

New Four Quadrant R2E ±600A ±10V for LHC Vicente Raúl Herrero / Raul Braian Bianchi

CERN – European Organization for Nuclear Research

ABSTRACT The LHC (Large Hadron Collider) particle accelerator makes extensive use of power converters, with a high precision regulated output current requirement. The level of radiation will increase, and higher availability is required for each system. High availability in 4-quadrant converters is crucial in LHC operation. To get this aim, a new redundant, modular and radiant tolerant 4-quadrant linear converter is developed modifying the control strategy of current converters in LHC. This poster introduces the R2E LHC [600A; 10V] power converter, 162 units in the LHC are impacted.

R2E-LHC600A-10V POWER CONVERTER TOPOLOGY

CERN POWER CONVERTER ARCHITECTURE

CERN Power Converter Radiant Tolerant Validated

- A voltage power source unit
- Two high precision current transducers (DCCT)
- High Precision digital controller (FGC)

RADIANT TOLERANT DESIGN

High – Energy Hadron Fluence

Radiant Tolerant Circuits & Components

- Simple and redundant circuits developed following radiant tolerant criteria
- Minimum number of references and well known components used
- All components qualified under radiation

Radiant Tolerant Linear PSU

Modular & Redundant Design

Modular and Redundant design achieve thanks to new control strategy.

Voltage Source Architecture

A new converter (R2E-LHC600A-10V) is carried out, formed by two power modules working as parallelizable current sources of ±400A ±10V each. One additional module controls the output voltage providing the current reference to both power modules. The magnet protection systems are located in the control module (they were located in the rack in the old version). This new structure provides full modularity, redundancy and reduces the time to repair.

R2E-LHC600A-10V Prototype

Control and Protection Module

OA CROSSING POINT PERTURBATION

QUICK REACTION WHEN ONE POWER MODULE FAILS

LOW LEVEL OF OUTPUT NOISE

Very low level of output noise achieve thanks to the 4-Quadrant output linear stage.

SUPERCONDUCTIVE MAGNET PROTECTION

Crowbar and hearth leakage detection system.

Crowbar System

The system is based on a 50 m Ω Power Resistance series back-to-back thyristors being fired at a given output voltage (±13V), and then providing a safe path for magnet current.

Earth System

Detection system is an active system, since relying on a 100mA current source powering a 100 Ω resistor connected between earth and negative polarity of the Power Converter. A common mode voltage is then created, (100mA x 100 Ω) making possible to detect an earth fault even with converter being OFF. (OFF, not condamned).

SUMMARY

A new topology and control strategy are developed to comply with nominal LHC requirements. These modifications have been successfully implemented in a new converter prototype.

In next future, HL-LHC upgrade will demand new 4-quadrant converters, with a higher level of operating currents. It will be possible to feed these magnetic circuits with several power modules in parallel. A redesign could be done considering an undetermined number of power modules in parallel.