Positron Production

KURIKI Masao (Hiroshima/KEK)

nnn

Contents

- Introduction
- Positron Generation
- Positron Source
- Positron Source for Linear Colliders
- Summary

Introduction

What is Positron?

- 1928: Dirac equation suggested electrons with negative energy. Hole hypothesis: "vacuum" is filled with this negative energy electrons to prohibit Klein's paradox. "hole" in the sea of this electrons, acts as positrons.
- 1932:Anderson discovered positrons in cosmic rays with cloud chamber.
- In the modern field theory, positrons is considered to be electrons, which propagate inversely.

 μ^+

sea

21 Feb.-6 March, 2018, Zurich, Swiss Beam Dynamics and Technology for Future Colliders

e+

e-

 e^+

time

Positron Production (1)

- There is only few positrons in nature. (Nature is not symmetry!)
- Two ways to produce positrons :
 - Create radio-active elements, which β^+ decays; $p \rightarrow n e^+ v$.
 - Continous e+ beam.
 - Pair-creation ; $\gamma \rightarrow e^+e^-$.
 - Can be with a time structure.
- All of the positron beam sources with a time structure, employ the pair-creation process.

Positron Production (2)

- Photon interaction in material:
 - Photo-electron effect(<1MeV)
 - Compton scattering (1-10MeV)
 - Pair-creation (>10MeV)
- Gamma ray, energy
 >10MeV is required for effective pair creation.

σp.e. : photo-electronσcompton:Compton scatteringKnuc, Ke: pair creation(from Particle Data Group, http://pdg.lbl.gov)

Need Photon?

- We need many photons to create enough amount of positrons through the pair creation.
- How to create the photons?
 - Brems-strahlung, channeling radiation : electron interaction in material. Very effective.
 - Undulator radiation: Synchrotron Radiation. Need very long undulator with very high energy electron.
 - Inverse Compton scattering : Laser and electron interaction. Need very high luminosity.

Positron Generation

Positron Generation

- Positron beam is generated by the pair-creation process.
- There are several schemes for positron generation, depending on way to generate gamma rays (>10 MeV).
- Electron driven
 - Authentic
 - Channeling radiation
- Direct Pair-creation
 - Undulator
 - Laser-Compton

Electron Driven(1) Bremsstrahlung(1)

We inject electron beam to a metal target,

- Electron is decelerated by nucleus field.
- Photon is emitted by the energy conservation.
- Gamma rays are obtained with >100 MeV or GeV electrons.

Cascale Shower

Radiation length X_0 :

$$\frac{dE}{dx} = -\frac{E}{X_0}$$

It continues down to E=E_c,

$$x_{max} = nX_0 \ln(2)$$
$$x_{max} = X_0 \ln\left(\frac{E_0}{E_c}\right)$$

What is Ec?

- Bremsstrahlung is dominant in high energy region.
- Below some energy (E_c critical energy) ionization is dominant.
- When high energy electrons are injected into material, electrons loose their energy by Brems-strahlung.
- Below E_c, ionization is dominant. (no growth)

2010/8/11

Critical Energy Ec $\left(\frac{dE}{dx}\right)_{ion} = \left(\frac{dE}{dx}\right)_{Brems}$ $E_c[MeV] \sim \frac{800}{Z+1.2}$

Cascade Shower (2)

- As consequence of the cascade shower by the high energy electron in material, many positrons are generated.
- Number of positron is maximized at shower max determined by *X*₀, *E*₀, and *E*_c.

 $x_{max} = X_0 \ln \left(\frac{E_0}{E_c}\right)$ $X_0 = \frac{716.4[g.cm^{-2}]A}{Z(Z+1)\ln(287/\sqrt{Z})}$

2010/8/11

Courtesy of T.Kamitani

Direct Pair Creation

- 10s MeV photons directly generate positrons through the pair creation process.
- Due to this simplicity, if the photons are polarized, the positrons are also polarized. (Polarized Positron).
- # of particles is not multiplied. Each photon can generate only up to one positron. Because the capture efficiency is much less than the unity, we need many photons.

Undulator Radiation (1)

- In alternate dipole B field(undulator), electron wiggles periodically.
- Electron speed in undulator along the longitudinal axis is less than speed of light due to the zig-zag motion.
- If synchrotron radiation wave-planes from *n*th and *n*+1th period is coherent, it is much enhanced (photon is emittend to this direction.)

Undulator radiation (2)

Lienard-Wiechert form (ω photon angular, Ω is solid angle, **n** is unit vector to observation)

$$\frac{d^2 I}{d \omega d \Omega} = \frac{e^2 \omega^2}{16 \pi^3 \varepsilon_0 c} \left| \int_{-\infty}^{+\infty} \mathbf{n} \times (\mathbf{n} \times \mathbf{\beta}) \exp\left[i \omega \left(t - \frac{\mathbf{n} \cdot \mathbf{r}}{c} \right) \right] \right|^2 \quad (3-8)$$

$$\frac{d^2 N_{ph}}{dEdL} \left[\frac{1}{\mathbf{m} \cdot MeV} \right] = \frac{10^6 e^3}{4 \pi \epsilon c^2 h^2} \frac{K^2}{\gamma^2} \left[J'_n(x)^2 + \left(\frac{\alpha_n}{K} - \frac{n}{x} \right)^2 J_n(x)^2 \right] \quad (3-8')$$

$$E_n[eV] = 9.50 \frac{nE^2[GeV^2]}{\lambda_u[m](1+K^2+\theta^2\gamma^2)}$$
$$\sim 9.50 \frac{nE^2[GeV]}{\lambda_u[m](1+K^2)}$$

Polarized Positron

- Energy, angle, and helicity from undulator radiation are correlated.
- By taking gammas in superforward direction, gamma rays and positrons are polarized.

T.Kamitani

Laser Compton(1)

- Inverse Compton scattering between laser photon and electron beam.
- Laser photon (wavelength is in µm order) is scattered by high energy electron and its energy is boosted.
- As a result, high energy gamma-ray is obtained.

$$E_{\gamma} \sim \frac{4\gamma^2 mc^2 E_L}{mc^2 + 4\gamma E_L} \qquad (3-16)$$

- EL : Laser energy 1.2eV @ 1um.
- Electron beam 1GeV, $\gamma = 2000$.
- $E_{\gamma} \sim 16 MeV$

Laser Compton (2)

• Laser acts as a quite short period undulator. The energy from Compton scattering is rewritten as

$$E_{\gamma} \sim 4 \gamma^2 \hbar \frac{2 \pi c}{\lambda_L} \qquad (3-17)$$

where λ_{L} is laser wave length.

- High energy gamma (several 10s MeV) is obtained with few GeV electron beam.
- Laser focal length is limited to Rayleigh length. It is difficult to make a long "laser undulator".

 $2\pi w_0^2$

Laser Compton (3)

- By employing circularly polarized laser, the final photon spectrum different for polarization.
- By taking high energy region, the polarized photon is obtained.
- The positron generated from the polarized photon, is also polarized.

e+ [mb/MeV]

do/dE

Sum

γ-ray energy [MeV]

Sum

dg/dE [mb/MeV]

Positron Source

Positron Source

- Positron source is a system, composed from:
 - Drive Beam (Electron or Photon)
 - Conversion target (gamma \rightarrow e⁺)
 - Matching Device (pt supression)
 - Capture Accelerator (Capture in RF bucket)
- Three concepts:
 - Electron driven (conventional),

Electron Driven (1)

- Sub or Several GeVs driver electron beam.
- High Density Material for shower development.
- Positron capture by Solenoid, QWT, or AMD.
- NC accelerator tube with solenoid focusing.
- All positron sources based on accelerator every built, is this concept. That is why it is called as "conventional".

Undulator Scheme (1)

- By passing more than 130 GeV energy electrons through a short period undulator, more than ~10MeV energy gamma rays are generated as synchrotron radiation.
- This gamma ray is converted to positrons in a heavy material.
- With helical undulator, the photon is circularly polarized and polarized positron is generated.

Undulator Scheme (2)

- Constructing a 130 GeV electron linac dedicated to positron generation is not realistic.
- The main electron linac is shared by collision beam and positron generation.
- By employing helical undulator, polarized positron is obtained.

Compton Scheme (1)

- Compton back scattering between several GeVs electron and laser photons generates ~ 30 MeV gamma rays.
- These gamma rays are converted to positrons.
- When the laser photon is circularly polarized, the generated positron is also polarized.
- It is hard to make a long "laser undulator", because of limitation on the laser focus.

Beam Dynamics and Technology for Future Colliders

Compton Scheme (2)

Positron Polarization.

- Higher degree up to 90 %.
- Train by train flipping by laser polarity control.
- Dedicated e- beam.
 - No concern for e- beam quality degradation.
 - No inter-system dependence.
 - Simple, easier construction, operation, commissioning, maintenance, high availability.

To obtain enough amount of positron is a technical challenge, due to the low cross section. $Y = \sigma_C N_e N_L f_{rep} G$

Very small

SLC: The first linear collider SLC:SLAC Liner Collider SLAC:Stanford Linear Collider

Damage Threshold

SLC positron prodution target (W-Re) had been operated at

 $\rho = 35[J/g]$

After the operation, some damage (rough surfaces, small cracks, small holes, etc) was observed. Even there was no diffuculties during the operation, the condition is considered to be a practical limit on the heat load on the target.

21 Feb.-6 March, 2018, Zurich, Swiss Beam Dynamics and Technology for Future Colliders Kamitan

Positron Capture

- The generated positrons are distributed in a small spot size and in a large momentum space. To convert it to the parallel beam, a couple of solenoid-like magnetic field with different profile are employed.
 - QWT (Quarter Wave Transformer)
 - AMD (Adiabatic Matching Device)

<u>()</u>, <u>(</u>])

- QWT consists from initial strong solenoid field, B_i, and weak solenoid field, B_f, along z direction.
- Accelerator is placed in B_f region compensating transverse motion.
- It transforms 90° in the phase space, that is why it is called as Quarter Wave Transformer.

e-/gamma

e+

<mark>(2)/YT(2)</mark>

• At the boundary of *B_i* and *B_f*, transverse magnetic field *B_t(z)* is appeared.

 $\int B_t(z) dz = \rho(B_i - B_f)$

- Positrons are kicked by B_t to θ direction.
- If p_t is parallel to θ direction, p_t is suppressed.
- In othercase, the supression is not ideal.

<u>QWT'(3)</u>

Momentum change at the boundary is

 $\frac{dp_t(t)}{dt} = e v_z B_t(z)$

Integrating this equation, total momentum change is

$$\Delta p_t = e v_z \int B_t(z) dt = e v_z \int B_t(z) \frac{dz}{v_z}$$
$$= e \rho (B_i - B_f) = \frac{p_{t0}}{B_i} (B_i - B_f)$$

After the kick is

$$p_{t} = p_{t0} - \Delta p_{t} = p_{t0} - \frac{p_{t0}}{B_{i}} (B_{i} - B_{f}) = p_{t0} \frac{B_{f}}{B_{i}}$$

- Two solenoid coils (strong and weak) composes QWT.
- Bucking coil to cancel the strong B field on target.
- B_i and B_f are 1.0 and 0.5 T.
- NC L-band accelerator is placed in Bf region. (Why?)

Bz

Bi

e+

AMD consists from the initial strong solenoid field along z direction, B_i, which is decreased down to B_f continuously.

$$B(z) = \frac{B_i}{1 + \mu z} \qquad (2 - 18)$$

21 Feb.-6 March, 2018, Zurich, Swiss Beam Dynamics and Technology for Future Colliders

e-/gamma

Bf

Ζ

$\underline{\text{AND}}(2)$

In xy plane, positrons are circulated with radius $\rho(z)$,

$$\rho(z) = \frac{p_t(z)}{eB(z)}$$

If a parameter of the motion is changed slowly compare to the circulating frequency, adiabatic invariant is constant during the motion.

$$\frac{1}{2\pi} \int p dq = 2\rho(z) p_t(z) = 2 \frac{p_t(z)^2}{eB(z)}$$

$\underline{\text{AMD}(3)}$

Due to the adiabatic condition,

The momentum is suppresed by the square root of the field ratio.

$$\underline{\text{AIMD}(5)}$$

Pt at the exit of AMD is

$$p_t = \sqrt{\frac{B_f}{B_i}} p_{t0}$$

Radius has to be less than aperture (a/2),

$$\rho = \frac{p_t}{eB_f} < \frac{a}{2} \qquad \qquad p_{t0} < \frac{a}{2} e \sqrt{B_f B_i}$$

Acceptance on longitudinal momentum (adiabatic condition)

 $p_z < 0.5 \frac{eB_i}{\mu}$

AIMD(B)

- AMD field is produced by flux-concentrator.
- Primary coil induces eddy current in the inner conductor.
- Because of the tapered shape of the inner conductor, the magnetic field is concentrated.

Positron Source For LC

Positron Polarization

- 90% electron polarization: 95% e⁻L and 5% e⁻R, the small contamination can be suppressed further with a positron polarization.
- The positron polarization is helpful, but not mandate.

Beam Dynamics and Technology for Future Colliders

Effective Polarization

$$P_{\rm eff} = (P_{-} - P_{+})/(1 - P_{-}P_{+})$$

Parameters

Parameter	ILC	CLIC	Unit
Bunch charge	3.20	0.60	nC
Norm. emittance (εx+εy)	0.09	?	m.rad
Bunch separation	559 (670)	0.5	ns
Bunch number in macro pulse	2625(1312)	312	number
Macro pulse length	970(880)	0.16	μs

ILC: Large bunch charge, low repetition, low current, long pulse are optimized for SC.

- Baseline : undulator
- Reliable Backup : Electron driven
- CLIC: Low bunch charge, high repetition, high current, short pulse are optimized for NC.
 - Baseline: electron driven (channeling),
 - Backup: Laser Compton, undulator.

Electron Driven Scheme

- Electron driven is the only scheme, which is ever been operated, but possible target damage has to be managed.
- Positron polarization is not possible.

Why is it so diffuent?							
		N ^{e+} /bunch	Reputation(Hz)	N ^{e+} /sec			
	ILC	$2.0 \mathrm{x10}^{10}$	5 x 2625	2.6×10^{14}			
	SLC	$4.0 \mathrm{x} 10^{10}$	120	4.8×10^{12}			

- ILC has to produce 50 times more positron than that of SLC.
- But, number does not matter, PEDD (Peak Energy Deposition Density) does.

Pulse Structure Manipulation

- Several GeV e- beam on W-Re target.
- By manipulating the beam structure (64ms pulses), heat load on the production target is 64 times less.
- 5 m/s target speed is even enough.

Deceleration Capture

- The positron should be captured in RF bucket at the capture linac.
- The positron peak is on deceleration phase.
- These positrons are slipped down to the acceleration phase where these positrons are captured.

ILC Positron Source

- It is the first undulator based positron source in the world.
- 125-250GeV electrons generate gammas. Linac is shared.
 The generated positron will be used for the next collision. The positron wait 200 ms in the positron DR.

ILC Undulator Positron Source Layout

Helical Undulator

Multi-wire winding model in Opera 3d

Model parameters: dimensions and positions of individual wires; wire current

VF VECTOR FIELDS

21 Feb.-6 March, 2018, Zurich, Swiss Beam Dynamics and Technology for Future Colliders

By Yury Ivanyushenkov

Radiation Cooling Target

- Target : Ti-6% Al-4% V with 0.4 X₀, 15mm.
- Rotating with tangential speed 100 m/s to avoid any damage.
- Heat load by gamma : 5-18 kW
- Thermal heat is removed by radiation .

• Positron beam is generated by electron bunch.

2010/8/11

- The generated positron will be used in next collision in 200ms.
- Generation and collision are performed simultaneously. The DR bucket must hold the new positron.
- If the path-length satisfy "the self-reproduction condition", the RF bucket is vacant.
- The positron is stored in the DR bucket where the collision partner of the electron which generates the new positron.

21 Feb.-6 March, 2018, Zurich, Swiss Beam Dynamics and Technology for Future Colliders

2010/8/11

Compton Ring

- A storage ring for electron driver:5.3nC, 6.2ns, 1ps, 1.8GeV.
- Laser pulse is stored in optical cavity, 0.6Jx5.
- Positron bunch(Ne+:2.0E+8) is generated.
- 10 bunches are stacked on a same bucket. This process is repeated 10 times with 10ms interval for beam cooling.
- Finally, Ne+:2E+10 is obtained.

Pulse Stacking Cavity

- Many laser pulses are stored and the power is enhanced by the pulse stacking.
- Pulsed laser is stacked when appropriate conditions of the external cavity are satisfied simultaneously for
 - Laser wave length

Laser pulse

Mode-locking frequency

$$L_{cav} = m \frac{\lambda}{2}$$
$$L_{cav} = nL_{rep}$$

Optical Cavity

Electron bunch

Comparison

	Electron driven	Undulator	Laser Compton
Electron Driver	3.0-6.0 GeV NC Dedicated	150-250GeV SC Common, alternate	1.8 GeV Ring/ERL Dedicated
Radiator	W-Re target	Undulator λ=0.8cm	Laser λ=1.0μm
Converter	W-Re target 1 m/s	Ti-alloy 100 m/s	W target 1 m/s
Matching Device	SC DC solenoid/Pulse d FC	QWT/Pulsed FC	SC DC solenoid
E+ booster	NC	SC	SC
Path length adjustment	NO	YES	NO
Polarization	NO 21 Feb6 March, 2	30-60% 2018, Zurich, Swiss	0-90%

Beam Dynamics and Technology for Future Colliders

56

2010/8/

Summery

- Fundamentals of positron generation are explained .
- 3 Positron Source Conepts
 - Electron driven
 - Undulator
 - Laser Compton
- To realize the required performance, the state-of-the-art of the technology should be integrated.
- Target is strongly activated. The target should be remotely maintained (exchange) with a high reliablity.