

RF Power Systems, CLIC Drive Beam

Introduction to RF Power Sources

- Introduction to CLIC
- CLIC Drive Beam
- > Quest for efficiency

The CERN Accelerator School

RF Power Sources and Example Systems

RF systems

- RF sources extract RF power from high charge, low energy electron Bunches (vacuum tubes)
- RF transmission components (couplers, windows, circulators etc.) convey the RF power from the source to the accelerator
- RF accelerating structures use the RF power to accelerate low charge bunches to high energies
- Energy not extracted as RF must be disposed of as heat

$$Efficiency = \frac{P_{RF out}}{P_{DC in} + P_{RF in}} \approx \frac{P_{RF out}}{P_{DC in}}$$

$$Gain(dB)$$
 10log₁₀ = $\frac{P_{RF out}}{P_{RF in}}$

Solid state amplifier SSPA, 1 kW

 $(0.2 \div 50)$ MHz, 1 kW solid state amplifier for LEIR

Takes advantage from 'mobility' of electrons in semi-conductor

Low voltage controls high voltage or current

 $(0.2 \div 10)$ MHz, 1 kW SSPA for MedAustron

M. Paoluzzi

Soleil/ESRF Booster SSPA, 150 kW, 352 MHz

- Initially developed by SOLEIL
- Transfer of technology to ELTA / AREVA

Pair of push-pull transistors

650 W RF module

- 6th generation LDMOSFET (BLF
 578 / NXP), V_{ds} = 50 V
- Efficiency: 68 to 70 %

75 kW Coaxial combiner tree

with $\lambda/4$ transformers

150 kW, 352.2 MHz Solid State Amplifiers for the ESRF booster (7 in operation)

Efficiency: > 57 % at nominal power

Tetrode common grid connection

- Grids held at RF ground isolate input from output
- Input is coaxial
- Anode resonant circuit is a re-entrant coaxial cavity
- Output is capacitively or inductively coupled

RS 1084 CJ (ex Siemens, now Thales), < 30 MHz, 75 kW

Takes advantage from 'mobility' of electrons in vacuum

Classes of amplification

Class	Conduction angle	Maximum theoretical efficiency	Gain increasing	Harmonics increasing
A	360°	50%		
AB	180° – 360°	50% - 78%		
В	180°	78%		
С	< 180°	78% - 100%		

- All classes apart from A must have a resonant load and are therefore narrow band amplifiers
- Class AB or B usually used for accelerators

CERN Linac3: 100 MHz, 350 kW

50 kW Driver: TH345, Final: RS 2054 SK

CERN PS: 13-20 MHz, 30 kW

Driver: solid state 400 W, Final: RS 1084 CJSC

Combining tetrode amplifiers

SPS 200 MHz RF system

"Siemens": 4 x 550 kW (28 tetrode amplifiers)

"Philips": 4 x 550 kW (72 tetrode amplifiers)

Inductive output tube (IOT)

Differences from tetrode

- Electron flow axial
 - Requires axial magnetic field to prevent beam spreading
- Anode voltage is constant
 - Electron velocity is high
- Bunched beam induces current in output cavity
- Separate electron collector
 - Large collection area
- Increased isolation between input and output
- Effective gap voltage reduced by transit time effects
- Effective gap voltage less than ~0.9V₀ to allow electrons to pass to the collector
- Theoretical efficiency ~ 70%

UHF IOT for TV broadcasting

Frequency	470 - 810 MHz	
Power	64 kW	
Beam voltage	32 kV	
Beam current	3.35 A	
Gain	23 dB	
Efficiency	60%	

Photos courtesy of e2v technologies

Klystron principle

FIGURE 1. The 150-MW klystron assembly shown with magnets and lead.

- f = 2996 MHz
- P = 150 MW
- $K = 1.8 \ \mu P$
- $V_{\rm h} = 535 \, \rm kV$

Gain = 55 dB B~2100 Gauss Group Delay 150 nsec $J_{cath} = 6 A/cm^2$ Efficiency: >40% PRF: 60Hz Pulse length: 3 μs I_b= 700 Amps

Beam Power & Output Power: f⁻²

CERN CTF3 (LIL): 3 GHz, 45 MW, 4.5 μs, 50 Hz, η 45 %

> CERN LHC: 400 MHz, 300 kW, CW, η 62 %

RF power generators – efficiencies

	Tetrodes	IOTs (Inductive Output Tubes)	Conventional klystrons	Solid State PA	Magnetrons
f range:	DC – 400 MHz	(200 – 1500) MHz	300 MHz – 12 GHz	DC – 20 GHz	GHz range
P class (CW):	1 MW	1.2 MW	1.5 MW	1 kW @ low f	< 1MW
typical ŋ:	78 %	70%	50- 73 %	60%	90%
Remark	Broadcast technology, widely discontinued		new idea promises significant increase	Requires P combination of thousands!	Oscillator, not amplifier!

 $\begin{array}{l} \mbox{Thales RS 1084 CJ} \\ \mbox{< 30 MHz}, \mbox{75 kW} \\ \mbox{η< 78\%$ (class B)} \end{array}$

CLIC DB klystron 1 GHz, 20 MW, 15 0 μs, 50 Hz, η≈ 73%

RF Pulse Compression

"SLED" output

pulse

Flat output pulses

Standard "SLED" Pulse

RF phase modulation

Flat pulse

CTF3 single cavity pulse compressor using a barrel open cavity

LHC RF System

POINT 4 LHC POINT 6 SECTOR 45 SECTOR 34 CMS SECTOR 56 SECTOR 6 SECTOR 23 SPS SECTOR 1 SECTOR 81 POINT 8 LHCb ATLAS Two independent rings: 8 RF cavities per ring all installed at point 4 Klystrons and Cavity Controllers in a cavern ~150 m underground

LHC rf system

- 100kV, 40A (ex-LEP) power converters located at the surface
- Klystron modulators, fast protection systems in four HV bunkers
- Sixteen 330 kW klystrons + circulators + RF ferrite loads in UX45
- WR2300 HH WG distribution system to individual cavities
- LLRF for Cavity Controllers in two Faraday Cages

=> Most of RF equipment is not accessible during operation

- 1 klystron per cavity
 - 330 kW max (58 kV, 8.4 A)
 - 130 ns group delay (~ 10 MHz BW)
 - CW gain 39 dB @ 200 kW, 36 dB @ 300 kW
 - In operation ≈ 200 kW CW

Circulator, RF load, WG

- 1 circulator per cavity
 - 330 kW max
 - 60 ns group delay
 - Circulator equipped with temperature control system

 \Rightarrow Affects the Q_{ext} of the cavity

- -1 RF ferrite load per circulator
 - 330 kW CW
 - RF loads reflection < -28 dB
- Wave guide system
 - WR2300 HH
 - Length: 15 to 30 meters

8 RF cavities per ring at 400.790 MHz:

Super Conducting Standing Wave Cavities, single-cell, R/Q = 45 ohms, 6 MV/m nominal

Equipped with movable Main Coupler (20000 < Q_L < 180000) Mechanical Tuner range = 100 kHz

CLIC a two beam accelerator

Steffen Döbert, BE-RF

The LEP collider

- LEP (Large Electron Positron collider) was installed in LHC tunnel
- e+ e- circular collider (27 km) with E_{cm}=200 GeV
- Problem for any ring: Synchrotron radiation
- Emitted power: scales with E⁴ !! and 1/m₀³ (much less for heavy particles)
- This energy loss must be replaced by the RF system !!
- particles lost 3% of their energy each turn!

- Solution: LINEAR COLLIDER
- avoid synchrotron radiation
- no bending magnets, huge amount of cavities and RF

 High Accelerating Gradient to minimize size and cost in case of CLIC 100 MV/m at 12 GHz
 65 MW input peak power per accelerating structure rf pulse length 240 ns

Klystron, the conventional RF power source

Current Technology Limitations and Potential Improvements

Limited by space charge and power density Relativistic Klystron, Two beam accelerator scheme

CLIC two beam scheme

CLIC TUNNEL

- Two beam acceleration scheme:
 - High charge Drive Beam (low energy)
 - Low charge Main Beam (high collision energy)
- High power for high gradient of >100 MV/m

CDR tunnel layout

CLIC Drive Beam a relativistic klystron

Steffen Döbert, BE-RF

CLIC Drive Beam A 5 TW klystron ?

Beam current:	101 A
Beam energy:	2.4 GeV
Pulse Length:	240 ns one drive beam
Repetition Rate:	50 Hz
Average Beam Power:	3 MW / 70 MW full drive beam
Conversion efficiency:	81 % / 44% total
Peak power at 12 GHz:	202 GW / 4.8 TW
Length:	~ 30 km

Drive Beam, an efficient power source

- Conventional power source (klystrons) inefficient
- Extract RF power at 12 GHz from an intense e- "drive beam"
- Generate efficiently long pulse and compress it (in power + frequency)

140 μ s train length - 24 \times 24 sub-pulses 4.2 A - 2.4 GeV - 60 cm between bunches

24 pulses - 100 A - 2.5 cm between bunches

Lemmings Drive Beam

CLIC Test Facility (CTF3)

Drive Beam Generation

Full beam loading acceleration

95.3% RF to beam efficiency

clc

Proof of Principle

CTF3 - PRELIMINARY PHASE

CTF3 results

2

3

Produced high-current drive beam bunched at 12 GHz

0 -3

-2

-1

0 Phase [degrees]

Test Beam Line in CLEX A decelerator experiment

-WWWWWWWWWWWWWWWWWWWWWWWWWWW

periodically corrugated structure with low impedance (big a/λ)

Deceleration results

Power produced **(90 MW/PETS)** fully consistent with drive beam current (24 A) and measured deceleration **Total: 1.3 GW of 12 GHz peak power!** Minimum energy 10% threshold: 65.8 MeV → 51 % deceleration

TBL: P₀=71.5 MeV/c

100 MW, 70 ns

25 MW, 300 ns

Two beam acceleration

Demonstrated two-beam acceleration

31 MeV = 145 MV/m

Quest for efficiency

Steffen Döbert, BE-RF

Why does energy efficiency matter?

I hope no need to convince any body $\textcircled{\sc op}$

Does it matter for accelerators ?

Big interest in society, we should set an example and show that R&D can help

We can save some money !

Orders of magnitude

generation	consumption	storage	
1d cyclist "Tour de France"	1 run of cloth washing machine:	Car battery (60 Ah):	
(4h x 300W): 1.2 kWh	0.81 kWh	0.72 kWh	
1d Wind Power Station (avg):	1d SwissLightSource 2.4 GeV,0.4 A:	ITER superconducting coil:	
12 MWh	82 MWh	12.5 MWh	
1d nucl. Pow. Plant (e.g. Leibstadt, CH):	1d CLIC Linear Collider @ 3 TeV c.m.	all German storage hydropower:	
30 GWh	14 GWh	40 GWh	
<section-header><image/><image/><image/><image/></section-header>	Critral Solencia (CS) cs (Nb,S, 6, modules) (Nb,S,	<image/>	

M. Seidel/PSI

• Accelerators are in the range were they become relevant for society and public discussion.

CLIC, 580 MW

- Desired turn to renewables is an enormous task; storage is the problem, not production!
- Fluctuations of energy availability, depending on time and weather, will be large!

EUROPEAN SPALLATION SOURCE

Pulsed, 0.7 GHz,92 MW

Example: PSI – 10 MW

Example FCC-tt: orders of magnitude

Note: largest impact by RF power generation

Example CLIC Drive Beam Klystron development

CLIC Drive Beam requirements

3 TeV CLIC (CDR):

1230 klystrons, 20 MW, 150 μs, 50 Hz 24.57 GW peak power, 184 MW average 0.05 ° phase jitter, 0.2% amplitude

380 GeV < 500 klystrons and factor 3 less in average power

Main energy 'consumer' in CLIC (~50 % for 3 TeV)

CLIC Drive Beam requirements

CLIC efficiency challenge

Example 3 TeV (CDR):

Each percentage counts !

Klystron parameters

PARAMETER	VALUE	UNITS
RF Frequency	999.516	MHz
Bandwidth at -1dB	≥1	MHz
RF Power:		
Peak Power	≥20	MW
Average Power	150	kW
RF Pulse width (at -3dB)	150	μs
HV pulse width (at full width half height)	165	μs
Repetition Rate	50	Hz
High Voltage applied to the cathode	tbd, ≤ 180	kV
Tolerable peak reverse voltage	tbd	kV
Efficiency at peak power	67 ≤ 70	%
RF gain at peak power	tbd, > 48	dB
Perveance	tbd	μA/V ^{1.5}
Stability of RF output signal at nominal working point:		
RF phase ripple [*]	±1 (max)	RF deg
RF amplitude ripple	±1 (max)	%
Pulse failures (arcs etc.) during 14 hour test period	<u>≤</u> 1-2	
Matching load, fundamental and 2 nd harmonic	tbd	VSWR
Average radiation at 0.1m distance from klystron	<u><</u> 1	μSv/h
Output waveguide type,	WR975	2-3 bar

Thales TH1803

10 beam multi beam klystrons, 153 kV, 76 % efficiency calculated Design approved, delivered November 2017

Toshiba E37503 factory test 6 beam MBK

Test results:

```
f= 999,5 MHz

P<sub>max</sub>= 21 MW

P<sub>L</sub> = 150 μs

V= 159.4 kV

I= 180 A

η= 71.5 %

G= 2.83 μA/V<sup>3/2</sup>

Gain = 53.9 dB
```


Tests done at 25 Hz and double HV pulse length, nominal 50 Hz Stable operation over a wide range of parameters

Toshiba E37503 factory test

Wide power range with high efficiency

CLIC modulators R&D

Hot R&D topics:

CERN

1300 modulators synchronously operated

29 MW x 1300 klystrons = 38GW of pulsed power!

CLIC Klystron modulators main specs					
Pulsed voltage	V _{kn}	180	kV		
Peak nominal power	P _{out}	29	MW		
Rise/fall times	t _{rise}	3	μs		
Flat-top length	t _{flat}	140	μs		
Rep. rate	Rep _r	50	Hz		
Pulse repeatability	PPR	10-50	ppm		

Distribution grid layout optimization Active compensation of power fluctuation (new converters topologies) High efficiency, high bandwidth, high repeatable power electronics

HV fast pulse transformers design Highly repeatable HV measurements Redundancy, modularity, availability

Klystron modulator R&D

- CERN-ETHZ collaboration for design & delivery of a CLIC's Drive Beam klystron modulator
- Modulator installed, tested and ready for commissioning with klystron in building 112
- World première for precise 180 kV 30 MW pulse with 3μs rise/fall times & a "long" flat top (150μs) !
- Pulse stability better than 0.1 % !
- Collaboration with ETHZ successfully ended

- 4 years of R&D studies achievements:
 - Feasibility to create voltage pulse verified
 - Solutions found to decouple 39 GW of pulsed power from electrical grid
 - Optimal number of powering sectors found (For civil engineering)
 - Optimal grid layout for power distribution proposed
 - Proposal of a new very high repeatable / precise measuring system for high voltage pulses
 - Discovery of excellent R&D partners in Canada, UK, Italy, & Switzerland!

State of the art

Commercial MBK (low perveance) tubes with high efficiency.

Klystron efficiency vs. perveance

Bunch saturation issues.

End

Thanks for your interest

Stolen slides from:

F. Tecker, E. Jensen, R. Carter, S. Stapnes, R. Corsini, I. Syratchev, M. Seidel

Future Questions: steffen.doebert@cern.ch

What else ?

Operation, Reliability, Stability, Integration with LLRF and Acceleration Equipment

RF and HV Interlock chains

RF interlocks (Trips 1 Klystron)

•RF system consists of about 1000 interlocks

•Long periods (>>days), without RF trips.

•The RF system is very reliable with the present beam conditions, efforts will continue to prepare for the higher intensity runs...

clc

Operational Experience

RF System runs well -- few trips per year (4th dump cause in numbers, 10th in downtime) → still need for increase of reliability

Klystron Exchange for "age profile"

- exchanged 1 for multipactor, 1 for gun short
- 1 dead due to collector design issue (ongoing collector boiler replacement)
- Tetrode Replacement
 - 5 dead per year
- Arc Detector Deployment
- Oil Re-conditioning
- R Module replacement

Spare slides

CAS, Zürich, March 3rd , 2018

Steffen Döbert, BE-RF

Accelerating gradient ?

Why very high frequency ?

LEP-Cavity 350 MHz

CLIC-Cavity 30 GHz

Klystron modulator R&D

Modulator schematic layout (thesis. S. Blume)

Takes advantage from 'mobility' of electrons in vacuum

Klystron Test Stand

Location: CERN Bldg: 112

Recently installed 2-beam acceleration module in CTE3 (according to latest CLIC design)

H

main beam

drive beam

6.0

0