Lattice Design II: Insertions
Bernhard Holzer, DESY

Reminder:

... Particle trajectories in a storage ring are defined by the external fields of the
magnets that are placed in the lattice.

The coordinates of this trajectories (with respect to the closed orbit) can be
calculated using a matrix formalism that describes the effect of the lattice elements.

equation of motion X I

X"+K(s)*x=0

particle coordinates
x(s) | _ m
x'(s) X,

e.g. matrix for a quadrupole lens:

1
c S ——si
M=(C' SJ= cosy Rs:nl//
-V K siny  cosy

y=s*VK K=—k+yp1




Dispersion:

describes the motion of particles with
momentum deviation Ap/p

x"+K(s)*x=lA—p

particles with different momentum are
—>special solution of the inhomogeneous running on a different closed orbit
differential equation:

X c s o X Ap( D
x,(s)=D(s)*Ap/ p x, s= c s |y 0+; D

- extend the matrices to include D, D’

cC S D X
— C' S' D' % x'
0 0 1 Q
S P 0

Iy

Dispersion:

the dispersion function D(s) is (...obviously) defined by the focusing properties of the
lattice and from position s, to s in the lattice it is given by:

s 1 s 1

D(s)=S(s)*C(E)dE—C(s)*S(F)dE

! weak dipoles > large bending radius - small dispersion

Example: Drift

we 1 wr 1o
M,,=[‘ f] D(s)=5(s) Iwcmdi—as) J&@S(s)di

01
=0 =0
1 70
>M,=({0 1 0 ...in similar way for quadrupole matrices,
00 1 '!'in a quite different way for dipole matrix (see appendix)




1! we have now introduced dipole magnets in the FoDo:
- we still neglect the weak focusing contribution 1/p?

-> but take into account 1/p for the dispersion effect

1.) calculate the matrix of the FoDo half cell in thin lens approximation:

in analogy to the derivations of g, ﬁ

* thin lens approximation: f= ﬁ >/ 0
g4
* length of quad negligible le=0, = [,= %L
% 1 1
start at half quadrupole @ — =—
fo2f
1 0 1 7 1 0
matrix of the half cell M s cn = 1 1 * (0 D] * =1 1
S f
... neglecting as usual the c S 1- KTD l D
weak focusing Mhalf o = - f
term of the dipole c s =Ly 1+ ly
I f

2.) calculate the dispersion terms D, D" from the matrix elements

e Y e —cCos) L (%
D(s)=S(s) Sj‘op(E)C(s)ds” C(s) sj'op(g)S(s)dE

1% s 14

D(ly)=0,%—*f|1=2 |ds -{ 1= "2 |

(ts) o f]s( f]
3

(e )J»[Z _f{]_[l_@)*l*;J;_f;_fﬁ ty
e’ f)p 2 p 2p 20 2fp

f 2




in full analogy on derives for D":

l l
D(l,)="2|1+_2
(“) p( 2f J
and we get the complete matrix including / Ik
the Dispersion terms D, D 1--= ¢, 2
cC S D ! 2p
’ ’ ’ =0y ty £y ly
Myyca =|C" S" D'|=| > 1+-=% 2(1+_%)
0 0 1 f fop 2
0 0 1
boundary conditions for the transfer from
the center of the foc. to the center of the o0 e T e
defoc. quadrupole \\‘\\TX: ~/-A./////
& ik o \\\\\\\_/////// TR -
E (1 ]
v n St 1 H
D D 1 I |
0|=m,, %0 o s o |
1 1 - - i - =
. . . v . 2
Dispersion in a FoDo Cell ~ D=Dh(1- Ly ) Ly
foo2p
- 0=—£7"2*f)+£—"(1+£—‘1)
f p 2f
2 (1+ fsinE) v g2 (1- 151'” E) where p denotes the phase
D=2 = 2 D=-"2 = 2 2 advance of the full cell
p sinzg p sinzg and //f'=sin(w'2)
10 10 i \ Nota bene:
8 :
b ) \ - ! small dispersion needs strong focusing
ma{) N\ — large phase advance
Din)
""" D !l <> there is an optimum phase for small 3
2 B
05, B B s I1! ...do you remember the stability criterion?
0 30 60 9 120 150 180 s trace = cos i <> < 180°
1 i 180
1M1 .. life is not easy




Reminiszenz: Synchrotron light sources

the emittance of an electron beam in a storage ring:

1
—H

L )

* 32\@mc7 J<1> ]
AR

y = relativistic gamma,
R = bending radius of the dipole magnets
J, = damping partition number = 1

H(s)= D"+ 20aDD'+ D"

,,low emittance lattices” = low Dispersion lattices
(see lecture of A.Streun in this school)

Chromaticity Correction in lattice cells
Remember Definition AQ=¢&* 4p
p

1 JZ
in FoDo Cells:  $ear = — p * tan 5

Example HERA: p~90°, number ofcells 104 — £~-33
including mini beta sections ...~ &~ -42...-80
Ap/p = 0.5*%103 >AQ ~ 0.04
compare to nominal tune: Q =0.292

Chromaticity Correction in lattice cells

1.) sort the particles as a function of their momentum x(s)=D(s)* &
p
2.) creat tic field with linear i ing gradient 9B,
.) create magnetic field with linear increasing gradien 2= g'*x, g'=const
x

normalised to the momentum: mg,, = g'/(p/e)




3.) calculate resulting quadrupol strength g =,y *x=m, *D '
pol pol
p

4.) resulting overall chromaticity of the storage ring

o = ;—;HK(s)ﬂ(s)— m(s)D(s)B(s)}ds

Hints for the lattice design:
! avoid large B values
! provide space where D(s) #0
for installation of 6pol magnets
i put sextupoles at places where
is large = close to the quads
!"1in general ¢ is created at locations in
the lattice where it cannot be corrected
(...as D(s)=0)
BABE o easy part of LEP lattice for & correction

Lattice Design: Insertions
L.) ... the most complicated one: the drift space

Question to the auditorium: what will happen to the beam parameters a, f, v if we
stop focusing for a while ...?

B ¢t -25¢ s (B
a| =|-cC' sC+s'C -SS' || @
y), L - s ) \y),

transfer matrix for a drift: M= ¢ s - L s
c s 01

ﬂ(s) = ﬂo - 2a0S+ 7052
»0% refers to the position of the last
o(s)=0,—7,s lattice element
s refers to the position in the drift
Y(s)=1Y, 7




beam waist: a. =0

location of the waist:

'
|
'
|
|

v

given the initial conditions o, {3, v, where is the point of smallest beam dimension in the
drift ... or at which location occurs the beam waist ?

beam waist: a(l)=0 - a,=7,%1¢
=%
Yo

beam size at that position:

r(L)=7, _1+ae’()_ 1 0)=1
am=o} = = s T e p= )y,

B-Function in a Drift:
let‘s assume we are at a symmetry point in the center of a drift.
ﬂ(s) = ﬂo —20s + 70sz

_l+ea” 1

B B

as al] = 0’ — }/0

and we get for the B function in the neighborhood of the symmetry point

ﬂ(s)=/30+;1

Nota bene:

1.) this is very bad !!!

2.) this is a direct consequence of the
conservation of phase space density
(... in our words: ¢ = const) ... and
there is no way out.

3.) Thank you, Mr. Liouville !!!

Joseph Liouville,
= 1809-1882




If we cannot fight against Liouvuille theorem ... at least we can optimise

Optimisation of the beam dimension:

[2

ﬂ(f)=ﬂo+ﬂ0

Find the B at the center of the drift that leads to the lowest maximum f at the end:

A , !
ap _

- B,=1

ag, "0

- ﬁ=2ﬂ0

) )

N———N
U y U

If we choose p, = £ we get the smallest f at the end of the drift and
the maximum  is just twice the distance ¢

... clearly there is another problem !!!

Example: Luminosity optics at HERA: " =18 cm
for smallest ., we have to limit the overall length
of the drift to L =2*¢
L=36cm

But: ... unfortunately ... in general
high energy detectors that are
installed in that drift spaces
are a little bit bigger ...




The Mini-f Insertion:

Event rate of a collider ring for a reaction with cross section oy : R=0 R *L

Luminosity: given by the total stored beam currents and the beam size at the
collision point (IP)

_ 1 . L1
ame’f,b o . *0,

20 Ge /27E 3oV

b

{5250061
14

How to create a mini f insertion:

* symmetric drift space (length adequate for the experiment)

* quadrupole doublet on each side (as close as possible)

* additional quadrupole lenses to match twiss parameters to
the periodic cell in the arc

Mini-f Insertions: Betafunctions

A mini- insertions is always a kind of special symmetric drift space.
>greetings from Liouville

at a symmetry point f is just the ratio of beam dimension and beam divergence.

... which gives us the size of p at the first quadrupole 2
s

*
B(s)=p + F
size of B at the second quadrupole lens (in thin lens approx):
... after some transformations and a couple of beer ...

__________ 2 2
Yo O ““““ X ﬂ(s)=[1+lf21J *B +ﬂ1*[ll+lz+llfllzj




Mini-p Insertions: Phase advance

1
By definition the phase advance is given by: = B(s) ds
2
Now in a mini f§ insertion: B(s)=pB,(1 +os ﬂ
0
IR tre
- D(s)= = arctan —
o 1+ / ﬂo B,
90
9 20 7 . .
50 [ summing the drift spaces on both
30 | sides of the IP the phase advance
10 .o il
D(s) -1o of a mini P insertion is
:gg approximately 7, in other words:
o J the tune will increase by half an
~90-99 integer.

4 —32724°16 708 0 08 16 24 32 4
—4 s

are there any problems ??

sure there are...

* large B values at the doublet quadrupoles = large contribution to
chromaticity & ... and no local correction

-1

* aperture of mini B quadrupoles
can limit the luminosity

beam envelope at the first
mini f quadrupole lens in
the HERA proton storage ring

[res—

0

1100

«field quality and magnet stability most critical at the high p sections

orbit distortion due to a kick:

_\B(s) .4 <) _
x(s)= cos(¢(s) 0(s) - nQ )5

-> keep distance ,,s to the first mini § quadrupole as small as possible

10



Mini-p Insertions: some Guide lines

Optics guide line:
* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (triplet ?) as close as possible
* introduce additional quadrupole lenses to match the beam parameters
a, B, v, D, D’ o the values at hte beginning of the arc structure

parameters to be optimised & matched to the periodic solution:

a., B.
o, B, N 8 individually powered quadrupole magnets are
D, D' needed to match the insertion (...at least)

Dispersion Suppressors

There are two comments of paramount importance about dispersion:
| it is nasty
I1it is not easy to get rid of it.

remember: oscillation amplitude for a particle  y(5)= xs(s)+D(s)* 4
with momentum deviation

Example: o. =118 um, O'; =32 um

beam size at the' 1P in HERA D(s)=15m

average dispersion in the arc:

typical momentum spread: 4 ~5%107 = xp = 0.75 mm
P

Dispersion spoils the luminosity and i / ﬂy

leads to additional stop bands e ians

(synchro-betatron resonances) in
RF sections and at the [P

|

optical functions of a FoDo
Cell without dipoles: D=0

T

11



Dispersion Suppressors | VAN

Optical functions in a FoDo Cell
including the effect of the bending _

magnets

There are several ways to suppress the dispersion function in a lattice:

I.) The straight forward one: use additional quadrupole lenses to
match the optical parameters ... including the D(s), D’(s) terms

optical functions to match:
D(s), D'(s)
B.(s)a(s) —s 6 additional quadrupole
lenses required

B,(s)a,s)

Dispersion Suppressors

Optical functions in a FoDo Cell

*Dispersion suppressed by
2 quadrupole lenses,
f and a restored to the values of
the periodic solution by 4
additional quadrupoles

periodic FoDo ! matching section ! Dispersion free
structure including 6 additional section, regular FoDo
quadrupoles without dipoles
Advantage:

' Disadvantage:

. easy, .

! flexible: it works for any phase . additional power supplies needed

advance per cell (— expensive)
! requires stronger quadrupoles

! does not change the geometry

of the storage ring,
! due to higher f values: more aperture

required

! can be used to match between different lattice

structures (i.e. phase advances)

12



Dispersion Suppressors  1I.) The clever way: half bend schemes

Desperate statement of the lecturer:

the mathematical derivation of the dispersion suppressor is a bit awkward.
—>put it into the appendix
—>state the following conditions:

., nd, strength of suppressor dipoles is half as strong
- 26, sin’( 2 )=6,. 5 = 15 as that of arc dipoles
supr 2 arc
- sin(n®.)=0 .
(n®c) in the n suppressor cells the phase advance
n®. =k*r, k=13 has to accumulate to a odd multiple of 7
c = ) = LyIy eee
Example: R A /‘\ \ /N “ A A 2
P \ / \ / A // \ / \\ // \\\ / / \\ / \\ / E
[ \\\ // \ \\ ) LN/ \\ / \ // N ! \/
phase advance in the arc @ = 60° ™ ’ \“/ - : h
number of suppr. cells n=3 ir
6suppr =12 6slrc

WSPERSON %2

T
» —

1
T

Dispersion Suppressors I11.) The clever way: missing bend schemes

at the end of the arc: add m cells without dipoles followed by » regular arc cells.
condition for dispersion suppression:

n 1
in"C=", k=02

dm+n T sin =—, =4U,z... or

T = (2k+ 1) 2 2
1
sin—S=—, k=13..
" A /,\ ~ N A N\ 8 / Example:

\\\ // \, /N / 5 SN Loy /N / \« /:

JON A S A N/ N/ N/ .

V. v \/ W L AV Y% "/ - phase advance in the arc ®.= 60°

_ number of suppr. cells m=1
- number of regular cells n=1




Resume*

1.) Dispersion in a FoDo cell:

1 1. u
small dispersion < large bending radius be ﬁ . (1+ Estn 2 )
short cells Y/
p sin* =
strong focusing

2.) Chromaticity of a cell:

small ¢ <> weak focusing £, = ~Li{ic()B(s)=m(s)D(s)B(s )} ds
small p 4
3.) Position of a waist at the cell end: a
= Z == l)= 1
0, By = values at the end of the cell 7 B Aﬂ

4.) B function in a drift B(s)=B,—20,5+7,s"

5.) Mini B insertion

small p<> short drift space required B()=B,+ ﬁ
phase advance = 180 ° !

0

Appendix: some usefull formulae in more detail

Dispersion in a FoDo Cell: ?F! !

L
in analogy to the derivations of g, p
. L 1
* thin lens approximation: f= ﬁ >> ]Q
0

* length of quad negligible [

* start at half quadrupole

* *
M Halfcen T op M B M oF

14



matrix of the half cell M= [

Y ——
=
N
*
VR
o it
. ~
N
*
7/ N\
\l‘,'_'—

o
N

... neglecting as usual the cC s 1-= /
weak focusing M = — S
term of the dipole s ;l 1+ L

D(1)=S(1) JP(S)C(s)ds c(l) jp(s)S(s)ds

1. s l 1 ¢
D(l)=1l*—*||l-=ds—1—-= |*—*|sd
= i f)s( f) Jsds

P
:Thlj{kl}lu;J:ll_f+f
pl 2f f)p 2 p 2fp 20 2fp

lZ
D(l)=
=5,

Expression for D’

’ —_ Qr * 1 g - * 1 S
D'(1)=5'(l) jp(F)C(s)ds“ Cc'(l) jp(i)S(s)ds”

St=
f’ 0
{H1}1”,1)+iw*f
f 27 F p 2
1N, P
_(p 7/7)( 27 o
:L lz
p 2fp

15



Complete Matrix including the terms for D, D*:

-t !
cC s D f 2p
y a7 -1 1 1 )
0 o0 1 f fop 2f
0 0 1
require boudary conditions for half cell solution:
D ) - b:ﬁ(l—%)+2l (1)
o e l Ip !
1 1 — O0=—=*D+—(1+-=) (2)
f P 2f

W-2)*F - p=p+L Yl

2p p 2f
p=p+ LV, T _p ¥
2p p 2p P
put result in (1) Lo Ty sl
p f 2p
r,r_pl
p 2p f
p 20 p 2f
remember: L = sing
f 2
—>l3=£(1+fsinﬁ) sp=1 (l—lSi"E)
p 2 P 22
[):Ll—(1+1sin£)
pl 2 2
I 1+fsinﬁ I l—fsinE
Pl sink Pl simh

16



Dispersion: Example: Dipole sector magnet y=>*% JK k=0,
K describes in this case only the weak focusing term in the dipole
1 cosﬁ psin L
c S cos ——sin
M=( ]:[ LN » Pf ZP

c s . .
-VK siny  cosy ——sin—  cos—
N p

D(s)=8(s)*|

1 o 1
p(5) CIE=C TS o

l l L
= sinz(J +p* cos(] * (cos() -1)
p P P P P

el (e ) of)

)S(?)di

Dispersion: Example: Dipole sector magnet
14 .l
D(l)=p*(1-cos—) D'(1)=sin(—)
P p

Using these expressions for D and D* the extended matrix of a
dipole sector magnet is given by:

cosy  psiny  p(l—cosy)
M =|—siny  cosy siny Y=
yol
0 0 1

17



The Mini-B Insertion: value of the p function at the position of the second lens

thin lens approximation for the mini f doublet:

marices for the elements in the P

mini-p region go W _____________ m_,

0 1 0 1 I I
1 0 1 0
M, =1 1, M, =-1, -1/f,=hor. fok. lens
. A
1 1 0
o=l -1 |« B}l 1 1
ol 0 1), 1] o1
1+;7’ l‘+l’+%
M=y 17 T
—— e R I

transformation of twiss parameters: Jij c -28C S’ B
a| =[-CC'" SC'+§8'C -SS§'|*|l«a
¥, c” -25'c' §” Y,

B(s)=C*B -25C*a,+8 *y,

now we add the boundary condition _1+a 1
for a symmetric problem:o, =0 = V= B - B
0 0

B(s)=C"*p,+8/B,

using the matrix elements calculcated above for the doublet:

i 1 1Y
=(1+=2)*B +—|1 +1 +**
ﬂ(s) ( .f;) ﬂo ﬂo(l 2 f]

1




Dispersion Suppressors

... the calculation in full detail (for purists only)

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres)

* periodic solution of the arc periodic 3, periodic dispersion D
* section of the dispersion suppressor  periodic 3, dispersion vanishes
* FoDo cells without dispersion periodic B, D=D"=0

Test—FGS Bing fur Zauthen tyve_zsuthen. zeutellosi2, Lf——0.541 frmez

INAVAVAVAV NV %

LEERAC

2.) calculate the dispersion D in the periodic part of the lattice

transfer matrix of a periodic cell:

\/’Z:(cos¢+a0sin¢) BB, sin ¢

(o, —0g)cos ¢ — (1+ a0 )sin @ &(w”)_a sin ¢

\/ﬂsﬁo ﬂS

055 =

for the transformation from one symmetriy point to the next (i.e. one cell) we have:
® .= phase advance of the cell, a = 0 at a symmetry point. The index “c” refers to the periodic
solution of one cell.

cC S D cos®@. PB.sin®. D(Il)
M., =(C" S D'|= isin D. cos®. D'(1)
0 0 1 ¢ 0 0 1

The matrix elements D and D¢ are given by the C and S elements in the usual way:

*I 1 g Y — *I g 3
D(l)=S(I) _‘[p(i)C(s)ds c(l) j;p(F)S(s)ds
D'(1)=S"(1)*[ ! C(5)d¥ —C'(1)* | ! g5 )ax

1 p(5) 1 p(5)

19



here the values C(/) and S(/) refer to the symmetry point of the cell (middle of the quadrupole) and the
integral is to be taken over the dipole magnet where p # 0. For p = const the integral over C(s) and S(s) is
approximated by the values in the middle of the dipole magnet.

) T )

“Om

Q
T

D2

Transformation of C(s) from the symmetry point in the foc. quad to the center of the dipole:

B B D . D
C,= |""cosADP= |“"cos(—Ct¢@, ) S, =B.B:sin(—<t9,)
B. Be 2 2

where B is the periodic B function at the beginning and end of the cell, B, its value at the middle of
the dipole and ¢, the phase advance from the quadrupole lens to the dipole center.

Now we can solve the intergal for D and D’:

w1 dv b1
D(l)=S(1) {p(i)C(s)ds C(l)*§

0p(§)S(F)dT€

D(1)= B sin@, * L+ %*cos(%i 0, )—cos D, * L JB.B. *sin(%i . )
P p

c

D(l)= 51/ﬂmﬂc{sin Qc[cos(%+ 0, )+ cos(%—(pm )]—

— cos ¢C|:sin( % +@, )+ sin( Q)Tc P )]}
I have put 8 = L/p for the strength of the dipole

; x+ x—
remember the relations cosx-+cosy=2 cos'ffil * cos——

. . . Xty X—
sinx+siny= 2s1n7727’)7*cas?f¥

D(l)= Jalﬂmﬂc{sin D * 2cos d;—c*cos @, —cos D * 2sin %*cos ¢m}
. ¢c » ¢C
D(1)=26./B,B; * cos @, 4 sin D * cos T*—cos [ *smT

remember:  sin2x =2sinx * cosx

2 . 2
cos2x = cos” x—sin" x

D(l)=26./B,B. * cos q)m{ZSin %*cosz%—(cosz%—sinz%)* sin %}

20



D(1)=28./B,B. * cos @, * sin %{2005‘2%—0052%+ sinz%}
D(l1)=26.B,B; *cos @, * sin%

in full analogy one derives the expression for D*:

D(1)=26.B, /B *cos @, * cos ¢2—‘

As we refer the expression for D and D* to a periodic struture, namly a FoDo cell we require
periodicity conditons:

D, D,
D'c|=M *| D'
1 1

and by symmetry: D/, =0

With these boundary conditions the Dispersion in the FoDo is determined:

D *cos®.+0.B,p. *cose, *2sin% =D,

A1) D.=48\B,B. *cos¢m/sin%

This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets.

3.) Calculate the dispersion in the suppressor part:

We will now move to the second part of the dispersion suppressor: The section where ... starting
from D=D*‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is
reduced to zero.

The goal will be to generate the dispersion in this section in a way that the values of the periodic cell
that have been calculated above are obtained.

_go,n (p’ﬂ

D./2
The relation for D, generated in a cell still holds in the same way:

*I 1 g ST — *I 1 ST S
D(l)=58(1) j;p(E)C(s)ds c(l) j;p(E)S(s)ds

21



as the dispersion is generated in a number of n cells the matrix for these 7 cells is

cosn®,  P.sinnd,. D,
-1
M, =M;=|—sinn®, cosn®d. D'

n
(o

0 0 1

replacing the integral over the n cells of the suppressor by the sum over the n cells we obtain for D:

D, = B, sin ndic*é'wr*ﬁcas( idic—ldiciq)m)* B, _
i=1 2 ﬂc
—cosn®, *5W, * Z”:«/,Bmﬁc * sin(idD,. —%@C te,)
i=1
. n . D no,o . @D
D, =./B,B. *sinn®, *51”, * 3 cos((2i _1)71%)_1/'3,”:& *5”4" *cosnd®, Y. sin((2i _1)71%)
i=1 i=1

. . R xX— X+ X —
remember:  sin x + sin y = 2sin X Vw ws,,,zj,’, cosx+cosy= Zcosféﬁ cos—'fzw

D,=6,,, *B.Bc*sinnd* gcos((Zi—l)%)*Zcos%, -

-0,,, *B.Bc* cosn¢cznjsin((2i— 1)%)* 2cosQ,
i=1

D,=26,,,*B.Bc *cos¢m{icos((2i—l)%)*sinn¢c - Z":sin((Zi—l)%)*cosn¢C}
i=1 i=1

sin nPc cos& sin nPc sinﬂ

D,=26,,, %\B.Bc*cosp, sinnd, % —cosn®,* —¢2
sin—< sin—<
2 2

_26,,,* BB *cosp,

. D
sin—<

2

D

n

{sin nd, *sinnfc *cosnfc —cosn®, *sinz%}

set for more convenience x = n®./2

_28,,,*B.Bc*cos o,
B D

sin —<
2

D, {sinlx*sinx*cosx—coslx*sinzx}

n

. . 2 . 2 o 2
D, {Zsmxcosx*cosxsmx—(cos X —sin” x)sin x}

n

_20,,, *B.B:*coso,
B D

sin —<
2

22



(42) p 20w BB T Co5Q, L nD

n

D
sin—< 2
2

b _ B "B

cosQ, . .
= “ % sinn®,

and in similar calculations:

This expression gives the dispersion generated in a certain number of 7 cells as a function of the dipole
kick & in these cells.

At the end of the dispersion generating section, the value obtained for D(s) and D*(s) has to be equal
to the value of the periodic solution:

—equating (41) and (42) gives the conditions for the matching of the periodic dispersion in the arc
to the values D = D= 0 afte the suppressor.

26, % BB * cos

Dn = sup r ml’c ¢m * st.nz n¢c — 6aw ﬂmﬂc * cos ¢m
@, 2 v @,

Stn 72 Stn 72

supr

in? ("L ) _
- 28, sin’( 5 )=9,. 5 =15

supr 2 arc

- sin(n®,)=0

and at the same time the phase advance in the arc cell has to obey the relation:

n®, =k*n, k=13,..
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