

Bunch-by-Bunch Analysis of the LHC Heavy-Ion Luminosity

M. Schaumann^{1,2}, J.M. Jowett¹

¹CERN, Geneva, Switzerland; ²RWTH Aachen, Aachen, Germany

Bunch-by-Bunch Differences

- Heavy-ion operation in the LHC: [1] 2010: Pb-Pb, [2] 2011: Pb-Pb, [3] 2013: p-Pb.
- Beam dynamics of high intensity Pb (lead) beams are strongly influenced by IBS.
- Pb ions injection chain: source \rightarrow LINAC3 \rightarrow LEIR \rightarrow PS \rightarrow SPS \rightarrow LHC.
- Each train injected from SPS spends a different time at the LHC injection plateau, introducing significant changes from *train to train*.
- Within a LHC train an even larger spread is imprinted from *bunch to bunch* by the **SPS injection plateau**:

- Inject 2 bunches from PS \rightarrow SPS: 12 injections to construct LHC train.
- While waiting for remaining injections form PS, bunches are strongly affected by IBS ($\propto \gamma^{-3}$) at low energy.
- \Rightarrow Emittance growth and particle losses.
- This results in a spread of the luminosity L, produced in each bunch crossing.

LHC: Large Hadron Collider **IBS**: intra-beam scattering *L*: luminosity *N_h*: bunch intensity ϵ_N : normalised emittance σ_z : bunch length

Single Bunch Evolution at Injection

- Simulation Code: Collider Time Evolution (CTE) [4].
- Tracking of 2 bunches of macro-particles in time in a collider.
- Simulation of IBS, radiation damping, but, eg, no beam-beam.
- Evolution of 4 single Pb bunches at injection (E = 450GeV).
- Horizontal IBS growth stronger than vertical due to horizontal dispersion, \rightarrow no vertical dispersion in model (for speed).
- Additional growth in vertical ϵ_N due to coupling.

Evolution of Colliding Bunches

- 3 simulation runs with varying initial ϵ_N to account for calibration uncertainties.
- Losses in N_b are overestimated by the simulation, due to assumption of Gaussian longitudinal profile.
- The calibrated ϵ_N seems to be underestimated by about 10%.
- L, ϵ_N and σ_z fit very well to the simulation for +10% initial ϵ_N .

- Collisions of equivalent bunches (with similar N_h and ϵ_N).
- L_{Bunch} varies by a factor 6 along a train introducing different lifetimes.
- Slope between last bunches of trains introduced by IBS at LHC injection plateau.
- Particle losses during collisions are dominated by nuclear EM processes, \rightarrow leading to non-exponential N_b decay and short lifetimes at E = 3.5Z TeV.

function of position inside the beam. \rightarrow Assumption: 2011 beam conditions.

 \Rightarrow 2011 filling scheme & scaling to *E* = 6.5*Z* TeV yields $L_{\text{Peak}} = 1.8 \times 10^{27} \text{cm}^{-2} \text{s}^{-1}$ = 1.8 L_{Design} .

Alternating 100/225ns bunch spacing to increase total number of bunches. \Rightarrow Possible to reach $L > 2 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$.

• In 2013 p-Pb run *N_b* could be increased by 30%.

[1] T. Mertens et al., TUPZ017, IPAC 2011. [2] M. Schaumann *et al.*, TUPFI025, IPAC 2013. [3] J. Jowett *et al.*, MOODB201, IPAC 2013. [4] R. Bruce *et al.*, Phys. Rev. ST Accel. Beams **13**, 091001 (2010).

Footnotes: 1)
$$F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

2)
$$\epsilon_n = \frac{\gamma}{\beta^*} \sqrt{\sigma_{x1}^2 + \sigma_{x2}^2} \sqrt{\sigma_{y1}^2 + \sigma_{y2}^2}$$

Acknowledgments:

Wolfgang-Gentner-Programme of the Bundes-

ministerium für Bildung und Forschung (BMBF).

• R. Bruce.

Bundesministerium für Bildung und Forschung