

An Experiment for RF Breakdown **Measurements in Beam Loaded CLIC Accelerating Structures**

J.L. Navarro Quirante¹, R. Corsini¹, M. Dayyani Kelisani¹, S. Doebert¹, A. Grudiev¹, O. Kononenko^{1,2}, S. Lebet³, G.Riddone¹, A. Solodko^{1,2}, I.Syratchev¹, F. Tecker¹, W. Wuensch¹

¹ CERN, Geneva, Switzerland, ² JINR, Dubna, Russia, ³ INEO, St. Genis-Pouilly, France

Introduction

- CLIC (Compact Linear Collider) is a multi-TeV high luminosity e⁺ e⁻ linear collider project.
- CLIC relies on the two beam acceleration concept: 12 GHz RF power for acceleration of the "main beam" is generated decelerating a high current "drive beam".
- Acceleration in CLIC is based on normal conducting travelling wave accelerating cavities working at a gradient as high as 100 MV/m.
- **CLIC luminosity is limited by RF breakdowns (BD)** which produces beam deflection.
- Maximum Breakdown Rate (BDR) allowed = $3 \ 10^{-7} BD/(pulse m)$ for operation at 3 TeV.

Test Area Installation

- Experiment installed in the CLIC Test Facility CTF3 at CERN
- Reused existing beam line branching off mid-linac -
- 12 GHz CLIC accelerating structure installed -

First stage (finished):

- structure equipped with RF loads
- no connection to 12 GHz klystron
- establish beam transport
- observe beam induced RF signals

Second stage (January 2014):

- connect to 12 GHz klystron by modified existing low-loss RF transfer line
- almost all necessary RF components fabricated
- condition the CLIC accelerating structure with RF
- measure RF breakdown rate without and with presence of the beam
- => For the first time, breakdown rate with beam-loading will be measured.

Beam Optics Design

- Beam optics design to achieve full beam transmission inside the structure using MAD-X and OPA

- optimized for tapered accelerating structure (6.3 to 4.7 mm diameter)
 - => beam waist towards downstream end
- optimized longitudinal placement of an 8 mm aperture collimator

Experimental Setup and first Results

RF pulse compression in Linac set up for higher RF power

- Linac optics rescaled
- Twiss parameters measured downstream in the linac

Conclusion

upstream the structure

Beam properties: Electron beam at 132 MeV/c Beam current 1.2 A Pulse length up to 250 ns

- 1st Dedicated experiment to measure the breakdown rate in presence of beam-loading. **Beam transport** through the structure **established** and the RF signal acquisition set up. - Further work foreseen on signal calibration and on optimization of the beam transport. Structure connected to 12 GHz klystron from January 2014 and RF conditioning will start.

Acknowledgements:

- We would like to thank S. Rey, L. Timeo, and T. Wiszniowski for their help
- CLIC accelerating structure Funding by Swiss National Science Foundation Grant 135012

- Optics rematched based on this measurement
- beam transmission of 85-95% achieved
- RF signals measured for several levels of beam current
- Calibration error of ~2.5 dB in power (on total 80-90 dB)
- Time evolution of produced power (scaled) at the structure output fits the analytical model

