

Superconductive Undulators: Mechanical deviations and their influence on the phase error

D. Wollmann, University of Karlsruhe, Germany

Introduction

• Due to constructive interference of photons emitted by a single electron passing through an undulator magnetic field, the undulator emits a line spectrum:

$$\lambda_L = \frac{\lambda_u}{2k\gamma^2} \left(1 + \frac{K^2}{2} \right). \tag{1}$$

with the period length λ_u , the relative beam energy γ , the harmonic number of the emitted radiation k (k = 1, 3, 5, ...), the deflection parameter $K = 0.0934 \cdot \lambda_u [mm] \cdot \tilde{B}[T]$ and the amplitude of the magnetic field \tilde{B} .

• In superconductive undulators the alternating

Phase requirements

- To obtain the maximum brilliance a constant difference between the phase of the emitted photon and the phase of the oscillating electron in each undulator period is required.
- A phase slip between the electron and the photon would disturb the constructive interference and, thus, cause a broadening and intensity reduction of the emission lines
- Therefore field errors of undulators have to be corrected

Phase difference between photon and electron

Mechanical deviations

 In superconductive undulators phase errors are caused by mechanical deviations of the pole position and the position of the wire bundle relative to the gap center (y-direction).

Pole deviations

• The displacement of a pole in y-direction causes a local field disturbance

Figure 1: Opera3d [1] modell of a superconductive undulator with iron poles and superconductive wire bundels

• For a given gap and a given period length superconductive undulators have a higher field strength compared to permanent magnet undulators

Figure 2: Comparison of the achievable calculated max. field strength for superconductive NbTi and in-vacuum permanentmagnet undulators [2].

for the period *i*:

$$\Phi_i = \frac{2\pi}{\lambda_u} \left(\frac{2(\frac{e}{m_e c})^2 J(z_i) - K^2(z_i - z_0)}{2 + K^2} \right), \quad (2)$$

with

$$J(z_i) = \int_{z_0}^{z_i} \left(\int_{z_0}^z B_y(z') dz' \right)^2 dz.$$

 $B_y(z)$, the y-component of the magnetic field along z.

Phase error for an undulator with n periods:

$$\Phi_{error} = \sqrt{\frac{\Sigma_{i=1}^{n} (\Phi_{i})^{2}}{n}}.$$
(3)

Figure 3: The variation of the period length or the amplitude of the magnetic field causes a slip between the electron phase and photon phase. In the worst case this leads to destructive interference.

Figure 4: Field deviation caused by the mechanical displacement of one pole ($500 \mu m$ in y-direction).

Wire bundle deviations

• The displacement of a wire bundle in y-direction causes an anti-symmetric local field disturbance

Figure 5: Field deviation caused by the mechanical displacement of one wire bundle ($500 \mu m$ in y-direction).

Monte-Carlo simulations

- Mechanical deviations of the poles and the wire bundles can be assumed as normally distributed along the undulator, due to the given mechanical tolerances in the construction process.
- Therefore the phase errors of different undulators constructed with the same mechanical tolerances vary.
- The required mechanical tolerances to obtain a specific phase error, can be achieved by Monte-Carlosimulations with several thousand undulators.

(50 periods, $\lambda_u = 14mm$, $\tilde{B} = 1.24T$, 1000 undulators)

Variation	Φ_{error} (pole)	Φ_{error} (conductor bundle)
5 μm	$0 - 4^{o}$	$0 - 1.5^{o}$
14 μm	$1.5 - 10^{o}$	$1.5 - 4.5^{o}$
50 μm	$10 - 100^{o}$	$5 - 15^{o}$

Figure 6: Monte-Carlo simulation of 10000 undulators with normally distributed pole and coil displacement ($5\mu m$ in y-direction).

Acknowledgments

- Thanks to the ANKA ID-group: A. Bernhard, C. Casalbuoni, A. Grau, B. Kostka, E. Mashkina and R. Rossmanith
- Special thanks to A.-S. Mueller

References

[1] Vector Fields Ltd. Software for electromagnetic design.

[2] Pascal Elleaume, editor. *Workshop on superconducting Wigglers and Undulators*. ESRF, 2003.