Latest Results on the Performance of HL-LHC Scenarios*

Research supported by the High Luminosity LHC project

• The CERN Accelerator School / Introduction to Accelerator Physics October 2–14, 2016 / Budapest, *Hungary*

L. Medina[†], Universidad de Guanajuato, Leon, Mexico / R. Tomás, CERN, Geneva, Switzerland

What? Review and comparison of the performance of the High Luminosity LHC (HL-LHC) baseline [1] and its main alternative scenarios: 8b+4e, 200MHz, and flat optics with and without crab cavities (CCs). This work is part of an update to the Technical Design Report.

How? Refined simulations of the evolution of the corresponding optimum fill, assuming a step-based β^* -levelling of the luminosity, demonstrated at low intensity [2].

Introduction

The HL-LHC is an approved upgrade of the LHC aiming at the increase of the integrated luminosity (L_{int}) [1]. The simulation of an optimum fill follows a step-based β^* -levelling: a squeeze of β^* is performed whenever the luminosity drops below a given percentage of its original value. The levelled luminosity is taken such that the average number of events per bunch crossing or pile-up (PU) μ remains constant and equal to 140 (200 in the ultimate scenario). The peak PU density μ_{peak} is defined as the maximum density of events at the interaction point (IP); a limit of 1.3 events/mm is imposed to this parameter. The evolution of emittance takes into account intrabeam scattering (IBS) and a vertical growth of 40 h (observed in the LHC). The beam intensity is reduced due to burn-off with a total cross-section of 111 mb (81 mb inelastic, for PU). The estimation of the yearly L_{int} assumes 160 days of operation, a turn-around time of 3 h, and a 50% efficiency [3].

Luminosity levelling with 2%-steps

Baseline Flat

- 8b+4e
- -200MHz
- No CC no wire
- No CC wire
- Ultimate

Baseline and flat scenario

- Baseline: Round optics ($eta^* = 20 \text{ cm}$), 12.5 σ beam separation.
- Two CCs per IP side per beam (2 \times 3.4 MV), resulting in the partial compensation of the crossing angle.
- IBS growth times (at start of the fill): 18.8 h (horizontal), and 20.6 h (longitudinal).
- Integrated luminosity: **240** fb⁻¹; optimum fill of 7.3 h.
- Flat: $\beta^* = 40 \text{ cm}/15 \text{ cm}$ and 11.9σ –assuming a long-range beam-beam (LR-BB) compensation technique–; same performance with lower peak PU density.
- Ultimate: baseline optics with a levelling at 7.6×10³⁴ cm⁻²s⁻¹ reaching **275 fb⁻¹** of integrated luminosity.

Scenarios for e-cloud suppression

- Two alternatives for **electron-cloud suppression** [4], with reduced performance.
- 8b+4e filling scheme: fewer bunches with more particles per bunch and lower emittance [5], yields to lower peak luminosity at the same μ.
- 8b+4e reduces the integrated luminosity by 25%, but does not require limiting μ_{peak}.
- 200MHz: Longer bunch length ($\sigma_z = 15$ cm) in a 200 MHz main RF system. Loss of performance is reduced to only 14%.
- Full potential of 200MHz to be explored.

Scenarios without CCs

- SPS tests, machine protection concerns, etc., might prove **CCs not being operational**; flat optics with $\beta^* = 40 \text{ cm}/15$ cm) has to be used.
- Possibility to use current-bearing wires for LR-BB compensation.
- Beam separation: 11.9σ (without) [6] and 9.7σ (with) [7].
- The use of wires with **lower separation** leads to increased luminous region and higher integrated luminosity.

Effect of different levelling steps and penalties

Results on luminosity and pile-up for a levelling at 2% are summarized in **Table 1**. Every step performed during the levelling process represents a new optics. The necessary **time** to realign the beams after changing between consecutive optics has been modelled as **penalty steps** with a constant duration, during which the **instantaneous luminosity** drops to **zero**. The effect of such penalties on L_{int} is illustrated for the baseline in **Table 2** for different durations. In **Table 3**, different luminosity steps (between 1% and 10%) have been explored for the baseline; the **number of optics** increases rapidly as the luminosity steps are shorter, and the length of the shortest step (the last optics) decreases accordingly.

Parameter	Unit	Baseline	Flat	8b+4e	200 MHz	No Wire	Wire	Ultimate	Penalty	Int. lumi.	[fb ⁻¹] Opt. fill [h]
Integrated luminosity	r fb⁻¹	240	240	181	206	214	225	275	0 s	240	7.25
Peak pile-up density	evt./mm	1.30	1.07	1.30	1.30	1.31	1.30	1.94	1 s	238	7.26
Duration									10 s	232	7.37
Optimum fill	h	7.3	7.3	7.9	6.8	6.9	6.8	5.1	30 s	221	7.72
In levelling	h	5.2	5.1	6.3	2.5	4.6	4.3	2.3	Table 2		
At peak PU limit	h	1.0	-	-	1.2	4.2	1.6	_a	10010 2		
Without CCs											
Virtual luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	6.5	9.0	5.8	3.7	9.0	10.0	6.5			
Virtual pile-up	evt./cross.	172	237	213	98	237	263	172		1	
With CCs										ł	
Virtual luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	12.6	13.1	11.6	6.8	-	-	12.6			
Virtual pile-up	evt./cross.	333	345	428	178	_	_	333		i 📕	

Conclusion

Studies on the **performance** of the **HL-LHC baseline** and main **alternative scenarios** have been reviewed with the latest parameters. New criteria, such as a **step-based luminosity levelling** and **penalty** steps, have been introduced, allowing more **realistic simulations**. The baseline delivers a yearly integrated luminosity of 240 fb⁻¹ with a peak PU density of 1.3 events/mm, a limit imposed by the main experiments. Alternatively, this performance can be reproduced with **flat optics** provided the same two CCs per IP side per beam are available. The **8b+4e** and **200 MHz** configurations result in a reduction of performance by 25% and 14%, respectively, although they have the significant advantage of **reducing** the effect of **electron-clouds**. The scenarios without CCs provide a backup for operation with little loss on performance at the same limit of μ_{peak} . The ultimate operation of the HL-LHC envisions an increase of 15% of integrated luminosity with respect to the baseline, at a challenging peak PU density. Operation with β^* -levelling will require a large number of optics; therefore a **5%**-step luminosity levelling seems **reasonable** in terms of their number, and the **negligible reduction** of L_{int} .

Acknowledgements to G. Arduini, O. Brüning, M. Giovannozzi, and L. Rossi for discussions and comments.

[1] "High-luminosity Large Hadron Collider (HL-LHC) Technical Design Report", edited by G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamot, and L. Rossi, CERN-2015-005. [2] A. Gorzawski, D. Mirarchi, B. Salvachua, and J. Wenninger, "MD 239 on collide and squeeze (part 2)", CERN-ACC-NOTE-2016-018. [3] R. Tomás et al., "HL-LHC alternative scenarios", in *Proc. of Chamonix 2014 Workshop on LHC Performance*, CERN-2015-002. [4] A. Axford, G. Iadarola, A. Romano, and G. Rumolo, "Progress on electron cloud studies for HL-LHC", HL-LHC WP2 Task Leader Meeting, CERN, Geneva, Switzerland, Apr. 2015. [5] H. Damerau et al., "LIU: Exploring alternative ideas", in *Proc. of RLIUP: Review of LHC and Injector Upgrade Plans*, CERN-2014-006. [6] D. Banfi, J. Barranco, T. Pieloni, and A. Valishev, "Beam-beam effects for round and flat optics: DA simulations", 4th Joint HiLumi LHC-LARP Annual Meeting, KEK, Japan, Nov. 2014. [7] S. Fartoukh, A. Valishev, and D. Shatilov, "An alternative High Luminosity LHC with flat optics and long-range beam-beam compensation", in *Proc. 6th Int. Particle Accelerator Conf. (IPAC'15)*, Richmond, USA, May 2015.

* Research supported by the High Luminosity LHC project. Work supported by the Beam Project (CONACYT, Mexico)

NATEL STATE

[†] Imedinam@cern.ch