Eigenmode Computation for Biased Ferrite-Loaded Cavity Resonators*

TECHNISCHE UNIVERSITÄT DARMSTADT

Klaus Klopfer^{**}, Wolfgang Ackermann, Thomas Weiland Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstraße 8, 64289 Darmstadt, Germany

SIS 18 Ferrite Cavity of GSI

For acceleration of heavy ions at the synchrotron SIS18 of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt two biased ferrite-loaded cavity resonators are installed.

SIS 18 ferrite cavity. Source: GSI, A. Zschau

During the acceleration phase the resonance frequency has to be adjusted to reflect the increasing speed of the heavy ions.

Cavity Parameters	
Length	3 m
Max. gap voltage	16 kV
Resonance frequency	~ 0.8 – 5.4 MHz
Max. bias current	~ 500 A

Computational Model

Implementation

The current implementation is based on the Finite Integration Technique [2] using a hexahedral staircase mesh.

Magnetostatic field problem Helmholtz decomposition of *H*-field $\vec{H} = \vec{H}_i + \vec{H}_h$ with $\nabla \times \vec{H}_i = \vec{J}$ and $\vec{H}_h = -\nabla \varphi$ (bias) current density

Jacobi-Davidson algorithm The nonlinear eigenvalue problem is iteratively solved as a sequence of linearized eigenproblems.

General requirements

The solver should support nonlinear and lossy material. The implementation aims at efficient distributed computing (scalability).

RF winding ceramic gap copper (cooling)

Simplified 2D-model of the SIS 18 ferrite cavity.

[2] T. Weiland, "A Discretization Method for the Solution of Maxwell's Equations for Six-Component Fields", Electr. and Comm. AEUE, vol. 31, no. 3, pp. 116-120, 1977. [3] S. Balay et al., "PETSc Users Manual", ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.

Resonance Frequency Tuning

The magnetic induction inside the accelerating cavity can be decomposed into

 $\vec{B}(t) = \mu_0 \mu_{\text{bias}} \vec{H}_{\text{bias}} + \mu_0 \overleftrightarrow{\mu}_d \operatorname{Re}\left(\vec{H}_d \cdot e^{-i\omega t}\right).$

The eigenvectors are calculated under the assumptions that $|\vec{H}_d| \ll |\vec{H}_{bias}|$ and that effects of hysteresis are negligible. This allows a linearization of the constitutive equation at the working point.

- \Rightarrow Modification of differential permeability
- \Rightarrow Adjustment of eigenfrequency

Numerical Examples

Biased cylinder

For verification of the nonlinear eigensolver the following model is considered:

Lossless, ferrite-filled cylindrical cavity resonator, longitudinally biased by a homogeneous magnetic field

R = 1m

 $\diamond \rightarrow z$

Fundamental Relations

Eigenvalue formulation

$$\epsilon^{-1}\nabla \times \left(\mu_0^{-1} \overset{\leftrightarrow}{\mu}_d^{-1} \nabla \times \vec{E}(\vec{r},t)\right) = \omega^2 \vec{E}(\vec{r},t), \ \vec{r} \in \Omega,$$
$$\vec{n} \times \vec{E}(\vec{r},t) = 0, \ \vec{r} \in \partial\Omega.$$

Properties of the differential permeability tensor $\overleftarrow{\mu}_d$

1. Fully occupied (3x3) – tensor, which for a bias magnetic field aligned with the z - axis reduces to the well-known Polder tensor [1]

$$\overset{\leftrightarrow}{\mu}_{d} = \begin{pmatrix} \mu_{1} & \mathrm{i}\,\mu_{2} & 0\\ -\mathrm{i}\,\mu_{2} & \mu_{1} & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \text{with} \qquad \mu_{1,2} = \mu_{1,2} \big(\vec{H}_{\mathrm{bias}}, \omega \big)$$

2. Non-Hermitian if magnetic losses are taken into account, i.e. $Im(\mu_{1,2}) \neq 0$.

[1] D. Polder, Phil. Mag., 40, p. 99, 1949.

[4] G. C. Chinn, L.W. Epp and G.M.Wilkins, IEEE Transactions on Microwave Theory Techniques, 43, May 1995.

degrees of freedom / 10⁶

Figure: Relative deviation of the numerically obtained value ω to the analytical result ω_0 as a function of the degrees of freedom.

Work supported by GSI ** klopfer@temf.tu-darmstadt.de

