Normal-conducting high-gradient rf systems
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Lecture structure

3. High field phenomena in accelerating structures
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d!b Complexity @

 The underlying equations for the acceleration equations we have seen are Maxwell’s
equations and the Lorentz force — linear equations!
* When we raise the power we put in a structure, increasing the surface fields, we
encounter a whole range of new phenomena.
* These phenomena include field emission and vacuum arcing and pulsed surface heating
which, in various combinations, affect the beam and can damage a structure.
* We need to consider:
* Electromagnetism
* Material science
* Plasma physics
* Quantum mechanics - field and photo emission
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Vacuum arc, a.k.a. breakdown l@

Some (round) numbers to keep in mind:

Average accelerating gradient - 100 MV/m
Peak surface electric field — 220 MV/m
Input power - 50 MW

Pulse length - 180 ns

Pulse energy of 12 J.

How do we experience breakdown in an rf system?
First introduce system.
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o | (|\stron directional coupler

Transmitted
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Incident

‘ accelerating structure

The basic layout of an rf system
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CLIC klystron-based X-band test stands
around the world

XBox-1: 50 MW, 50 Hz XBox-2: 50 MW, 50 Hz

NEXTEF
KEK
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Breakdown steps:

* Applied electric field causes electron and neutral
atom emission from cathodic surfaces.

* This emission is concentrated at sites which are
surface features and, in the early stages of operation,
contaminants.

e Electrons ionize neutral atoms.

* |ons are accelerated back to the cathode.

* The ions sputter more, starting avalanche that leads
to a plasma just above surface.

* Plasma sheath forms, setting up multi GV/m surface
fields and strong electron emission.

* Electrons interfere with rf transmission.

CAS on Future Colliders, 4 and 5 March 2018

Overview

!

Here is an overview of the breakdown process and the big questions so you have context as the lecture proceeds.
Breakdown is highly complex and multi-scale phenomenon so we need to zoom in and out of the problem — nm

to mm, nsec to pusec, nA to 100 A etc.
We also need to look at practical effects and their physical explanation.

Some of the big questions:

Why does gradient and surface field depend so much
on rf geometry?

What is evolving during conditioning and what exactly
is getting better?

What is the origin of breakdown rate vs gradient and
pulse length dependencies?

What is the nature of the sites which will lead to
breakdown?

What drives the statistics of breakdown occurrence?
What is the nature of the breakdown sites and what is
the origin of the B correction?

Walter Wuensch, CERN



dlb Dependence of gradient on rf geometry @

» Different design structures achieve different gradients. Big question for
us have been:

* Can we guantify the dependence of achievable accelerating
gradient on geometry?
* Where does such a geometrical dependency come from?

* Trying to understand, derive and quantify geometrical dependence has
been a significant effort because an essential element of the overall
design and optimization of the collider, especially through interaction
with beam.

* You might think that breakdown is determined by surface electric field,
but it turns out to be more complicated than that.
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Performance of two different
series of structures.

The important point is that the
accelerating gradient, and
maximum peak surface electric
field is different at the end of the
tests.

When including more structures,
the effect is even more
pronounced.

CAS on Future Colliders, 4 and 5 March 2018
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This has resulted in the development of two power-density based
design criteria: A

P E,/E,
—— = const |4
AC ,
global power flow Pioss
H S/Ea P'r-f I"f
1
S. = Re(S)+=1m(S)
6 FIG. 9. (Color) Schematic view of the power flow balance near
the tip.
local complex power flow ,
S./E,

S. is typically the quantity which
dominates the design of high-gradient
travelling wave structures.

A. Grudiev, S. Calatroni, and W. Wuensch,
New local field quantity describing the high gradient limit of accelerating structures,
Phys. Rev. ST Accel. Beams 12, 102001 (2009)
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Conditioning @

Accelerating structures do not run right away at full specification — pulse length and gradient
need to be gradually increased while pulsing. Typical behaviour looks like this:
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Power [MW)]
Data taken in XBox-2 with TD26CC structure, T. Lucas
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BDR dependence

2l

Regularly observed dependence:

BDR o E3075

U

—Ef +e4E? AV
kT

Physical model based on
defect formation

BDR < e

Ef =0.8eV
AV = 0.8 x 10724m3

K. Nordlund, F. Djurabekova, Defect model for the dependence of
breakdown rate on external electric fields, Phys. Rev. ST Accel. Beams
15, 071002 (2012)
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Comparison of three similar structures
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Comparing conditioning
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Mechanical fatigue samples

2017 Alexander
Lunt @CERN

| s*"'wnw*w wu’“ 1

rf structure

Experiment:

1. Build rf structure, standard procedure with 1040
°C bonding, and mechanical sample with same
heat treatment.

2. Condition rf structure and fatigue mechanical
sample.

3. Compare material state before/after/between
using advanced microscopy techniques: FIB cutting
lamella and image using STEM and TEM.
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200nm ESBGri{= OV IProbe= 248pA WD=46mm Detector = aSTEM4Z Feb 2017 Alexander @ CE RN
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@b Interpretation ‘@

RF operation at high fields produces dislocation patterns similar to fatigue implying:

* A hardening process occurs during conditioning,

* Dislocation dynamics, formation and movement, are central to high-gradient behaviour.

Some numbers:

* Electric field stressis 0 = %EOEZ so for 250 MV/m surface field, 270 kPa — for perfect flat

surface.

 The onset of plastic behaviour in Cu is of the order of kPa, so well above already at 100
MV/m surface field.

* Speed of sound in copper is .38 mm/100 ns, so bulk phenomenon.

CAS on Future Colliders, 4 and 5 March 2018 Walter Wuensch, CERN



d[b Simplified picture

Applied external electric field

Vacuum

ﬁ r Tensile force ﬁ
( and pulsed surface Copper
heating can be treated in same way)

e Tensile stress induces plastic behaviour, i.e. creates dislocations.

* Dislocations move to surface to reduce energy.

* Projection of dislocation on surface in nucleation point for continuation of breakdown
process, last section and Flyura’s presentation.
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The mathematics behind dislocation dynamics

Describing mobile dislocation population M BDR dependence
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Hard vs. soft copper in pulsed dc system

90 Gradient vs N. Pulses

As-machined 1040 °C treated electrodes
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Hard vs. soft copper in pulsed dc system
4 =

RF structure in milled halves:
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The dislocation motion is strongly bound to the atomic structure of metals '~ E{" [f~~a-centered

2l

cubic) the dislocation are the most mobile and HCP (hexagonal close-pack: f?% Xko lardest for

dislocation mobility.

A. Descoeudres, F.
Djurabekova, and K.
Nordlund, DC
Breakdown
experiments with
cobalt electrodes,
CLIC-Note 875, 1
(2010).
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d[b Field emission A

» A sufficiently strong surface electric field causes electrons to emitted from a metal surface. This is described by the
Fowler-Nordheim equation.
* Functional form fits experiments perfectly, but there is an ever present need for a correction factor 3, which is

typically 30, and can be much higher. Attributed variously to small geometric features, locally lower work function
and contaminants.

AV

1.54x10° B°E? -
0 I;—/E;E . | = A p 1041y 12
| g ¢
_ §E26—6.53x103¢3/2/ﬂE

—6.5'3>><103><¢)3/2 | pE

xXe

Units: [/]=A, [E]=MV/m, [A.]=m?, [p]=eV and [B]=dimensionless

Values: ¢ = 4.5 eV for copper
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AR Example of growth of nano-sized field emitter @
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Exposed side

Tungsten tip used in ultra-fast electron diffraction.
Tips deteriorate under laser pulsing but:

 Small area to uniquely identify characteristics of field emission sites

* Intense femtosecond fields opportunity to benchmark molecular dynamics and kinetic
Monte Carlo codes

Hirofumi Yanagisawa, et. al. Laser-induced asymmetric faceting
and growth of a nano-protrusion on a tungsten tip, APL
CAS on Future Colliders, 4 and 5 March 2018 Photonics 1, 091305 (2016), doi: 101063/14967494



AR

Evolution of field emission during laser pulsing @

(a) 0 min (b) 5 min (€) 40 min

Viip =-3000V Viip =-3000V Viip = -2500V

(d) 140 min (e) 260 min (f) 290 min

Exposed side

Viip = -2300V Viip =-2100V Viip =-900V
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dﬂ |dentification of nm-sized emission site

(b) View A (d) View A

CAS on Future Colliders, 4 and 5 March 2018 Viip = -2300V Viip = -2100V Viip = -900V



t=2.0ps

Tip evolution T [K]
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Electronic+Thermal effects in MD

There are many processes which are
calculated concurrently in the current
implementation:
N P
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What’s going on inside.

ArcPIC simulation of the onset of breakdown, starting from field emission and going
through the formation of a plasma, a plasma sheath and dramatically rising emitted
current.

The code is ArcPIC and simulates a 20 micron wide dc gap.

Electron current density:
je(r) = jFN (ﬁﬂath (1))
Neutral particle
current density:

Sputtering of neutrals
(single-impact model)

Secondary electron yield

,iju [ f\J = ”'Cll;"o,}.e (7 ‘J (

SEY =0.5
Electron current: K
2 . \ High-flux
Remit Itip — ﬂ'Bﬁp]FN (;BtipEz ) gtt ]

R.. Neutral current: . Sputtering
1p =
Icuw =1 Cu/e I, /€ >,

Z Z

CAS on Euture (a) Field emission and neutral evaporation. (b) Sputtering and secondary electron yield. Wuenséh, CERN



Densities, time = 0.000 [ns]
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Cartoon summary of the steps which lead to breakdown

CAS on Future Colliders, 4 and 5 March 2018 Walter Wuensch, CERN



An overview of the breakdown process

Vacuum

Copper

CAS on Future Colliders, 4 and 5 March 2018 Walter Wuenséh, CERN



Actually real surfaces are imperfect

Vacuum

Copper

CAS on Future Colliders, 4 and 5 March 2018 Walter Wuenséh, CERN



And the material below the surface isn’t perfect either

Vacuum

0]

Copper  \nids and inclusions

slip planes

vacancies

dislocations
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Add an external electric field, around 200 MV/m. Surface charges re-arrange themselves
in fs. Surface experiences €E? tensile force.

!

eE2 tensile force

Vacuum t

o)

Copper  \nids and inclusions

slip planes

vacancies

dislocations
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Field emission current flows from metal into vacuum (Fowler-Nordheim) from local
areas (O[10 nm]) of geometrical field enhancement and low local work function. There is
a local field enhancement B of around 50-100. The total current from something like 0.1

mm? is a nanoAmp.

eE2 tensile force

v \[/ )/ Vot

Copper  \nids and inclusions

slip planes

vacancies

dislocations
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The external electric field causes the tensile stress and field emission current causes
thermal induces stresses so the material imperfections and surface features evolve —
plastic deformation.

eE2 tensile force

v\ \/ Vot

Copper  \nids and inclusions
evolve

slip planes move

vacancies move

dislocations move
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The external electric field causes the tensile stress and field emission current causes
thermal induces stresses so the material imperfections and surface features evolve —
plastic deformation.

eE2 tensile force

o7V Va1

Copper  \nids and inclusions
evolve

slip planes move

vacancies move

dislocations move
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All the while, neutral copper atoms are coming off the surface field assisted evaporation.
The details of this process is process is a fundamental open question.

eE2 tensile force

WL YR Ve 1

Copper  \nids and inclusions
evolve

slip planes move

vacancies move

dislocations move
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The copper atoms are ionized by the field emission current. the positively charged ions
head to the surface and the electrons add to the emission current.
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The copper ions hit the surface and sputter more copper in addition to that produced at
by the original emission process.

eE2 tensile force

1

Vacuum

) 3]

Copper  \nids and inclusions
evolve

slip planes move

vacancies move

dislocations move

CAS on Future Colliders, 4 and 5 March 2018 Walter Wuenséh, CERN



One of these emission points, on some rf or dc pulse, at some point passes a threshold
and the process runs away. We will now switch to a computer simulation of the run-
away process.
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