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Superconducting RF Systems I
RF basics & principles of RF Superconductivity
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Lorentz force

• A charged particle moving with velocity Ԧ𝑣 =
Ԧ𝑝

𝑚 𝛾
through an electromagnetic field in 

vacuum experiences the Lorentz force     
𝒅𝒑

𝒅𝒕
= 𝒒 𝑬 + 𝒗 × 𝑩 .

• The total energy of this particle is 𝑊 = 𝑚𝑐2 2 + 𝑝𝑐 2 = 𝛾 𝑚𝑐2, the kinetic energy 
is 𝑊𝑘𝑖𝑛 = 𝑚𝑐2 𝛾 − 1 .

• The role of acceleration is to increase 𝑊.

• Change of 𝑊 (by differentiation):

𝑊𝑑𝑊 = 𝑐2 Ԧ𝑝 ∙ 𝑑 Ԧ𝑝 = 𝑞𝑐2 Ԧ𝑝 ∙ 𝐸 + Ԧ𝑣 × 𝐵 𝑑𝑡 = 𝑞𝑐2 Ԧ𝑝 ∙ 𝐸𝑑𝑡

𝒅𝑾 = 𝒒𝒗 ∙ 𝑬𝒅𝒕

Note: Only the electric field can change the particle energy!

Hendrik A. Lorentz 
1853 – 1928
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Maxwell’s equations in vacuum
Source-free:

𝛻 × 𝐵 −
1

𝑐2
𝜕

𝜕𝑡
𝐸 = 0 𝛻 ∙ 𝐵 = 0

𝛻 × 𝐸 +
𝜕

𝜕𝑡
𝐵 = 0 𝛻 ∙ 𝐸 = 0

curl (rot, 𝛻 ×) of 3rd equation and 
𝜕

𝜕𝑡
of 1st equation:

𝛻 × 𝛻 × 𝐸 +
1

𝑐2
𝜕2

𝜕𝑡2
𝐸 = 0.

Using the vector identity 𝛻 × 𝛻 × 𝐸 = 𝛻𝛻 ∙ 𝐸 − 𝛻2𝐸 and the 4th

Maxwell equation, this yields:

𝛁𝟐𝑬 −
𝟏

𝒄𝟐
𝝏𝟐

𝝏𝒕𝟐
𝑬 = 𝟎,

i.e. the 4-dimensional Laplace equation.

James Clerk Maxwell
1831 – 1879
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Homogeneous plane wave

Wave vector 𝒌: 

the direction of 𝑘 is the direction of 
propagation,

the length of 𝑘 is the phase shift per 
unit length.

𝑘 behaves like a vector.

z

x

Ey

φ

𝐸 ∝ 𝑢𝑦 cos 𝜔𝑡 − 𝑘 ∙ Ԧ𝑟

𝐵 ∝ 𝑢𝑥 cos 𝜔𝑡 − 𝑘 ∙ Ԧ𝑟

𝑘 ∙ Ԧ𝑟 =
𝜔

𝑐
𝑧 cos𝜑 + 𝑥 sin𝜑

𝑘⊥ =
𝜔𝑐
𝑐

𝑘𝑧 =
𝜔

𝑐
1 −

𝜔𝑐
𝜔

2

𝑘 =
𝜔

𝑐
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Superposition of 2 homogeneous plane waves

+ =

Metallic walls may be inserted where 𝐸𝑦 ≡ 0

without perturbing the fields. 

Note the standing wave in 𝑥-direction!

𝑧

𝑥

𝐸𝑦

This way one gets a hollow rectangular waveguide.
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Rectangular waveguide
Fundamental (TE10 or H10) mode
in a standard rectangular waveguide.

Example 1: “S-band”: 2.6 GHz ... 3.95 GHz,

Waveguide type WR284 (2.84” wide), dimensions: 
72.14 mm x 34.04 mm.
cut-off: 𝑓𝑐 = 2.078 GHz.

Example 2: “L-band” : 1.13 GHz ... 1.73 GHz,

Waveguide type WR650 (6.5” wide), dimensions: 
165.1 mm x 82.55 mm.
cut-off: 𝑓𝑐 = 0.908 GHz.

Both these pictures correspond to operation at 1.5 𝑓𝑐.

electric field

magnetic field

power flow:  
1

2
Re 𝐸׭ × 𝐻∗ ∙ d Ԧ𝐴

power flow

power flow

𝑧

𝑥
𝑦
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Waveguide dispersion – phase velocity 𝑣𝜑,𝑧
The phase velocity 𝑣𝜑,𝑧 is the speed at which the crest (or 

zero-crossing) travels in 𝑧-direction.
Note on the 3 animations on the right that, at constant 𝑓,  
𝑣𝜑,z ∝ 𝜆𝑔. Note also that at 𝑓 = 𝑓𝑐, 𝑣𝜑,𝑧 = ∞!

With 𝑓 → ∞, 𝑣𝜑,𝑧 → 𝑐!

1:
a = 52 mm,
Τ𝑓 𝑓𝑐 = 1.04

𝑓 = 3 GHz

2:
a = 72.14 mm,
Τ𝑓 𝑓𝑐 = 1.44

3:
a = 144.3 mm,
Τ𝑓 𝑓𝑐 = 2.88

cutoff: 𝑓𝑐 =
𝑐

2𝑎
, 𝑣𝜑,𝑧 = ∞

1

2

3

𝜔

𝜔𝑐

𝑘𝑐

𝑘 =
𝜔

𝑐

𝑘𝑧 =
2𝜋

𝜆𝑔
=
𝜔

𝑐
1 −

𝜔𝑐
𝜔

2

=
𝜔

𝑣𝜑,𝑧

𝑧

𝑥
𝑦
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Radial waves
Also radial waves may be interpreted as superposition of plane waves.
The superposition of an outward and an inward radial wave can result 
in the field of a round hollow waveguide.
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Round waveguide f/fc = 1.44

TE11 – fundamental

mm/

9.87

GHz a

fc 
mm/

8.114

GHz a

fc 
mm/

9.182

GHz a

fc 

TM01 – axial field TE01 – low loss
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Waveguide perturbed by notches
perturbations (“notches”)

Reflections from notches lead to a superimposed standing wave pattern.
“Trapped mode”

Signal flow chart
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Short-circuited waveguide
TM010 (no axial dependence) TM011 TM012
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Single WG mode between two shorts

short
circuit

short
circuit

Eigenvalue equation for field amplitude 𝑎:

𝑎 = 𝑒−j𝑘𝑧2ℓ𝑎

Non-vanishing solutions exist for 2𝑘𝑧ℓ = 2𝜋𝑚:

With 𝑘𝑧 =
𝜔

𝑐
1 −

𝜔𝑐

𝜔

2
, this becomes 𝑓0

2 = 𝑓𝑐
2 + 𝑐

𝑚

2ℓ

2
.

Signal flow chart
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𝑎 𝑒−𝑗𝑘𝑧ℓ

−𝑎𝑒−𝑗𝑘𝑧ℓ

−1 −1

𝑒−𝑗𝑘𝑧ℓ

ℓ
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Simple pillbox

electric field (purely axial) magnetic field (purely azimuthal)

(only 1/2 shown)

TM010-mode
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Pillbox with beam pipe

electric field magnetic field

(only 1/4 shown)TM010-mode

One needs a hole for the beam passage – circular waveguide below cutoff
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A more practical pillbox cavity

electric field magnetic field

(only 1/4 shown)TM010-mode
Rounding of sharp edges (to reduce field enhancement!)
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A (real) elliptical cavity 0
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electric field magnetic field

(only 1/4 shown)TM010-mode
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Acceleration voltage and Τ𝑅 𝑄 0
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• I define 

𝑉𝑎𝑐𝑐 = න
−∞

∞

𝐸𝑧𝑒
𝑗
𝜔
𝛽𝑐

𝑧
𝑑𝑧 .

• The exponential factor accounts for the variation of the field 
while particles with velocity 𝛽𝑐 are traversing the cavity gap.

• With this definition, 𝑉𝑎𝑐𝑐 is generally complex – this becomes 
important with more than one gap (cell).

• For the time being we are only interested in 𝑉𝑎𝑐𝑐 .

• The square of the acceleration voltage 𝑉𝑎𝑐𝑐
2 is proportional to 

the stored energy 𝑊; the proportionality constant defines the 
quantity called “𝑅-upon-𝑄”:

𝑅

𝑄
=

𝑉𝑎𝑐𝑐
2

2𝜔0𝑊
.

› Attention – different definitions are used in literature!
electric field
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• The transit time factor is the ratio of the acceleration voltage to the 
(non-physical) voltage a particle with infinite velocity would see:

𝑇𝑇 =
𝑉𝑎𝑐𝑐

∫ 𝐸𝑧 𝑑𝑧
=

∫𝐸𝑧𝑒
𝑗
𝜔
𝛽𝑐

𝑧
𝑑𝑧

∫ 𝐸𝑧 𝑑𝑧
.

• The transit time factor of an ideal pillbox cavity (no axial field 
dependence) of height (gap length) ℎ is:

𝑇𝑇 =
sin

𝜒01ℎ

2𝑎
𝜒01ℎ

2𝑎

(remember: 𝜔0 =
2𝜋𝑐

𝜆
=

𝜒01𝑐

𝑎
) ℎ

𝜆

Field rotates by 360°
during particle passage.

𝑇𝑇
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Stored energy
• The energy stored in the electric field is 

𝑊𝐸 = ම

cavity

𝜀

2
𝐸

2
𝑑𝑉 .

• The energy stored in the magnetic field is

𝑊𝑀 = ම

cavity

𝜇

2
𝐻

2
𝑑𝑉 .

• Since 𝐸 and 𝐻 are 90° out of phase, the stored energy continuously swaps 
from electric energy to magnetic energy. 

• On average, electric and magnetic energy must be equal.

• In steady state, the Poynting vector describes this energy flux.

• In steady state, the total energy stored (constant) is

𝑊 = ම

𝑐𝑎𝑣𝑖𝑡𝑦

𝜀

2
𝐸

2
+
𝜇

2
𝐻

2
𝑑𝑉.
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1 2 3 4 5 6

1.0

0.5

0.5

1.0

1 2 3 4 5 6

1.0

0.5

0.5

1.0

𝐸

𝐻

𝑊𝐸

𝑊𝑀
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Stored energy and Poynting vector 0
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electric field energy Poynting vector magnetic field energy

John Henry Poynting
1852 – 1914
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Wall losses & 𝑄0
• The losses 𝑃loss are proportional to the stored energy 𝑊.

• The tangential 𝐻 on the surface is linked to a surface current Ԧ𝐽𝐴 = 𝑛 × 𝐻 (flowing in 

the skin depth 𝛿 = 2 ∕ 𝜔𝜇𝜎 ).

• This surface current Ԧ𝐽𝐴 sees a surface resistance 𝑅𝑠, resulting in a local power density 

𝑅𝑠 𝐻𝑡
2 flowing into the wall.

• 𝑅𝑠 is related to skin depth 𝛿 as 𝛿𝜎𝑅𝑠 = 1.

• Cu at 300 K has 𝜎 ≈ 5.8 ∙ Τ107S m, leading to 𝑅𝑠 ≈ 8 mΩ at 1 GHz, scaling with 𝜔. 

• Nb at 2 K has a typical 𝑅𝑠 ≈ 10 nΩ at 1 GHz, scaling with 𝜔2. 

• The total wall losses result from 𝑃loss = ׭
𝑤𝑎𝑙𝑙

𝑅𝑠 𝐻𝑡
2 𝑑𝐴.

• The cavity 𝑄0 (caused by wall losses) is defined as 𝑄0 =
𝜔0𝑊

𝑃loss
.

• Typical 𝑄0values:

– Cu at 300 K (normal-conducting): 𝒪 103…105 , should improve at cryogenic 𝑇 by a factor 𝑅𝑅𝑅.

– Nb at 2 K (superconducting): 𝒪 109…1011

0
1

-M
ar

-1
8

Su
p

er
co

n
d

u
ct

in
g 

R
F 

Sy
st

em
s 

I  
   

   
 C

A
S 

Zu
ri

ch

21

No! Anomalous skin effect!
improves only by a factor ≈ 10!
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Shunt impedance 0
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• Also the power loss 𝑃loss is also proportional to the square of the 
acceleration voltage 𝑉𝑎𝑐𝑐

2; the proportionality constant defines 
the “shunt impedance”

𝑅 =
𝑉𝑎𝑐𝑐

2

2 𝑃loss
.

› Attention, also here different definitions are used!

• Traditionally, the shunt impedance is the quantity to optimize in 
order to minimize the power required for a given gap voltage.

• Now the previously introduced term “𝑅-upon-𝑄” makes sense:

𝑅

𝑄
= Τ𝑅 𝑄
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Geometric factor 0
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• With

𝑄0 =
𝜔0𝑊

׭
𝑤𝑎𝑙𝑙

𝑅𝑠 𝐻𝑡
2 𝑑𝐴

,

and assuming an average surface resistance 𝑅𝑠, one can introduce 
the “geometric factor”𝐺 as

𝐺 = 𝑄0 ∙ 𝑅𝑠 =
𝜔0𝑊

׭
𝑤𝑎𝑙𝑙

𝐻𝑡
2 𝑑𝐴

.

• 𝐺 has dimension Ohm, depends only on the cavity geometry (as 
the name suggests) and typically is 𝒪 100 Ω .

• Note that 𝑅𝑠 ∙ 𝑅 = 𝐺 ∙ Τ𝑅 𝑄 (dimension Ω2, purely geometric)

• 𝐺 is only used for SC cavities.
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Cavity resonator – equivalent circuit 0
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Generator

Cavity
𝛽: coupling factor
𝑅: shunt impedance

Τ𝐿 𝐶 =
𝑅

𝑄
: 𝑅-upon-𝑄

Simplification: single mode

𝐼𝐺 𝑉𝑎𝑐𝑐

𝐶 𝐿 𝑅

Z

𝑃loss
Beam

𝐼𝐵

Τ𝑅 𝛽
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Power coupling - Loaded 𝑄 0
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• Note that the generator inner impedance also loads the cavity – for very large 𝑄0
more than the cavity wall losses.

• To calculate the loaded 𝑄 (𝑄𝐿), losses have to be added:

1

𝑄𝐿
=
𝑃loss + 𝑃ext +⋯

𝜔0 𝑊
=

1

𝑄0
+

1

𝑄𝑒𝑥𝑡
+
1

…
.

• The coupling factor 𝛽 is the ratio Τ𝑃ext 𝑃loss.

• With 𝛽, the loaded 𝑄 can be written

𝑄𝐿 =
𝑄0

1 + 𝛽
.

• For NC cavities, often 𝛽 = 1 is chosen (power amplifier matched to empty cavity); 
for SC cavities, 𝛽 = 𝒪 104…106 .
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Resonance 0
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• While a high 𝑄0 results in small wall losses, so less power is needed for the same voltage. 

• On the other hand the bandwidth becomes very narrow.

• Note: a 1 GHz cavity with a 𝑄0 of 1010 has a natural bandwidth of 0.1 Hz!

• … to make this manageable, 𝑄𝑒𝑥𝑡 is chosen much smaller!

𝑄0 = 1000

𝑄0 = 100

𝑄0 = 10

𝑄0 = 1

𝑍
𝜔 Τ

𝑅
𝑄

𝜔

𝜔0
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𝑉𝑎𝑐𝑐

Accelerating voltage

𝑃loss

wall losses

𝑊

Energy stored

Summary: relations 𝑉𝑎𝑐𝑐, 𝑊 and 𝑃loss 0
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𝑅

𝑄
=

𝑉𝑎𝑐𝑐
2

2𝜔0𝑊

𝑘loss =
𝜔0

2

𝑅

𝑄
=

𝑉𝑎𝑐𝑐
2

4𝑊

𝑅 =
𝑉𝑎𝑐𝑐

2

2𝑃loss
=
𝑅

𝑄
𝑄0

𝑄0 =
𝜔0𝑊

𝑃loss

Attention     – different          definitions       are     used     in     literature    !
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Beam loading 0
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• The beam current “loads” the cavity, in the 
equivalent circuit this appears as an impedance in 
parallel to the shunt impedance.

• If the generator is matched to the unloaded cavity 
(𝛽 = 1), beam loading will (normally) cause the accelerating voltage to decrease.

• The power absorbed by the beam is −
1

2
ℜ 𝑉𝑎𝑐𝑐𝐼𝐵

∗ .

• For high power transfer efficiency RF  beam, beam loading must be high!

• For SC cavities (very large 𝛽), the generator is typically matched to the beam 
impedance!

• Variation in the beam current leads to transient beam loading, which requires 
special care!

• Often the “impedance” the beam presents is strongly reactive – this leads to a 
detuning of the cavity.
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• The words “multipactor”, “to multipact” and “multipacting” are artificially 
composed of “multiple” “impact”.

• Multipactor describes a resonant RF phenomenon in vacuum:
• Consider a free electron in a simple cavity – it gets accelerated by the 

electric field towards the wall

• when it impacts the wall, secondary electrons will be emitted, described 
by the secondary emission yield (SEY)

• in certain impact energy ranges, more than one electron is emitted for 
one electron impacting! So the number of electrons can increase

• When the time for an electron from emission to impact takes exactly 
½ of the RF period, resonance occurs – with the SEY>1, this leads to an
avalanche increase of electrons, effectively taking all RF power at this 
field level, depleting the stored energy and limiting the field!

• For this simple “2-point MP”, this resonance 

condition is reached at 
1

4𝜋

𝑒

𝑚
𝑉 = 𝑓𝑑 2 or 

𝑉

112V
=

𝑓

MHz
𝑑

m

2
. There exist other resonant bands.

courtesy: Sarah Aull/CERN
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• Unfortunately, good metallic conductors (Cu, Ag, Nb) all have SEY>1!

• 1-point MP occurs when the electron impact where they were emitted

• Electron trajectories can be complex since both 𝐸 and 𝐵 influence them; 
computer simulations allow to determine the MP bands (barriers)

• To reduce or suppress MP, a combination of the following may be considered:
• Use materials with low SEY

• Optimize the shape of your cavity ( elliptical cavity)

• Conditioning (surface altered by exposure to RF fields)

• Coating (Ti, TiN, NEG, amorphous C …)

• Clearing electrode (for a superimposed DC electric field)

• Rough surfaces
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What do you gain with many gaps?
• The Τ𝑅 𝑄 of a single gap cavity is limited to some 100Ω.

Now consider to distribute the available power to 𝑛 identical 

cavities: each will receive Τ𝑃 𝑛, thus produce an accelerating 

voltage of Τ2𝑅𝑃 𝑛. (Attention: phase important!)

The total accelerating voltage thus increased, equivalent to a 

total equivalent shunt impedance of 𝑛𝑅 .

Τ𝑃 𝑛
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Τ𝑃 𝑛 Τ𝑃 𝑛 Τ𝑃 𝑛 𝑉𝑎𝑐𝑐 = 𝑛 2𝑅
𝑃

𝑛
= 2 𝑛𝑅 𝑃

𝑛1 2 3
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Standing wave multi-cell cavity
• Instead of distributing the power from the amplifier, one might 

as well couple the cavities, such that the power automatically 
distributes, or have a cavity with many gaps (e.g. drift tube 
linac). 

• Coupled cavity accelerating structure (side coupled)

• The phase relation between gaps is important!
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• The elliptical shape was found as 
optimum compromise between

• maximum gradient (𝐸𝑎𝑐𝑐/𝐸surface)

• suppression of multipactor

• mode purity

• machinability

• A multi-cell elliptical cavity is typically
operated in 𝜋-mode, i.e. cell length 
is exactly Τ𝛽𝜆 2.

• It has become de facto standard, 
used for ions and leptons! E.g.:

• ILC/X-FEL: 1.3 GHz, 9-cell cavity

• SNS (805 MHz)

• SPL/ESS (704 MHz)

• LHC (400 MHz)

At 1.3 GHz: 
𝑅0 = 103.3 mm, 
2𝐿 = 115.3 mm. 

*): http://accelconf.web.cern.ch/AccelConf/SRF93/papers/srf93g01.pdf

D. Proch, 1993 *)
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FERMI 3.9 GHz 

CEBAF 1.5 GHz 

HEPL 1.3 GHz 

TESLA/ILC 1.3 GHz 

SNS 𝛽 = 0.61, 0.81,  0.805 GHz 

KEK-B 0.5 GHz 
CESR 0.5 GHz 

LEP 0.352 GHz 

S-DALINAC 3 GHz 

HERA 0.5 GHz 
cells

TRISTAN 0.5 GHz 
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• Drude model: In a conductor, the electrons move through an 
ion lattice, bounce off the ions and get slowed in the process. 

• In the presence of 𝐸 fields only, this is governed by the equation 
𝑑

𝑑𝑡
𝑝 = 𝑒𝐸 − 𝑝/𝜏. 

• In steady state (DC), one gets 
𝑣 =

𝑒

𝑚
𝜏 𝐸, which is …

• … Ohm’s law: 𝑗𝑛 = 𝑛𝑒𝑣 =
𝑒2𝜏𝑛

𝑚
𝐸 = 𝜎𝐸

with 𝜎𝐷𝐶 =
𝑒2𝜏𝑛

𝑚
.

• Typical scattering time 𝜏 ≈ 10−14s.

How does electrical conduction work?

The electrons (blue) slowly drift to the right 
under the influence of a DC electric field

Paul Drude
1863 – 1906
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• The equation 
𝑑

𝑑𝑡
𝑝 = 𝑒𝐸 −

𝑝

𝜏
can of course be solved for an excitation by 

a time-varying field 𝐸 = ℜ{ ෠𝐸 𝑒𝑗𝜔𝑡}.

• Solution: Assume 𝑝(𝑡) to be of the same time-dependence as RHS:  
𝑝 𝑡 = ℜ Ƹ𝑝𝑒𝑗𝜔𝜏 𝑒𝑗𝜔𝜏 and solve:

• 𝑗𝜔 +
1

𝜏
Ƹ𝑝 = 𝑒 ෠𝐸 or   Ƹ𝑝 =

𝜏𝑒 ෠𝐸

1+𝑗𝜔𝜏
.

• This naturally results in a complex, 𝑓-dependent 𝜎:

𝜎 = 𝜎𝐷𝐶
1

1 + 𝑗𝜔𝜏
=

𝜎𝐷𝐶
1 + 𝜔𝜏 2

1 − 𝑗𝜔𝜏

• With 𝜏 ≈ 10−14s, 𝜔𝜏 < 1 for frequencies up to many THz!

Drude model extended for RF



Photo:  
Reidar Hahn

0
1

-M
ar

-1
8

Su
p

er
co

n
d

u
ct

in
g 

R
F 

Sy
st

em
s 

I  
   

   
 C

A
S 

Zu
ri

ch

39

• A good (normal-)conductor: inside the metal, the surface field 𝐻|| gives 
rise to a damped “wave”, which “propagates” into the metal with a 
propagation constant of 𝑘⊥ = −𝑗𝜔𝜇𝜎 . The skin-depth is the inverse of 
the damping constant, the real part of 𝑘⊥: 

• Skin depth:    𝛿 =
1

𝛼
=

1

ℜ{ −𝑗𝜔𝜇𝜎}
=

2

𝜔𝜇𝜎

• The wave impedance in the metal is 𝑍 =
𝑗𝜔𝜇

𝜎
, its real part 

𝑅𝑛 =
𝜔𝜇

2𝜎
is the surface resistance and can be used to determine the 

losses. 
𝛿𝑅𝑛𝜎 ≡ 1

Good (normal-)conductor boundary – skin depth

I use the term 𝑅𝑛 for the surface resistance for normal conductors, 𝑅𝑠 for superconductors.
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𝜌 𝑇 =
1

𝜎 𝑇
= 𝜌0 + 𝐴

𝑇

𝛩𝐷

5

ඵ

0

𝛩𝐷
𝑇

𝑥5

𝑒𝑥 − 1 1 − 𝑒−𝑥
𝑑𝑥

Temperature dependence of resistivity of metals

𝑇 [K]
𝜌
[Ω
m
]Cu resistivity vs. 𝑇, assuming 

𝜌 20 ℃ = 16.78 nΩm, 
𝑅𝑅𝑅 = 300 and
Θ𝐷 = 343.5 K (Debye 𝑇).
[Bloch-Grüneisen formula]
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• The relation between skin depth 𝛿 and surface resistance 𝑅𝑛,       
𝛿𝑅𝑛𝜎 ≡ 1, is valid only while the mean free path ℓ of the electrons is 
smaller than the skin depth, ℓ ≪ 𝛿.

• If the skin depth gets smaller (e.g. at low 𝑇, high 𝜔), 𝑅𝑛 will be 
dominated by ℓ and be limited to

𝑅𝑛 ≈ 3𝜋
ℓ

𝜎

𝜇𝜔

4 𝜋

2 Τ1 3

Anomalous skin effect

𝑇 [K]

𝑅
𝑛
[Ω
]

Prediction of surface resistance 𝑅𝑛(𝑇) of 
Cu at 400 MHz with 𝑅𝑅𝑅 = 300 (blue) 
and correction for anomalous skin effect 
(𝜌ℓ = 6.6 ∙ 10−18Ωm2) (orange).

Not even a 
factor 10!
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• Kammerling Onnes investigated the behaviour of metal conductivity at 
low temperatures and noted in 1911, when measuring the resistivity of 
Mercury at 4.2 K: “Kwik nagenoeg nul ” (meaning “mercury almost zero”).

Superconductivity
Heike Kammerling

Onnes (1853 – 1926)
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Critical temperatures of superconductors
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Phase diagram of a SC
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• With a magnetic field 𝐵0 at the transition vacuum/superconductor, 
the following equations hold:

• 3rd Maxwell equation: 𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

• 1st London equation:
𝜕𝑗𝑠

𝜕𝑡
=

𝑛𝑠𝑒
2

𝑚
𝐸,      where   𝑗𝑠 = −𝑛𝑠𝑒 Ԧ𝑣.

• This results in the equation 
𝜕

𝜕𝑡
𝛻 × 𝑗𝑠 +

𝑛𝑠𝑒
2

𝑚
𝐵 = 0, or (slightly 

transformed) in       
𝜕

𝜕𝑡
𝛻2𝐵 − 𝜇

𝑛𝑠𝑒
2

𝑚
𝐵 = 0

• This could be solved by either a time-independent field, 
𝜕

𝜕𝑡
≡ 0

or by a field satisfying 𝛻2𝐵 − 𝜇
𝑛𝑠𝑒

2

𝑚
𝐵 = 0.

Perfect conductor

𝜆𝐿
−2
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• Observation: During cool-down, when 𝑇 passes 𝑇𝑐, the magnetic field 
gets completely expulsed.

• A non-vanishing, time-independent 
field is not observed and thus can 
be excluded as non-physical.

Meissner effect (flux expulsion)
Walther Meißner

1882 – 1974 
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• Supported by Meissner’s observation, the time-independent (non-trivial) 
solution of the equation
𝜕

𝜕𝑡
𝛻 × 𝑗𝑠 +

𝑛𝑠𝑒
2

𝑚
𝐵 = 0 can be excluded as non-physical.

• London equations (London penetration depth: 𝜆𝐿 =
𝑚

𝜇𝑛𝑠𝑒
2)

1. (zero resistance): 
𝜕𝑗𝑠

𝜕𝑡
=

𝑛𝑠𝑒
2

𝑚
𝐸 =

1

𝜇 𝜆𝐿
2 𝐸

2. (Meissner effect): 𝛻 × 𝑗𝑠 +
𝑛𝑠𝑒

2

𝑚
𝐵 = 0

or 𝛻2 −
1

𝜆𝐿
2 𝐵 = 0

London equations
London brothers

Heinz (1907 – 1970),
Fritz (1900 – 1954)

vacuum    |   superconductor
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• Pippard found out that 𝜆𝐿 depends on the purity of the material and 
therefore on the electron mean free path ℓ.

• In 1953, he proposed the coherence length 𝜉 as a new parameter to 
better describe the characteristic dimension of the electrons wave 
function in a superconductor. 

• In a pure metal, one finds 𝜉 = 𝜉0 ∝
ℏ𝑣𝐹

𝑘 𝑇𝑐
, 

with impurities one can approximate 𝜉 =
1

𝜉0
+

1

ℓ

−1
and 𝜆 ℓ = 𝜆𝐿

𝜉0

𝜉
.

• “Clean” limit: ℓ ≫ 𝜉, “dirty” limit: ℓ ≪ 𝜉.

The coherence length 𝜉
Brian Pippard
1920 – 2008 
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• London penetration depth 𝜆𝐿 =
𝑚

𝜇𝑛𝑠𝑒
2: the distance up to which 

magnetic field penetrates into a superconductor if placed in a magnetic 
field

• Electron mean free path ℓ.    …gets smaller with impurities.

• Coherence length 𝜉 =
1

𝜉0
+

1

ℓ

−1
: the distance over which the electron 

wave function extends – the “size” of Cooper pairs (see below).

• Orders of magnitude:
• 𝜆𝐿 and 𝜉: tens of nm. (E.g. Nb: 𝜉0 = 39 nm, Pb: 𝜉0 = 83 nm)

• ℓ: nm (dirty) to μm (clean)

• Sometimes used: 𝜅 ≡ Τ𝜆𝐿 𝜉

Characteristic lengths:
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In 1958, Bardeen, Cooper and Schrieffer proposed a theory of 
superconductivity in which there exists an attractive interaction between 
electrons, forming “Cooper pairs”.

BCS Theory
Bardeen – Cooper – Schrieffer (BCS)
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• Positively charged wake due to moving electron 
attracting nearby atoms (electron-phonon interaction)

• … this wake can attract another nearby electron and …

•  … a Cooper pair is formed.

• Cooper pairs are formed by electrons 
with opposite momentum and spin. 

• Cooper pairs belong all to the same quantum state and have the same 
energy.

• While electrons are fermions, Cooper pairs are bosons.

• When carrying a current, each Cooper pair acquires a momentum which is 
the same for all pairs,

• The total momentum of the pair remains constant. It can be changed only 
if the pair is broken, but this requires a minimum energy Δ𝐸.

• While NC electrons are scattered by the ion lattice (cf. Drude model) 
leading to resistive losses, Cooper pairs are not scattered by ion lattice.

Cooper pairs
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• The electron-phonon interaction 
changes the density of states. 

• Near the Fermi surface an energy gap 
forms and energy states below get 
denser – the new ground state (with 
Cooper-pairs) has a lower energy than 
the NC ground state.

• For Nb, ΤΔ 0 𝑘𝐵𝑇𝑐 = 1.9, 
for Pb, ΤΔ 0 𝑘𝐵𝑇𝑐 = 2.4. 

Energy gap
Normal Conductor Superconductor

Fermi Level

Levels empty

Levels occupied

Padamse, Knobloch, Hays: RF Superconductivity for Accelerators, Wiley 2008
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• The superconducting state consists of electron pairs and elementary 
excitations, quasiparticles, behaving almost as free electrons 

The microscopic BCS theory

The energy gap 𝛥 separates the 
energy levels of elementary 
excitations from the ground state 
level. At 0 K, only the ground state 
is occupied.

Density of elementary 
excitations. There are 
no states within the 
energy gap 𝛥.

Temperature dependence of 𝛥:

Δ 𝑇 ≈ Δ 0 K cos
𝜋

2

𝑇

𝑇𝑐

2

B
C

S 
th

e
o

ry

G
L 

th
eo

ry

Original BCS theory has been derived using “mean field approximation” – valid for 0 ≤ 𝑇 < 𝑇𝑐 .
Ginzburg-Landau theory is valid for T ≈ 𝑇𝑐. Gor’kov showed that lim

𝑇→𝑇𝑐
(BCS) = GL.
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Type-II superconductor:

• Meissner effect incomplete

• Two critical fields 𝐻𝑐1 and 𝐻𝑐2

• 𝜅 > Τ1 2

• Examples: Nb, alloys

Type-I superconductor:

• Meissner effect complete

• Sharp transition NC/SC at field 𝐻𝑐

• 𝜅 = Τ𝜆𝐿 𝜉 < Τ1 2

• Examples: Pb, Sn, Hg, Cr, Al

Classification of superconductors
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• In Type-II superconductors flux tubes are created each carrying one flux 
quantum (the minimal flux allowed by quantum mechanics)

• Flux tubes are repulsive creating, therefore the vortex lattice

Flux quantization

STM image of Vortex lattice, 1989
H. F. Hess et al. Phys. Rev. Lett. 62, 214, 1989
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• 𝐻 < 𝐻𝑐1: perfect Meissner state

• 𝐻𝑐1 < 𝐻 < 𝐻𝑐2: penetration and
oscillation of vortices give rise to 
strong dissipation – not useable 
for RF.

But …

• The Meissner state can remain 
metastable for 𝐻𝑐1 < 𝐻 < 𝐻𝑠ℎ, 
if vortices can be prevented from 
entering (Bean-Livingston barrier).

Field limits for type-II superconductors

Type-II superconductor

𝐻𝑐1 0

𝐻𝑠ℎ 0

𝐻𝑐2 0
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The superheating field 𝐻𝑠ℎ is set by the competition between magnetic pressure 
(imposed by the external magnetic field), the energy cost to destroy superconductivity, 
and the attractive force due to the zero-current boundary condition at the interface.

The superheating field

• 𝐻𝑐1 is the field where it is energetically favourable for the flux to be in the superconductor.
• 𝐻𝑠ℎ is the field where the Bean-Livingston barrier for flux entry disappears
• Defects can serve as entry points for flux preventing superheating 

Suggested further reading: 
B. Liarte et al. - Supercond. Sci. Technol. 30 (2017) 033002
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• The time-dependent magnetic field in the penetration depth 𝜆𝐿 will 
generate an electric field 

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
.

• At 𝑇 > 0 K, there will exist a fraction of unpaired electrons:

𝑛𝑛 𝑇 ∝ 𝑒
−

Δ
𝑘𝐵𝑇

• Since Cooper pairs have inertia, they cannot shield these NC electrons 
from 𝐸, hence

𝑅𝑠 > 0.

RF case
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• Proposed by Gorter and Casimir already in 1943: Charge carriers are 
divided in two subsystems, superconducting carriers of density 𝑛𝑠 and 
normal electrons of density 𝑛𝑛.

• Assume 
𝑛𝑠

𝑛
= 1 −

𝑇

𝑇𝑐

4
, 
𝑛𝑛

𝑛
=

𝑇

𝑇𝑐

4
, 𝑛𝑠 + 𝑛𝑛 = 𝑛.

• The total current results from 𝐽 = 𝐽𝑠 + 𝐽𝑛

Two-fluid model

el
ec

tr
o

n
 d

en
si

ty

𝑇𝑇𝑐

𝒏𝒔
𝒏𝒏
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• From 1st London equation: 
𝜕

𝜕𝑡
Ԧ𝐽𝑠 =

𝐸

𝜇 𝜆𝐿
2,  𝐽𝑠 = −𝑗

1

𝜔𝜇𝜆𝐿
2 𝐸, or 𝐽𝑠 = −𝑗

𝑛𝑠𝑒
2

𝑚𝜔
𝐸.

• For the unpaired electrons (Ohm’s law):     𝐽𝑛 =
𝑛𝑛 𝑒

2𝜏

𝑚
𝐸.

• For the total current: 

𝐽 = 𝐽𝑛 + 𝐽𝑠 = 𝜎𝑛 − 𝑗𝜎𝑠 𝐸 =
𝑛𝑛 𝑒

2𝜏

𝑚
− 𝑗

𝑛𝑠𝑒
2

𝑚 𝜔
𝐸

• Surface impedance:

𝑍𝑠 = 𝑅𝑠 + 𝑗𝑋𝑠 =
𝑗𝜔𝜇

𝜎𝑛 − 𝑗𝜎𝑠
.

• With the 2-fluid model this results in:

𝑅𝑠 =
1

2
𝜇𝜔2𝜎𝑛𝜆𝐿

3

𝑋𝑠 = 𝜔 𝜇 𝜆𝐿

RF surface impedance of SC
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We found 𝑅𝑠 =
1

2
𝜇𝜔2𝜎𝑛𝜆𝐿

3 – what does this mean?

• Frequency dependence:
𝑅𝑠 ∝ 𝜔2: use low frequency cavities to reduce power dissipation!

• Temperature dependence:

from two-fluid model: 𝜎𝑛 ∝ 𝑛𝑛 ∝ 𝑒
−

𝛥

𝑘𝐵𝑇

𝑅𝑠 ∝ exp −
Δ

𝑘𝐵𝑇

• There are “better” approximations around, most famous the formulae 
developed by Halbritter (1970), which approximate 𝑅𝑠 as a function of 𝜔, 
𝑇, 𝜉0, 𝜆𝐿, 𝑇𝑐, Δ, and ℓ, see e.g. here: 
http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html

RF surface resistance of a SC

http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html
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Halbritter approximation example

Be carefureful here. The website 
suggests 40 nm. The input required is 

Τ𝜋𝜉0 2, while 𝜉0 ≈ 38 nm for Nb.
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• We had introduced above: 

• 𝜆 ℓ = 𝜆𝐿 1 +
𝜉0

ℓ

• 𝜎1 ∝ ℓ

• It follows that 𝑅𝑠 has a local minimum at Τℓ 𝜉0 = Τ1 2.

• This is remarkable: at some point, increasing ℓ (cleaner material) makes 
things worse!

𝑅𝑠 dependence on material purity

𝑅𝑠 ∝ 1 +
𝜉0
ℓ

Τ3 2
ℓ

𝜉0
𝜂 1 +

1

𝜂

Τ3 2

𝜂

C. Benvenuti et 
al., Physica C 
316 (1999) 
153.

Nb on Cu,1.5 GHz, 4.2 K

“clean

”

“dirty”

• This example: Nb films sputtered on Cu

• By changing the sputtering species, the 
mean free path was varied.

• RRR of niobium on copper cavities can 
be tuned for lowest RS.
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• 𝑅𝑠,𝐵𝐶𝑆 ≈
𝐴

2
𝜔2𝜇2 𝜆𝐿 1 +

𝜉

ℓ

3
𝑅𝑅𝑅

𝜌𝑛 300 K
𝑒
−

Δ

𝑘𝐵𝑇𝑐

𝑇𝑐
𝑇

≈ 1.643 ∙ 10−5
𝑇𝑐
𝑇

𝑓

GHz

2

𝑒−1.92
𝑇𝑐
𝑇

BCS resistance
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• In real, technical superconductors, the observed
surface resistance deviates from the BCS prediction
and can be written as 𝑅𝑠 = 𝑅𝐵𝐶𝑆 + 𝑅res.

• Possible contributions to 𝑅res:
• Trapped magnetic flux and thermal currents

• Lossy oxides, metallic hydrides

• Normal-conducting precipitates

• Grain boundaries

• Interface losses 

• Magnetic impurities

• Subgap states

Residual resistance

B. Aune et al., PR-STAB 3
(2000) 092001. 

Nb, 1.3 GHz 

𝑇 = 2 K

For Nb, 𝑅𝑟𝑒𝑠 ≈ 1…10 nΩ often dominates 𝑅𝑠 at low 𝑓 (< 1 GHz) and low 𝑇 (< 2 K).


