G(s) =0 (s) + (SGO(S) COS(’\/E]CSZ)

=0y,




Envelope oscillations drive Emittance oscillations

O(Z) won

£(2) .

- \/a 0. -0, =\/(<x2><x’2>—<xx’>2)z

Sin(\E ksz)




Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam

Px

X Slice Phase

Projected Phase Space
Spaces




energy spread induces decoherence

£(2)
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OUTLINE

The rms emittance concept
Energy spread contribution
rms envelope equation
Space charge forces

Beam emittance oscillations
Adiabatic plasma matching
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Continuous Uniform Cylindrical Beam Model with ionized gas
backeround

I(1-
L, = ( G)r for r=a
2me a’v
f : charge neutralisation factor
e g I(l—fe) 1
E, = — for r>a
2meyv r
I(1-£,)
By =u, 5 r for r=a
f,, : current neutralisation factor a 2
I(1-f,) a
2ma r




Lorentz Force

ek

F.=e(E, - BcB,) == (1-72f. + B 1)

Y

Generalized Envelope Equation

" k* 21 5 5 e’
O +—0= 1- + +—=
» IAyga( v’ f+v ) o

3

p

1




Equilibrium solution

=> focusing
=> defocusing




Adiabatic Plasma Matching

‘fe(z)=%(z)

n€

f, =0
L =ny(z)/ fl(’)(Z) >> . (2)

2




nplasma [cm-3]

I I




sig_eq [um] |




Self - Pinch in the Final Focus of a ete- Collider
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Capillary discharge




Plasma plumes

* 20 images separated by 100 ns, so 2 us of total observation time of the plasma plumes
* The ICCD camera area is 1024 x 256 pixel

Discharge voltage 18 kV

20 mm/2 us

Plasma
channel Electrode

= Both plama plumes can reach a total expansion length around 40 mm (20 mm each
one) that is comparable with the channel length of 30 mm, so they can strongly
affect the beam properties that passes through the capillary

= Temperature, pressure and plasma density, inside and outside the gas-filled
capillary plasma source, represent essential parameters that have to be
investigated to understand the plasma evolution and how it can affect the electron

beam.
Angelo.Biagioni@]Inf.infn.it




T Tapered capillaries

Local control of the plasma density is required to match the laser/electron beam into the
plasma.
Tapering the capillary diameter is the easiest way to change locally the density.

By monotonically varying the —
radius of the capillary it is possible o
to change the density. r

2+ v i
Electrode | \\\

-10 75 5 25 0 25

—w
Kaganovich et al., Appl. Phys. Lett. 75,

772-774 (1999).

Studies on plasma tapering are
currently in progress in the
F. Filippi SPARC_LAB Plasma lab. 70



T Tapered capillaries

Local control of the plasma density is required to match the laser/electron beam into the
plasma.
Tapering the capillary diameter is the easiest way to change locally the density.

TAPERING
ANGLE

CAPILLAR
Y

TAPERING O

F. Filippi -



Space Charge De-focusing Force

dp d d !
X = = E— = O
dt dt(px) pe dz(px) (B |
" p, / X” == )/) X,
x +—x=0 By
p
) " ' ’
0 = 4 0 (=P iy )
ol o, By Pr
' 2
0';’+(ﬁy) o +k’c_= 8”‘2 -+ K
b ") (Br)or o
Adiabatic Damping / Emittance Pressure

Other External Focusing Forces

Envelope Equation with Acceleration

p=pym;c

€, = ﬁygrms




Envelope equation in a plasma accelerator A
Bubble radius

Ny =N Bubble density

E = e Radial field
3e,
e’n
F, =e(Er—>th9)=eE =—Lr
3¢,
F 2 k> &2 i
X”— X _ e n1X2 _"p ¥ k2 _ e I’le <xx”>=—p<x2>=_po'§
Pcp 3¢ ymc” 3y g mc y y

vk :

o'+40 +Lo k.

& K
y 3y " Yol Ao,




2 2
" kp _ gn
O, +—0,=—"

3y y O,

Looking for an equilibrium solution of the form:

We get the matching condition with the plasma:
sigma_r [um]|

50

4.5

\

40+

35+

30+

n [cm-3]

4%1010




Perturbation around the equilibrium solution:

‘a=08+50‘
2 2
" kp gn
O, +——0, =—"=
= ro;

\F £ (
O =4— |- +00, cos
Y\ K,

4

3y

:




(7=4g 8—”+5O’OCOS ikz 6—G=1O%
y kp 3)/ g 08

sigma_r [um]




PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 111303 (2012)

Transverse emittance growth in staged laser-wakefield acceleration

T. Mehrling,] J. Grebenyuk,2 F.S. Tsung,3 K. Floettmann,” and J. Osterhoff'*

2.5

[ [ [ I
- — — maiched case (CM)
—— mismatched case (C1) |
—— mismatched case (C2)

~—%nfin.C1

~Enfinc2

FIG. 3. Evolution of the normalized emittance €, in PIC
simulations for the three considered cases. Arrows show the
analytic predictions of the emittance growth. The betatron-
decoherence length for the injection phase in the simulations
k,&p = 1.00 relative to position zq is indicated by the dash-

dotted line
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