CERN accelerator school on Beam Dynamics and Technologies for Future Colliders Zurich, Febr 21 - Mar 6, 2018

High energy physics at future colliders

Michelangelo L. Mangano Theory Department, CERN, Geneva

pp @ 14 TeV, 3ab⁻¹

pp @ 14 TeV, 3ab⁻¹

e+e- @ 380 GeV, 1.5 & ~3 TeV

CDR 2012+ update '16

pp @ 14 TeV, 3ab-1

e+e⁻ @ 380 GeV, 1.5 & ~3 TeV

CDR 2012+ <u>update</u> '16

Approved

2026-37

100km tunnel

- pp @ 100 TeV
- e⁺e⁻ @ 91, 160, 240, 365 GeV
- е60Gev р50теv @ 3.5 TeV

CDR (end '18)

LHC tunnel: HE-LHC

• pp @ 27 TeV, 15ab⁻¹

and in the rest of the world:

e+e⁻ @ 250, 350, 500 GeV

TDR 2012

CDR (Spring '18)

100km tunnel

- e+e- @ 91, 240 GeV (but possibly 160 & 350)
- Future possible pp @ ~70 TeV and e60GeV p35TeV

Regardless of what I'll discuss, whatever project you're working on (LHC, ILC, CLIC, FCC, X-FEL, PSI, superKEKB, ...) just be proud of it!!

Particle physicists can only be infinitely grateful to accelerator physicists:

without you, we'd be nowhere!

MLM, from talk given to Council, 2015, to justify HL-LHC

MLM, from talk given to Council, 2015, to justify HL-LHC

A "real" story from the past ...

Barcelona, 15 March 1493

CristofoRolf Columbus:

Your Majesty, the fleet needs an **upgrade**, we need to go back to the Indies with **IO times** more ships

King Ferdinand and Queen IsAgnieszka:

You discovered the Indies, your theory is right, why do you need more?

CristofoRolf Columbus:

Theorists* say these may not be the standard Indies. They calculated the Earth radius, and the standard Indies cannot be so close: these are likely to be beyond the standard Indies (moving eastward ...)

* If the King had listened to theorists to start with, he would have never authorized the mission: everyone would have died of starvation well before reaching the "standard" Indies ...

3

the discovery of the Higgs was not the end, it was just the beginning ...

The LHC experiments have been exploring a vast multitude of scenarios of physics beyond the Standard Model

In search of the origin of known departures from the SM

- Dark matter, long lived particles
- Neutrino masses
- Matter/antimatter asymmetry of the universe

To explore alternative extensions of the SM

- New gauge interactions (Z', W') or extra Higgs bosons
- Additional fermionic partners of quarks and leptons, leptoquarks, ...
- Composite nature of quarks and leptons
- Supersymmetry, in a variety of twists (minimal, constrained, natural, RPV, ...)
- Extra dimensions
- New flavour phenomena
- unanticipated surprises ...

So far, no conclusive signal of physics beyond the SM

A	TLAS SUSY Sear	rches*	- 95%	6 CI	L Lo	ver Limits		ATLAS Preliminary
D	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dı[n	-') Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} (compressed) \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{q}\tilde{\chi}_{1}^{0} \rightarrow q q W^{*} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q \ell \ell \ell / r \gamma) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} \text{ NLSP}) \\ GGM (bino \text{ NLSP}) \\ GGM (higgsino-bino \text{ NLSP}) \\ Gravitino \text{ LSP} \end{array} $	0 mono-jat 0 ee,μμ 3 e,μ 0 1-2 r + 0-1 e 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-11 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	4 7 7 8	$\begin{array}{c c} \textbf{1.57 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV}, \ m(1^{\text{H}} \ \text{gen}, \tilde{q}) + m(2^{\text{H}} \ \text{gen}, \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{k}_1^0) < 5 \text{GeV} \\ \hline \textbf{2.02 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV} \\ \hline \textbf{2.01 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV} \\ \hline \textbf{2.01 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV}, \ m(\tilde{k}^1) = 0.5(m(\tilde{k}_1^0) + m(\tilde{g})) \\ \hline \textbf{1.7 TeV} & m(\tilde{k}_1^0) < 300 \text{GeV} \\ \hline \textbf{1.87 TeV} & m(\tilde{k}_1^0) = 0 \text{GeV} \\ \hline \textbf{1.8 TeV} & m(\tilde{k}_1^0) = 0 \text{GeV} \\ \hline \textbf{2.0 TeV} & m(\tilde{k}_1^0) < 400 \text{GeV} \\ \hline \textbf{2.0 TeV} & m(\tilde{k}_1^0) < 400 \text{GeV} \\ \hline \textbf{2.05 TeV} & m(\tilde{k}_1^0) = 1700 \text{GeV}, \ cr(\text{NLSP}) < 0.1 \text{mm}, \ \mu > 0 \\ m(\tilde{G}) > 1.8 \times 10^{-4} \text{eV}, \ m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{TeV} \\ \hline \end{array}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
R med.	\$\$, \$→\$	0 0-1 e,µ	3 b 3 b	Yes Yes	36.1 36.1	2 2	1.92 TeV m(t ² ₁)<600 GeV 1.97 TeV m(t ² ₁)<200 GeV	1711.01901 1711.01901
3rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^A$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^A$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^A$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1 (natural GMSB)$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	0 2 e, µ (SS) 0 - 2 e, µ 0 - 2 e, µ 0 2 e, µ (Z) 1 - 2 e, µ	2 b 1 b 1 · 2 b 0 · 2 jets/1 · 2 · mono-jet 1 b 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV i1 117-170 GeV 200-720 GeV i1 117-170 GeV 0.195-1.0 TeV i1 90-198 GeV 0.195-1.0 TeV i1 90-430 GeV 0.195-1.0 TeV i1 90-430 GeV 0.195-1.0 TeV i2 290-790 GeV 0.195-1.0 TeV i2 290-790 GeV 0.195-1.0 TeV	$m(\tilde{\epsilon}_{1}^{0}) < 420 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\epsilon}_{1}^{+}) = m(\tilde{\epsilon}_{1}^{0}) + 100 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{+}) = 2m(\tilde{\epsilon}_{1}^{0}), m(\tilde{\epsilon}_{1}^{0}) = 55 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 1 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 150 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) > 150 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 0 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 0 \text{ GeV}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow t\nu(\tau\bar{\nu}), \tilde{\chi}_{2}^{0} \rightarrow t\tau(\nu\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\bar{\nu}\nu), \ell\bar{\nu}\tilde{\ell}_{L}\ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\delta\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\delta\tilde{\chi}_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau\tau/\gamma\gamma \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R}\ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow ; \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow ; \end{array}$	2 ε,μ 2 ε,μ 2 τ 3 ε,μ 2-3 ε,μ ε,μ,γ 4 ε,μ φ 1 ε,μ + γ φ 2 γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	2 90-500 GeV x [±] 750 GeV x [±] 760 GeV x [±] 580 GeV w 1.06 Te	$\begin{split} m(\tilde{k}_{1}^{0})=0 & m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0})) & m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0})) & m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0})) & m(\tilde{k}_{1}^{0})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \text{ decoupled} & m(\tilde{k}_{1}^{0})-m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \text{ decoupled} & m(\tilde{k}_{2}^{0})-m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0})) & c\tau <1 mm & c\tau <1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07675 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\hat{x}_{1}^{*}\hat{x}_{1}^{-}$ prod., long-lived \hat{x}_{1}^{*} Direct $\hat{x}_{1}^{*}\hat{x}_{1}^{-}$ prod., long-lived \hat{x}_{1}^{*} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q q \tilde{\xi}_{1}^{0}$ GMSB, stable $\tilde{r}, \hat{x}_{1}^{0} \rightarrow r(\tilde{e}, \tilde{\mu}) + r(e, \mu)$ GMSB, $\hat{x}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived \tilde{x}_{1}^{0} $\tilde{g}_{\tilde{g}}, \hat{x}_{1}^{0} \rightarrow eev/e\muv/\mu\muv$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 p 2 y displ. ee/eµ/µ	1 jet - 1-5 jets - - - -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	\$\bar{x}_1^+\$ 460 GeV \$\bar{x}_1^+\$ 495 GeV \$\bar{x}\$ 850 GeV \$\bar{x}\$ 90 GeV \$\bar{x}\$ 537 GeV \$\bar{x}\$ 440 GeV \$\bar{x}\$ 1.0 TeV	$\begin{array}{c} m(\tilde{k}_{1}^{n}) - m(\tilde{k}_{1}^{n}) \sim 150 \ \text{MeV}, \ r(\tilde{k}_{1}^{n}) - 0.2 \ \text{ns} \\ m(\tilde{k}_{1}^{n}) - m(\tilde{k}_{1}^{n}) - 150 \ \text{MeV}, \ r(\tilde{k}_{1}^{n}) < 15 \ \text{ns} \\ m(\tilde{k}_{1}^{n}) = 100 \ \text{GeV}, \ 10 \ \mu \text{s} < r(\tilde{k}) < 1000 \ \text{s} \\ \hline \textbf{1.58 \ TeV} \\ \hline \textbf{1.57 \ TeV} \qquad m(\tilde{k}_{1}^{n}) = 100 \ \text{GeV}, \ r > 10 \ \text{ns} \\ \hline \textbf{2.37 \ TeV} \qquad r(\tilde{k}) = 0.17 \ \text{ns}, \ m(\tilde{k}_{1}^{n}) = 100 \ \text{GeV} \\ 10 < targe < 50 \\ 1 < r(\tilde{k}_{1}^{n}) < 3 \ \text{ns}, \ \text{SPS8 \ model} \\ 7 < cr(\tilde{k}_{1}^{n}) < 740 \ \text{mm}, \ m(\tilde{k}) = 1.3 \ \text{TeV} \\ \end{array}$	1712.02118 1506.05332 1310.8584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X_{*}\tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{g}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\delta$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	eμ,eτ,μτ 2 e,μ (SS) 4 e,μ 3 e,μ + τ 0 4 1 e,μ 8 1 e,μ 8 0 2 e,μ	0-3 b 	Yes Yes Yes b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7	Pr \$\vec{4}\$.\$\vec{x}\$ \$\vec{x}\$ \$\vec{x}\$	1.9 TeV $X_{j+1}=0.11, \lambda_{130/133/223}=0.07$ 1.45 TeV m(\tilde{q})-m(\tilde{q}), $cT_{25,P} < 1$ mm eV m(\tilde{q}^{0}_{1})>400GeV, $\lambda_{118} \neq 0$ ($k = 1, 2$) m(\tilde{k}^{0}_{1})>0.2×m(\tilde{k}^{0}_{1}), $\lambda_{235} \neq 0$ 1.875 TeV m(\tilde{k}^{0}_{1})=1075 GeV 2.1 TeV m(\tilde{k}^{0}_{1})=1 TeV, $\lambda_{112} \neq 0$ 1.65 TeV m(\tilde{k}^{0}_{1})=1 TeV, $\lambda_{123} \neq 0$ -1.45 TeV BR($\tilde{t}_{1} \rightarrow be/\mu$)>20%	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_1^0$	0	2 c	Yes	20.3	č 510 GeV	m(t ² i)<200 GeV	1501.01325
Only pher simp	a selection of the available mas nomena is shown. Many of the li lified models, c.f. refs. for the a	s limits on i imits are ba ssumptions	new state ised on made.	s or	1	0 ⁻¹	TeV Mass scale [TeV]	

however, notice the small print

So far, no conclusive signal of physics beyond the SM

A	TLAS SUSY Sear	rches*	- 95%	6 CI	L Lo	ver Limits		ATLAS Preliminary
D	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dı[n	-') Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} (compressed) \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q \tilde{q}\tilde{\chi}_{1}^{0} \rightarrow q q W^{*} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q \ell \ell \ell / \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q \ell \ell \ell / \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (higgsino-bino NLSP) \\ Gravitino LSP \end{array}$	0 mono-jat 0 ee,μμ 3 e,μ 0 1-2 r + 0-1 d 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-11 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	4 7 7 8	$\begin{array}{c c} \textbf{1.57 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV}, \ m(1^{\text{H}} \ \text{gen}, \tilde{q}) + m(2^{\text{H}} \ \text{gen}, \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{k}_1^0) < 5 \text{GeV} \\ \hline \textbf{2.02 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV} \\ \hline \textbf{2.01 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV} \\ \hline \textbf{2.01 TeV} & m(\tilde{k}_1^0) < 200 \text{GeV}, \ m(\tilde{k}^1) = 0.5(m(\tilde{k}_1^0) + m(\tilde{g})) \\ \hline \textbf{1.7 TeV} & m(\tilde{k}_1^0) < 300 \text{GeV} \\ \hline \textbf{1.87 TeV} & m(\tilde{k}_1^0) = 0 \text{GeV} \\ \hline \textbf{1.8 TeV} & m(\tilde{k}_1^0) = 0 \text{GeV} \\ \hline \textbf{2.0 TeV} & m(\tilde{k}_1^0) < 400 \text{GeV} \\ \hline \textbf{2.0 TeV} & m(\tilde{k}_1^0) < 400 \text{GeV} \\ \hline \textbf{2.05 TeV} & m(\tilde{k}_1^0) = 1700 \text{GeV}, \ cr(\text{NLSP}) < 0.1 \text{mm}, \ \mu > 0 \\ m(\tilde{G}) > 1.8 \times 10^{-4} \text{eV}, \ m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{TeV} \\ \hline \end{array}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
R med.	\$\$, \$→\$	0 0-1 e,µ	3 b 3 b	Yes Yes	36.1 36.1	2 2	1.92 TeV m(t ² ₁)<600 GeV 1.97 TeV m(t ² ₁)<200 GeV	1711.01901 1711.01901
3rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^A$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^A$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^A$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1 (natural GMSB)$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	0 2 e, µ (SS) 0 - 2 e, µ 0 - 2 e, µ 0 2 e, µ (Z) 1 - 2 e, µ	2 b 1 b 1 · 2 b 0 · 2 jets/1 · 2 · mono-jet 1 b 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV i1 117-170 GeV 200-720 GeV i1 117-170 GeV 0.195-1.0 TeV i1 90-198 GeV 0.195-1.0 TeV i1 90-430 GeV 0.195-1.0 TeV i1 90-430 GeV 0.195-1.0 TeV i2 290-790 GeV 0.195-1.0 TeV i2 290-790 GeV 0.195-1.0 TeV	$m(\tilde{\epsilon}_{1}^{0}) < 420 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\epsilon}_{1}^{+}) = m(\tilde{\epsilon}_{1}^{0}) + 100 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{+}) = 2m(\tilde{\epsilon}_{1}^{0}), m(\tilde{\epsilon}_{1}^{0}) = 55 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 1 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 150 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) > 150 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 0 \text{ GeV}$ $m(\tilde{\epsilon}_{1}^{0}) = 0 \text{ GeV}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow t\nu(\tau\bar{\nu}), \tilde{\chi}_{2}^{0} \rightarrow t\tau(\nu\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\bar{\nu}\nu), \ell\bar{\nu}\tilde{\ell}_{L}\ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\delta\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\delta\tilde{\chi}_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau\tau/\gamma\gamma \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R}\ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \tau \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \tau \end{array}$	2 ε,μ 2 ε,μ 2 τ 3 ε,μ 2-3 ε,μ ε,μ,γ 4 ε,μ φ 1 ε,μ+γ φ 2γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	2 90-500 GeV x [±] 750 GeV x [±] 760 GeV x [±] 580 GeV w 1.06 Te	$\begin{split} m(\tilde{k}_{1}^{0})=0 & m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0})) & m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0})) & m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0})) & m(\tilde{k}_{1}^{0})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \text{ decoupled} & m(\tilde{k}_{1}^{0})-m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, \tilde{\ell} \text{ decoupled} & m(\tilde{k}_{2}^{0})-m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0, m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{k}_{2}^{0})+m(\tilde{k}_{1}^{0})) & c\tau <1 mm & c\tau <1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07675 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\hat{x}_{1}^{*}\hat{x}_{1}^{-}$ prod., long-lived \hat{x}_{1}^{*} Direct $\hat{x}_{1}^{*}\hat{x}_{1}^{-}$ prod., long-lived \hat{x}_{1}^{*} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q q \tilde{\xi}_{1}^{0}$ GMSB, stable $\tilde{r}, \hat{x}_{1}^{0} \rightarrow r(\tilde{e}, \tilde{\mu}) + r(e, \mu)$ GMSB, $\hat{x}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived \tilde{x}_{1}^{0} $\tilde{g}_{\tilde{g}}, \hat{x}_{1}^{0} \rightarrow eev/e\muv/\mu\muv$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 µ 2 y displ. ee/eµ/µ	1 jet - 1-5 jets - - - -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	\$\bar{x}_1^+\$ 460 GeV \$\bar{x}_1^+\$ 495 GeV \$\bar{x}\$ 850 GeV \$\bar{x}\$ 90 GeV \$\bar{x}\$ 537 GeV \$\bar{x}\$ 440 GeV \$\bar{x}\$ 1.0 TeV	$\begin{array}{c} m(\tilde{k}_{1}^{n}) - m(\tilde{k}_{1}^{n}) \sim 150 \ \text{MeV}, \ r(\tilde{k}_{1}^{n}) - 0.2 \ \text{ns} \\ m(\tilde{k}_{1}^{n}) - m(\tilde{k}_{1}^{n}) - 150 \ \text{MeV}, \ r(\tilde{k}_{1}^{n}) < 15 \ \text{ns} \\ m(\tilde{k}_{1}^{n}) = 100 \ \text{GeV}, \ 10 \ \mu \text{s} < r(\tilde{k}) < 1000 \ \text{s} \\ \hline \textbf{1.58 \ TeV} \\ \hline \textbf{1.57 \ TeV} \qquad m(\tilde{k}_{1}^{n}) = 100 \ \text{GeV}, \ r > 10 \ \text{ns} \\ \hline \textbf{2.37 \ TeV} \qquad r(\tilde{k}) = 0.17 \ \text{ns}, \ m(\tilde{k}_{1}^{n}) = 100 \ \text{GeV} \\ 10 < targe < 50 \\ 1 < r(\tilde{k}_{1}^{n}) < 3 \ \text{ns}, \ \text{SPS8 \ model} \\ 7 < cr(\tilde{k}_{1}^{n}) < 740 \ \text{mm}, \ m(\tilde{k}) = 1.3 \ \text{TeV} \\ \end{array}$	1712.02118 1506.05332 1310.8584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X_{*}\tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{g}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\delta$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	eμ,eτ,μτ 2 e,μ (SS) 4 e,μ 3 e,μ + τ 0 4 1 e,μ 8 1 e,μ 8 0 2 e,μ	0-3 b 	Yes Yes Yes b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7	Pr \$\vec{4}\$.\$\vec{x}\$ \$\vec{x}\$ \$\vec{x}\$	1.9 TeV $X_{j+1}=0.11, \lambda_{130/133/223}=0.07$ 1.45 TeV m(\tilde{q})-m(\tilde{q}), $cT_{25,P} < 1$ mm eV m(\tilde{q}^{0}_{1})>400GeV, $\lambda_{118} \neq 0$ ($k = 1, 2$) m(\tilde{k}^{0}_{1})>0.2×m(\tilde{k}^{0}_{1}), $\lambda_{235} \neq 0$ 1.875 TeV m(\tilde{k}^{0}_{1})=1075 GeV 2.1 TeV m(\tilde{k}^{0}_{1})=1 TeV, $\lambda_{112} \neq 0$ 1.65 TeV m(\tilde{k}^{0}_{1})=1 TeV, $\lambda_{123} \neq 0$ -1.45 TeV BR($\tilde{t}_{1} \rightarrow be/\mu$)>20%	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_1^0$	0	2 c	Yes	20.3	č 510 GeV	m(t ² i)<200 GeV	1501.01325
Only pher simp	a selection of the available mas nomena is shown. Many of the li lified models, c.f. refs. for the a	s limits on i imits are ba ssumptions	new state ised on made.	s or	1	0 ⁻¹	TeV Mass scale [TeV]	

So far, no conclusive signal of physics beyond the SM

De	CLAS SUSY Sear cember 2017 Model	rches* e,μ,τ,γ	- 95% Jets	6 CL E_{T}^{miss}	_ Lo\ ∫£ dı[n	ver Limits	Mass limit	∣Te <mark>V</mark>	8 TeV √s = 13 TeV	ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$ Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\xi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\xi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\xi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\xi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell) \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell) \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell) \chi_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W \tilde{\chi}_{1}^{0}$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) Gravitino LSP	0 mono-jet 0 0 <i>ce.μμ</i> 3 <i>e.μ</i> 0 1-2 r + 0-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-jets 4 jets 7-11 jets 0-2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 14.7 36.1 36.1 36.1 36.1 36.1 20.3	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2	710 GeV 865 GeV	1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.87 TeV 2.0 TeV 2.05 TeV 2.05 TeV	$\begin{split} m(\tilde{k}_{1}^{0}) <& 200 \ GeV, \ m(1^{w} \ gen. \ d) + m(2^{nd} \ gen. \ d) \\ m(\tilde{q}) - m(\tilde{k}_{1}^{0}) <& 5 \ GeV \\ m(\tilde{k}_{1}^{0}) <& 200 \ GeV \\ m(\tilde{k}_{1}^{0}) <& 200 \ GeV, \ m(\tilde{k}^{-1}) =& 0.5(m(\tilde{k}_{1}^{0}) + m(\varrho)) \\ m(\tilde{k}_{1}^{0}) <& 200 \ GeV, \ m(\tilde{k}_{1}^{0}) =& 0.6V \\ m(\tilde{k}_{1}^{0}) =& 0 \ GeV \\ m(\tilde{k}_{1}^{0}) =& 0 \ GeV \\ m(\tilde{k}_{1}^{0}) =& 100 \ GeV \\ \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
and gen	$\tilde{s}\tilde{s}, \tilde{s} \rightarrow b\tilde{b}\tilde{\chi}_{1}^{0}$ $\tilde{s}\tilde{s}, \tilde{s} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}$	0 0-1 e,µ	3b 3b	Yes Yes	36.1 36.1	R R		1.92 TeV 1.97 TeV	m(t ⁰ ₁)<600 GeV m(t ⁰ ₁)<200 GeV	1711.01901 1711.01901
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow i \tilde{\chi}_1^+$ $\tilde{l}_1 \tilde{l}_1, \tilde{l}_1 \rightarrow b \tilde{\chi}_1^+$ $\tilde{l}_1 \tilde{l}_1, \tilde{l}_1 \rightarrow b \tilde{\chi}_1^0$ or $i \tilde{\chi}_1^0$ $\tilde{l}_1 \tilde{l}_1, \tilde{l}_1 \rightarrow c \tilde{\chi}_1^0$ $\tilde{l}_1 \tilde{l}_1$ (natural GMSB) $\tilde{l}_2 \tilde{l}_2, \tilde{l}_2 \rightarrow \tilde{l}_1 + Z$ $\tilde{l}_2 \tilde{l}_2, \tilde{l}_2 \rightarrow \tilde{l}_1 + h$	0 2 e, µ (SS) 0-2 e,µ 0-2 e,µ 0 2 e,µ (Z) 3 e,µ (Z) 1-2 e,µ	2 b 1 b 1 ·2 b)-2 jets/1 ·2 mono-jet 1 b 1 b 1 b 4 b	Yes Yes 4 Yes 2 Yes Yes Yes Yes	36.1 36.1 1.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1	δ1 δ2 δ1 117-170 GeV τ 1 90-198 GeV τ 1 τ τ 90-198 GeV τ τ τ τ τ τ τ τ τ τ τ	950 GeV 275-700 GeV 200-720 GeV 0.195-1.0 TeV 90-430 GeV 150-600 GeV 290-790 GeV 320-880 GeV		$\begin{array}{l} m(\tilde{k}_{1}^{0}) <\!$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}$, $\tilde{\ell} \rightarrow \ell \tilde{\ell}_1^0$ $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, $\tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$, $\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu})$, $\tilde{\chi}_1^0 \tilde{\chi}_1^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu})$, $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_1 \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu)$, $\ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu)$ $\tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\ell}_1^0 \tilde{\chi}_1^0$, $\tilde{\ell}_1 \rightarrow \tilde{\ell} \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0$, $\tilde{\lambda}_2^0$, λ	2 e, µ 2 e, µ 2 τ 3 e, µ 2 · 3 e, µ e, µ, γ 4 e, µ y G 1 e, µ + γ c 2 γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 36.1	\vec{x}_{1}^{+} \vec{x}_{1}^{+} \vec{x}_{1}^{+} $\vec{x}_{1}^{+},\vec{x}_{2}^{+}$ $\vec{x}_{1}^{+},\vec{x}_{2}^{+}$ $\vec{x}_{2,3}^{+},\vec{x}_{2}^{+}$ \vec{w}	90-500 GeV 750 GeV 760 GeV 1.13 580 GeV 3eV 635 GeV 115-370 GeV	ν m(ξ ₁ [*])- m(ξ ₂ ⁰)-	$\begin{array}{l} m(\tilde{k}_{1}^{0}) = 0 \\ m(\tilde{k}_{1}^{0}) = 0, \ m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{k}_{1}^{+}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}) = 0, \ m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{k}_{1}^{+}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{2}^{0}), \ m(\tilde{k}_{1}^{-}) = 0, \ m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{k}_{1}^{-}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{-}) = m(\tilde{k}_{1}^{0}), \ m(\tilde{k}_{1}^{0}) = 0, \ \tilde{\ell} \ decoupled \\ m(\tilde{k}_{1}^{0}) = m(\tilde{k}_{2}^{0}), \ m(\tilde{k}_{1}^{0}) = 0, \ \tilde{\ell} \ decoupled \\ m(\tilde{k}_{1}^{0}), \ m(\tilde{k}_{1}^{0}) = 0, \ m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{k}_{2}^{0}) + m(\tilde{k}_{1}^{0})) \\ cr < 1 \ mm \\ cr < 1 \ mm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct \hat{x} \hat{x}_1^- prod., long-lived \hat{x}_1^+ Direct \hat{x} \hat{x}_1^- prod., long-lived \hat{x}_1^+ Direct \hat{x} \hat{x}_1^- prod., long-lived \hat{x}_1^+ Stable ; R-hadron Stable ; R-hadron Metasti ble \hat{x} R-hadron Metasti ble \hat{x} R-hadron Metasti ble \hat{x} R-hadron, $\hat{x} \rightarrow qq\hat{x}_1^0$ GMSB, stable $\hat{\tau}$, $\hat{x}_1^0 \rightarrow t(\hat{c}, \hat{\mu}) + t(e, \mu)$ GMSB $\hat{x}_1^0 \rightarrow \gamma \hat{G}$, long-lived \hat{x}_1^0	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 μ 2 γ ditpl. ee/eμ/μ	1 jet - 1 -5 jets - - - -	Yes Yes Yes Yes Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	" $\widehat{\chi}^{+}_{1}$ $\widehat{\chi}^{+}_{1}$ \widehat{g}	460 GeV 495 GeV 850 GeV 537 GeV 440 GeV 1.0 TeV	1.58 TeV 1.57 TeV 2.37	$\begin{split} & m(\tilde{k}_{1}^{0}) - m(\tilde{k}_{1}^{0}) \sim 150 \text{ MeV}_{2}r(\tilde{k}_{1}^{0}) = 0.2 \text{ ns} \\ & m(\tilde{k}_{1}^{0}) - m(\tilde{k}_{1}^{0}) - 160 \text{ MeV}_{2} \times \tilde{k}_{1}^{0}) < 15 \text{ ns} \\ & m(\tilde{k}_{1}^{0}) = 100 \text{ GeV}, \text{ 10 } \mu s < \tau(\tilde{k} < 1000 \text{ s}) \\ & m(\tilde{k}_{1}^{0}) = 100 \text{ GeV}, \tau > 10 \text{ ns} \\ \hline \textbf{10V} r(\tilde{k}) = 0.17 \text{ ns}, m(\tilde{k}_{1}^{0}) = 100 \text{ GeV} \\ & 10 < \tan\beta < 50 \\ & 1 < r(\tilde{k}_{1}^{0}) < 3 \text{ ns}, \text{ SPS8 model} \\ & 7 < cr(\tilde{k}_{1}^{0}) < 740 \text{ mm}, m(\tilde{k}) = 1.3 \text{ TeV} \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
NdB	LFV $p_1 \rightarrow \tilde{v}_{\tau} + X_{\tau} \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Blinea RPV CMSSM $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu v, \mu\mu v$ $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau\tau v_e, e\tau v_\tau$ $\tilde{g}_{\tilde{S}}, \tilde{g}^- q g \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q q q$ $\tilde{g}_{\tilde{S}}, \tilde{g}^- \tilde{\eta}_1 v, \tilde{\eta}_1 \rightarrow bs$ $\tilde{\eta}_1 \tilde{\eta}_1, \tilde{\eta} \rightarrow bs$ $\tilde{\eta}_1 \tilde{\eta}_1, \tilde{\eta} \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ $2e, \mu$ (SS) $4e, \mu$ $3e, \mu + \tau$ 0 $4e, \mu$ $1e, \mu$ $1e, \mu$ $1e, \mu$ $2e, \mu$	- 0-3 b - - 5 large-R je -10 jets/0-4 -10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes tb - tb -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7	Pr 4.2 3.2 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	1.14 450 GeV 100-470 GeV 480-610 GeV 0	1.9 TeV 1.45 TeV eV 1.875 TeV 2.1 Te 1.65 TeV -1.45 TeV	$X_{311}=0.11, X_{110/133/233}=0.07$ $m(\tilde{q})=m(\tilde{q}), c_{T_{25}p}<1 mm$ $m(\tilde{q}_1^{-1})>400GeV, X_{128}\neq0$ (k = 1, 2) $m(\tilde{q}_1^{-1})>0.2\times m(\tilde{q}_1^{-1}), X_{235}\neq0$ $m(\tilde{q}_1^{-1})=1075 \text{ GeV}$ $\mathbf{M}(\tilde{q}_1^{-1})=1 \text{ TeV}, X_{325}\neq0$ $m(\tilde{q}_1)=1 \text{ TeV}, X_{325}\neq0$ $BR(\tilde{q}_1 \rightarrow \delta r/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	20	Yes	20.3	8	510 GeV		m(\tilde{t}_1^0)<200 GeV	501.01325
*Only a pheno simplii	selection of the available mas mena is shown. Many of the li lied rodels, c.f. refs. for the a	s limits on r imits are bas	new state sed on	s or	1	0-1		T _1/	Mass scale [TeV]	
$L, R \tilde{\ell}_{L, R}$	R, $\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	ĩ						ę	90-500 GeV	$m(\tilde{\chi}_1^0) =$

relaxing the $m(\chi^0)=0$ constraint ...

... LHC has barely improved LEP2 limits ...

CLIC even at its lowest energies!

<u>Key question for the future developments of HEP:</u> Why don't we see the new physics we expected to be present around the TeV scale ?

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

These two scenarios are a priori equally likely, but they impact in different ways the future of HEP, and thus the assessment of the physics potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:

- precision
- sensitivity (to elusive signatures)
- extended energy/mass reach

<u>Remark</u>

the discussion of the **future** in HEP must start from the understanding that there is no experiment/facility, proposed or conceivable, in the lab or in space, accelerator or nonaccelerator driven, which can *guarantee discoveries* beyond the SM, and *answers* to the big questions of the field

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(2) the **exploration potential**:

- target broad and well justified BSM scenarios but guarantee sensitivity to more exotic options
- exploit both direct (large Q^2) and indirect (precision) probes

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(2) the **exploration potential**:

- target broad and well justified BSM scenarios but guarantee sensitivity to more exotic options
- exploit both direct (large Q^2) and indirect (precision) probes
- (3) the potential to provide conclusive yes/no answers to relevant, broad questions.

The guaranteed deliverable: relevance of a continued precision study of the Higgs boson

Light propagating in a medium is slowed down by its continuos interaction with the medium itself

The time it takes to move across the medium is longer than if light were propagating in the vacuum,

 \Rightarrow C_{medium} < C_{vaccum}

Light propagating in a medium is slowed down by its continuos interaction with the medium itself

The time it takes to move across the medium is longer than if light were propagating in the vacuum,

 \Rightarrow C_{medium} < C_{vaccum}

Think of the Higgs field as being a continuum medium embedding the whole Universe. Particles interacting with it will undergo a similar "slow-down" phenomenon. Rather than "slowing down", however, the interaction with the Higgs medium gives them "inertia" => mass

 $m \propto \lambda v$

The number "v" is a universal property of the Higgs field background. The quantity " λ " is characteristic of the particle moving in the Higgs field. Particles which have large λ will have large mass, with m $\propto \lambda$ v

Now the question of "why does a given particle has mass **m**" is replaced by the question "why does a given particle couple with the Higgs field with strength $\lambda \propto m / v$ "

However at least now we have a model to understand **how** particles acquire a mass.

Detecting the Higgs boson

Like any other medium, the Higgs continuum background can be perturbed. Similarly to what happens if we bang on a table, creating sound waves, if we "bang" on the Higgs background (something achieved by concentrating a lot of energy in a small volume) we can stimulate "Higgs waves". These waves manifest themselves as particles^{*}, the so-called Higgs bosons

What is required is that the energy available be larger than the Higgs mass \Rightarrow LHC !!!

* Even the sound waves in a solid are sometimes identified with "quasi-particles", called "phonons"

What gives the Higgs field its background value?

What gives the Higgs field its background value?

The transition between L and R states, and the absorption of the changes in weak charge, are ensured by the interaction with a background scalar field, H. Its "vacuum density" provides an infinite reservoir of weak charge.

First general consequences of this model

- Small oscillations around the minimum => a scalar particle (the "Higgs boson")
- Couplings of H to SM particles proportional to their mass
- 3 out of 4 components of complex doublet field provide longitudinal degrees of freedom to weak gauge bosons W^{+/-} and Z⁰

How far have we tested the Higgs mechanism?

parameters of the potential

Higgs mass, 2017

CMS

 \Rightarrow 2 x 10⁻³ precision

it took over 6 years from 1983 discovery to get below 5 x 10⁻³ on m_z (1989: CDF, SLC, LEP) 23

How far have we tested the Higgs mechanism?

parameters of the potential

How far have we tested the Higgs mechanism?

parameters of the potential

How far have we tested the Higgs mechanism?

parameters of the potential

g

g

Probing the cubic term of the Higgs potential will require at least 100 x the current LHC statistics, and possibly more

$V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$

any function of IHI² would be ok wrt known symmetries

 $V_{SM}(H) =$

both sign and value totally arbitrary

>0 to ensure stability, but otherwise arbitrary

 $-\mu^2 H^2 + \lambda$

a historical example: superconductivity

a historical example: superconductivity

• The relation between the Higgs phenomenon and the SM is similar to the relation between superconductivity and the Landau-Ginzburg theory of phase transitions: a quartic potential for a bosonic order parameter, with negative quadratic term, and the ensuing symmetry breaking. If superconductivity had been discovered after Landau-Ginzburg, we would be in a similar situations as we are in today: an experimentally proven phenomenological model. But we would still lack a deep understanding of the relevant dynamics.

a historical example: superconductivity

- The relation between the Higgs phenomenon and the SM is similar to the relation between superconductivity and the Landau-Ginzburg theory of phase transitions: a quartic potential for a bosonic order parameter, with negative quadratic term, and the ensuing symmetry breaking. If superconductivity had been discovered after Landau-Ginzburg, we would be in a similar situations as we are in today: an experimentally proven phenomenological model. But we would still lack a deep understanding of the relevant dynamics.
- For superconductivity, this came later, with the identification of e⁻e⁻ Cooper pairs as the underlying order parameter, and BCS theory. In particle physics, we still don't know whether the Higgs is built out of some sort of Cooper pairs (composite Higgs) or whether it is elementary, and in both cases we have no clue as to what is the dynamics that generates the Higgs potential. With Cooper pairs it turned out to be just EM and phonon interactions. With the Higgs, none of the SM interactions can do this, and we must look beyond.

short-scale physics does not alter the charge seen at large scales

 $V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$

short-scale physics does not alter the charge seen at large scales

short-scale physics does not alter the charge seen at large scales

short-scale physics does not alter the charge seen at large scales

high-energy modes can change size and sign of both μ^2 and λ , dramatically altering the stability and dynamics

bottom line

- To predict the properties of EM at large scales, we don't need to know what happens at short scales
- The Higgs dynamics is sensitive to all that happens at any scale larger than the Higgs mass !!! A very unnatural fine tuning is required to protect the Higgs dynamics from the dynamics at high energy
- This issue goes under the name of hierarchy problem
- Solutions to the hierarchy problem require the introduction of new symmetries (typically leading to the existence of new particles), which decouple the high-energy modes and allow the Higgs and its dynamics to be defined at the "natural" scale defined by the measured parameters v and m_H

\Rightarrow naturalness

• The hierarchy problem, and the search for a *natural* explanation of the separation between the Higgs and Planck scales, provided so far an obvious setting for the exploration of the dynamics underlying the Higgs phenomenon.

- The hierarchy problem, and the search for a *natural* explanation of the separation between the Higgs and Planck scales, provided so far an obvious setting for the exploration of the dynamics underlying the Higgs phenomenon.
- Lack of experimental evidence, so far, for a straightforward answer to naturalness (eg SUSY), forces us to review our biases, and to take a closer look even at the most basic assumptions about Higgs properties

- The hierarchy problem, and the search for a *natural* explanation of the separation between the Higgs and Planck scales, provided so far an obvious setting for the exploration of the dynamics underlying the Higgs phenomenon.
- Lack of experimental evidence, so far, for a straightforward answer to naturalness (eg SUSY), forces us to review our biases, and to take a closer look even at the most basic assumptions about Higgs properties
- We often ask "is the Higgs like in SM?" The right way to set the issue is rather, more humbly, "what is the Higgs?" ...

- The hierarchy problem, and the search for a *natural* explanation of the separation between the Higgs and Planck scales, provided so far an obvious setting for the exploration of the dynamics underlying the Higgs phenomenon.
- Lack of experimental evidence, so far, for a straightforward answer to naturalness (eg SUSY), forces us to review our biases, and to take a closer look even at the most basic assumptions about Higgs properties
- We often ask "is the Higgs like in SM?" The right way to set the issue is rather, more humbly, "what is the Higgs?" ...
 - in this perspective, even innocent questions like whether the Higgs gives mass also to 1st and 2nd generation fermions call for experimental verification.

- The hierarchy problem, and the search for a *natural* explanation of the separation between the Higgs and Planck scales, provided so far an obvious setting for the exploration of the dynamics underlying the Higgs phenomenon.
- Lack of experimental evidence, so far, for a straightforward answer to naturalness (eg SUSY), forces us to review our biases, and to take a closer look even at the most basic assumptions about Higgs properties
- We often ask "is the Higgs like in SM?" The right way to set the issue is rather, more humbly, "what is the Higgs?" ...
 - in this perspective, even innocent questions like whether the Higgs gives mass also to 1st and 2nd generation fermions call for experimental verification.

=> all this justifies the focus on the program of precision Higgs physics measurements

Projected precision on H couplings at HL-LHC

ATL-PHYS-PUB-2014-016

solid areas: no TH systematics shaded areas: with TH systematics

H couplings to 2nd generation: the role of HL-LHC

Projections from <u>CMS-HIG-13-007</u>

What will HL-LHC tells us about the Higgs potential?

Barely 1-2 σ evidence for Higgs pair production, but no quantitatively significant determination of λ : $-0.8 < \lambda/\lambda_{SM} < 7.7 @95\%CL$ $-0.2 < \lambda/\lambda_{SM} < 2.6$

w. kinematical analysis

Higgs couplings @ FCC

Э нхү	ee [240+350 (4IP)]	pp [100 TeV] 30ab ⁻¹	ep [60GeV/50TeV], 1ab ⁻¹
ZZ	0.15%	<1%	
WW	0.19%		
bb	0.42%		0.2%
СС	0.71%		1.8%
gg	0.80%		
тт	0.54%		
μμ	6.2%	<1%	
YY	1.5%	<0.5%	
Ζγ		<1%	
tt	~13%	1%	
HH	~30%	3.5%	under study
uu,dd	H->pγ, under study		
SS	H->φγ, under study		
BRinv	< 0.45%	few 10 ⁻⁴	
Γ _{tot}	1%		

 Is the Higgs the only (fundamental?) scalar field, or are there other Higgs-like states (e.g. H[±], A⁰, H^{±±}, ..., EW-singlets,) ?

- Is the Higgs the only (fundamental?) scalar field, or are there other Higgs-like states (e.g. H[±], A⁰, H^{±±}, ..., EW-singlets,) ?
- Is there a relation between any amongst Higgs/EWSB, baryogenesis, Dark Matter, inflation?

- Is the Higgs the only (fundamental?) scalar field, or are there other Higgs-like states (e.g. H[±], A⁰, H^{±±}, ..., EW-singlets,) ?
- Is there a relation between any amongst Higgs/EWSB, baryogenesis, Dark Matter, inflation?
- What happens at the EW phase transition (PT) during the Big Bang?
 - what's the order of the phase transition?
 - are the conditions realized to allow EW baryogenesis?
 - does the PT wash out possible pre-existing baryon asymmetry?

- Is the Higgs the only (fundamental?) scalar field, or are there other Higgs-like states (e.g. H[±], A⁰, H^{±±}, ..., EW-singlets,) ?
- Is there a relation between any amongst Higgs/EWSB, baryogenesis, Dark Matter, inflation?
- What happens at the EW phase transition (PT) during the Big Bang?
 - what's the order of the phase transition?
 - are the conditions realized to allow EW baryogenesis?
 - does the PT wash out possible pre-existing baryon asymmetry?
- Is there a deep reason for the apparent metastability of the Higgs vacuum?

The nature of the EW phase transition

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

In the SM this requires $m_H \approx 80$ GeV, else transition is a smooth crossover.

Since $m_H = 125$ GeV, new physics, coupling to the Higgs and effective at scales O(TeV), must modify the Higgs potential to make this possible

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

In the SM this requires $m_H \approx 80$ GeV, else transition is a smooth crossover.

Since $m_H = 125$ GeV, new physics, coupling to the Higgs and effective at scales O(TeV), must modify the Higgs potential to make this possible

- Probe higher-order terms of the Higgs potential (selfcouplings)
- Probe the existence of other particles coupled to the Higgs

Sensitivity to extra Higgs bosons enabling a 1st order EWPT

 $h_2
ightarrow h_1 h_1$ ($b \overline{b} \gamma \gamma$ + 4τ)

Notice role of energy and of luminosity

Kotwal, No, Ramsey-Musolf, Winslow, arXiv:1605.06123

Direct and indirect sensitivity to the largest mass scales: examples

Indirect sensitivity to new mass scales via Higgs and EW precision measurements in e⁺e⁻

[arXiv:1709.06103] J. Gu, H. Li, Z. Liu, S. Su, W. Su

95%CL bound of the 12-parameter fit in SILH' basis

New gauge bosons discovery reach

Example: W' with SM-like couplings

At L=O(ab⁻¹), Lum x 10 $\Rightarrow \sim$ M + 7 TeV

Discovery reach for pair production of stronglyinteracting particles

MSSM Higgs @ 100 TeV

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, arXiv: 1605.08744

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, arXiv: 1504.07617

Bottom line

 energy and luminosities of the ee&pp components of the FCC programme are well matched, to synergistically cover similar mass scales in complementary ways

Examples: conclusive yes/no answers

Dark Matter

- DM could be explained by BSM models that would leave no signature at any future collider (e.g. axions).
- More in general, no experiment can guarantee an answer to the question "what is DM?"
- Scenarios in which DM is a WIMP are however compelling and theoretically justified
- We would like to understand whether a future collider can answer more specific questions, such as:
 - do WIMPS contribute to DM?
 - can WIMPS, detectable in direct and indirect (DM annihilation) experiments, be discovered at future colliders? Is there sensitivity to the explicit detection of DM-SM mediators?
 - what are the opportunities w.r.t. new DM scenarios (e.g. interacting DM, asymmetric DM,)?

SUSY and DM reach at 100 TeV

possibility to find (or rule out) thermal WIMP DM candidates

Possible paths for CERN

Evolution, with beam energy, of scenarios with the discovery of a new particle at the LHC

48

• If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28$ TeV would be

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28$ TeV would be

insufficient)

• If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\gtrsim 2m_X$ ($\Rightarrow 28$ TeV would be

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28$ TeV would be

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?
 - Do we build CLIC?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait 40 yrs to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28 \text{ TeV}$ would be

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?
 - Do we build CLIC?
- etc.etc.

Flavour anomalies at LHC & Bfact's

b→sℓℓ

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$$

m _{II} [mass range]	\mathbf{SM}	Exp.
$R_K^{[1-6]}$	1.00 ± 0.01	$0.745^{+0.090}_{-0.074}\pm0.036$
$R_{K^*}^{[1.1-6]}$	$1.00 \pm \textbf{0.01}$	$0.685^{+0.113}_{-0.069}\pm0.047$
$R_{K^*}^{[0.045,1.1]}$	0.91 ± 0.03	$0.660^{+0.110}_{-0.070}\pm0.024$

LHCb, PRL 113 (2014) 151601, arXiv:1705.05802

0.6

R(D)

Example of EFT interpretation of R_K

$$O_9^{\ell} = (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\ell),$$
$$O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell)$$

 $1.5 \cdot$

Altmannshoffer et al, arxiv:1704.05435

Upper limits on Z' and Leptoquark masses are model-dependent, and constrained also by other low-energy flavour phenomenology, but typically lie in the range of $1 \rightarrow O(10)$ TeV \Rightarrow if anomalies confirmed, we may want a no-lose theorem to identify the next facility! 5 [

• The accelerator performance, experimental ingenuity, and theoretical progress, make the LHC the most complete and reaching enterprise available today and in the near future to explore in depth physics at the TeV scale, with an immense discovery potential and still ample room for surprises

- The accelerator performance, experimental ingenuity, and theoretical progress, make the LHC the most complete and reaching enterprise available today and in the near future to explore in depth physics at the TeV scale, with an immense discovery potential and still ample room for surprises
- The study of the SM will not be complete until we exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.

- The accelerator performance, experimental ingenuity, and theoretical progress, make the LHC the most complete and reaching enterprise available today and in the near future to explore in depth physics at the TeV scale, with an immense discovery potential and still ample room for surprises
- The study of the SM will not be complete until we exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- As a possible complement to the mature ILC and CLIC projects, plans are underway to define the possible continuation of this programme after the LHC, with the same goals of thoroughness, precision and breadth that inspired the LEP/LHC era

- The accelerator performance, experimental ingenuity, and theoretical progress, make the LHC the most complete and reaching enterprise available today and in the near future to explore in depth physics at the TeV scale, with an immense discovery potential and still ample room for surprises
- The study of the SM will not be complete until we exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- As a possible complement to the mature ILC and CLIC projects, plans are underway to define the possible continuation of this programme after the LHC, with the same goals of thoroughness, precision and breadth that inspired the LEP/LHC era
- The physics case of a 100 TeV collider is very clear as a long-term goal for the field, simply because no other proposed or foreseeable project can have direct sensitivity to such large mass scales.

- The accelerator performance, experimental ingenuity, and theoretical progress, make the LHC the most complete and reaching enterprise available today and in the near future to explore in depth physics at the TeV scale, with an immense discovery potential and still ample room for surprises
- The study of the SM will not be complete until we exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- As a possible complement to the mature ILC and CLIC projects, plans are underway to define the possible continuation of this programme after the LHC, with the same goals of thoroughness, precision and breadth that inspired the LEP/LHC era
- The physics case of a 100 TeV collider is very clear as a long-term goal for the field, simply because no other proposed or foreseeable project can have direct sensitivity to such large mass scales.
- Nevertheless, the precise route followed to get there (via CLIC? via HE-LHC? via FCC-ee? ...) must take account of the fuller picture, to emerge from the LHC as well as other current and future experiments in areas ranging from flavour physics to dark matter searches. The right time scale for this assessment is probably ~8-10 yrs from now