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Lattice Design II:  Insertions
Bernhard Holzer, DESY
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... Particle trajectories in a storage ring are defined by the external fields of the 
magnets that are placed in the lattice.
The coordinates of this trajectories (with respect to the closed orbit) can be 
calculated using a matrix formalism that describes the effect of the lattice elements.
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Reminder:

equation of motion

particle coordinates

e.g. matrix for a quadrupole lens:
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Dispersion:Dispersion:

describes the motion of particles with 
momentum deviation ∆p/p

p
px*)s(K''x ∆

ρ
1=+

�special solution of the inhomogeneous 
differential equation:

p/p*)s(D)s(xi ∆=

� extend the matrices to include D, D´
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particles with different momentum are 
running on a different closed orbit

Dispersion:
the dispersion function D(s) is (...obviously) defined by the focusing properties of the 
lattice and from position s0 to s in the lattice it is given by: 

!  weak dipoles � large bending radius � small dispersion

Example: Drift
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DM ...in similar way for quadrupole matrices,...in similar way for quadrupole matrices,
!!! in a !!! in a quite differentquite different way for way for dipole matrixdipole matrix (see appendix)(see appendix)
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Dispersion in a FoDo Cell:Dispersion in a FoDo Cell:

lD

QF QD

in analogy to the derivations of
∨

ββ ,ˆ

* thin lens approximation: Q
QK

f �
�

>>= 1

L, DQ 2
10 =→≈ ��

ff~ 2
11 =

* length of quad negligible

* start at half quadrupole

1.) calculate the matrix of the FoDo half cell in thin lens approximation:

L

llDD

!! we have now introduced dipole magnets in the FoDo:!! we have now introduced dipole magnets in the FoDo:
�� we still neglect the weak focusing contribution 1/we still neglect the weak focusing contribution 1/ρρ22

�� but take into account but take into account 1/1/ρρ for the dispersion effectfor the dispersion effect
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... neglecting as usual the  
weak focusing   
term of the dipole
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2.) calculate the dispersion terms D, D´ from the matrix elements

ρ2

2
D

D )(D �
� =

�−�=
S

S

S

S
s~d)s~(S

)s~(
*)s(Cs~d)s~(C

)s~(
*)s(S)s(D

00

11
ρρ



4

in full analogy on derives for D´:
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and we get the complete matrix including 
the Dispersion terms D, D‘

boundary conditions for the transfer from 
the center of the foc. to the center of the 
defoc. quadrupole
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Dispersion in a FoDo CellDispersion in a FoDo Cell
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where µ denotes the phase 
advance of the full cell
and l/f = sin(µ/2)

0 30 60 90 120 150 180
0

2

4

6

8

1010

0.5

D max µ( )

D min µ( )

1801 µ

∨

D

D̂

Nota bene:

!  small dispersion needs strong focusing
→ large phase advance

!! ↔ there is an optimum phase for small β

!!!  ...do you remember the stability criterion?
½ trace = cos µ ↔ µ < 180°

!!!! … life is not easy
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Reminiszenz: Synchrotron light sources

the emittance of an electron beam in a storage ring:
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)s(H
R

mc
x

x γε �=

γ = relativistic gamma,
R = bending radius of the dipole magnets
Jx = damping partition number ≈ 1

22 2 'D'DDD)s(H βαγ ++=

„low emittance lattices“ � low Dispersion lattices
(see lecture of A.Streun in this school)

Chromaticity Correction in lattice cellsChromaticity Correction in lattice cells

Remember Definition
p
p*Q ∆ξ∆ =

in FoDo Cells: 2
1 µ
π

ξ tan*Cell −=

Example HERA: µ ≈ 90° ,     number of cells 104   � ξ ≈ -33
including mini beta sections …� ξ ≈ -42…-80
∆p/p ≈ 0.5*10-3 �∆Q ≈ 0.04
compare to nominal tune:  Q = 0.292

Chromaticity Correction in lattice cellsChromaticity Correction in lattice cells

1.) sort the particles as a function of their momentum p
p*)s(D)s(x ∆=

2.) create magnetic field with linear increasing gradient const'g,x'*g
x

By ==
∂

∂

normalised to the momentum: m6pol = g´/(p/e)
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3.) calculate resulting quadrupol strength
p
p*D*mx*mK polpol

∆
66 ==

4.) resulting overall chromaticity of the storage ring

{ }ds)s()s(D)s(m)s()s(Ktotal � −−= ββ
π

ξ
4

1

Hints for the lattice design:Hints for the lattice design:

! avoid large β values

! provide space where D(s) ≠0
for  installation of 6pol magnets

!!  put sextupoles at places where β
is large �� close to the quadsclose to the quads

!!! in general ξ is created at locations in 
the lattice where it cannot be corrected
( … as D(s) = 0)

!!!! … life is not easy… life is not easy part of LEP lattice for ξ correction

Lattice Design: InsertionsLattice Design: Insertions

I.) ... the most complicated one: the drift space

Question to the auditorium: what will happen to the beam parameters α, β, γ if we
stop focusing for a while …?
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„0“ refers to the position of the last 
lattice element

„s“ refers to the position in the drift
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location of the waist:location of the waist:

given the initial conditions α0, β0, γ0: where is the point of smallest beam dimension in the 
drift … or at which location occurs the beam waist ?

beam waist: �� *)( 000 γαα =→=

0

0

γ
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)()l(
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γγ 11
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beam size at that position:

0

1
γβ =)( �

s

β beam waist: α = 0

l

ββ--Function in a Drift:Function in a Drift:

let‘s assume we are at a symmetry point in the center of a drift.

2
000 2 ss)s( γαββ +−=

as
00

2
0

00
110
ββ

αγα =+=→= ,

and we get for the β function in the neighborhood of the symmetry point

Nota bene: 
1.) this is very bad !!!
2.) this is a direct consequence of the

conservation of phase space density
(... in our words: ε = const) … and 
there is no way out.

3.) Thank you, Mr. Liouville !!!

! ! !! ! !

Joseph Liouville,
1809-1882

0

2

0 β
ββ s)s( +=
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Optimisation of the beam dimension:Optimisation of the beam dimension:

0

2

0 β
ββ �

� +=)(

Find the β at the center of the drift that leads to the lowest maximum β at the end:

If we cannot fight against Liouvuille theorem ... at least we can optimise

01 2
0

2

0

=−=
ββ

β �

d
ˆd !!

�=→ 0β

02ββ =→ ˆ

If we choose β0 = ℓ we get the smallest β at the end of the drift and 
the maximum β is just twice the distance ℓ

**

l l

β0

... clearly there is another problem !!!... clearly there is another problem !!!

Example: Luminosity optics at HERA: β* = 18 cm
for smallest βmax we have to limit the overall length 
of the drift to L = 2*ℓ
L = 36 cm

But: ... unfortunately ... in general 
high energy detectors that are 
installed in that drift spaces 
are a little bit bigger ...
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The MiniThe Mini--ββ Insertion:Insertion:

Event rate of a collider ring for a reaction with cross section σR : L*R Rσ=

Luminosity: given by the total stored beam currents and the beam size at the 
collision point (IP)

y
*

x
* *

I*I*
bfe

L
σσπ

21

0
24
1=

How to create a mini β insertion:

* symmetric drift space (length adequate for the experiment)
* quadrupole doublet on each side (as close as possible)
* additional quadrupole lenses to match twiss parameters to 

the periodic cell in the arc

MiniMini--ββ Insertions: Insertions: BetafunctionsBetafunctions

A mini-β insertions is always a kind of special symmetric drift space.
�greetings from Liouville

at a symmetry point β is just the ratio of beam dimension and beam divergence.
… which gives us the size of β at the first quadrupole

*
* s)s(

β
ββ

2
+=

*

*
**

'σ
σβα =→= 0

size of β at the second quadrupole lens (in thin lens approx):
… after some transformations and a couple of beer …

2

1

21
21

2

1

2 11 ��
�

�
��
�

�
+++��

�

�
��
�

�
+=

f
llll*

f
l)s( *

*

β
ββ

IPIP

**
l1 l2



10

Now in a mini β insertion:

MiniMini--ββ Insertions: Insertions: Phase advancePhase advance

By definition the phase advance is given by: �= ds
)s(

)s(
β

Φ 1

)s()s( 2
0

2

0 1
β

ββ +=

4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4 3.2 4
90
70
50
30
10
10
30
50
70
9090

90−

f L( )

44− L

summing the drift spaces on both 
sides of the IP the phase advance
of a mini β insertion is 
approximately π, in other words:
the tune will increase by half an 
integer.

Φ(s)

s

00
2
0

2
0 1

11
βββ

Φ Larctands
/s

)s(
L

=� +
=→

are there any problems ??are there any problems ??

sure there are...sure there are...

* large * large ββ values at the doublet values at the doublet quadrupolesquadrupoles �� large contribution to large contribution to 
chromaticity chromaticity ξξ …… and no local correctionand no local correction

* * aperture of mini aperture of mini ββ quadrupolesquadrupoles
can limit the luminositycan limit the luminosity

� −−= s~d)Q)s()s~(cos(
)s~(

)s~(*
Qsin
)s()s(x πφφ

ρ
β

π
β 1

2

•field quality and magnet stability most critical at the high β sections
orbit distortion due to a kick:

beam envelope at the first beam envelope at the first 
mini mini ββ quadrupolequadrupole lens in lens in 

the HERA proton storage ringthe HERA proton storage ring

� keep distance „s“ to the first mini β quadrupole as small as possible

{ }ds)s()s(K�
−= β

π
ξ

4
1
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MiniMini--ββ Insertions: some Guide linesInsertions: some Guide lines

Optics guide line: 
* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (triplet ?) as close as possible
* introduce additional quadrupole lenses to match the beam  parameters
α, β, γ, D, D’ o the values at hte beginning of the arc structure

parameters to be optimised & matched to the periodic solution:

→
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�

yx

xx

yy

xx

Q,Q
'D,D

,
,

βα
βα

8 individually powered quadrupole magnets are 
needed to match the insertion (...at least)

Dispersion SuppressorsDispersion Suppressors

There are two comments of paramount importance about dispersion:
!  it is nasty
!! it is not easy to get rid of it.

remember: oscillation amplitude for a particle 
with momentum deviation p

p*)s(D)s(x)s(x ∆
β +=

Example: 
beam size at the IP in HERA
average dispersion in the arc:
typical momentum spread:

Dispersion spoils the luminosity and 
leads to additional stop bands 
(synchro-betatron resonances)  in 
RF sections and at the IP

optical functions of a FoDo 
Cell without dipoles: D=0

xβ yβ

0=D

m,m *
y

*
x µσµσ 32118 ==

mm.x
*

p
p

m.)s(D
D 750

105

51

4 ≈→
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�

≈

=
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Optical functions in a FoDo Cell
including the effect of the bending
magnets

2
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xβ

yβ

Dispersion SuppressorsDispersion Suppressors

There are several ways to suppress the dispersion function in a lattice:

I.) The straight forward one: use additional quadrupole lenses to 
match the optical parameters ... including the D(s), D´(s) terms

optical functions to match: 

→
�
�

�
�

�

)s(),s(
)s(),s(
)s('D),s(D

yy

xx

αβ
αβ 6 additional quadrupole 

lenses required

Optical functions in a FoDo Cell

•Dispersion suppressed by 
2 quadrupole lenses,

•β and α restored to the values of    
the periodic solution by 4  
additional  quadrupoles

periodic FoDo 
structure

matching section
including 6 additional
quadrupoles

Dispersion free 
section, regular FoDo 
without  dipoles

Advantage:  
! easy,
! flexible: it works for any phase 

advance per cell 
! does not change the geometry

of the storage ring, 
! can be used to match between different lattice 

structures (i.e. phase advances)

Dispersion SuppressorsDispersion Suppressors

Disadvantage:

! additional power supplies needed

(→ expensive)

! requires stronger quadrupoles 

! due to higher β values: more aperture 
required
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Dispersion SuppressorsDispersion Suppressors II.) The clever way: half bend schemes

Desperate statement of the lecturer:
the mathematical derivation of the dispersion suppressor is a bit awkward.

�put it into the appendix
�state the following conditions:  

arcrsup

C

arc
C

rsup

)nsin(

)n(sin
δδ

Φ

δΦδ
2
1

0
2

2 2

=
��

�
�

�

=→

=→

...,,k,*kn C 31== πΦ

strength of suppressor dipoles is half as strong
as that of arc dipoles

in the n suppressor cells the phase advance
has to accumulate to a odd multiple of π

Example: 

phase advance in the arc ΦC = 60°
number of suppr. cells        n = 3 
δsuppr = 1/2 δarc

III.) The clever way: missing bend schemesDispersion SuppressorsDispersion Suppressors

at the end of the arc: add m cells without dipoles followed by n regular arc cells.
condition for dispersion suppression:

2
12

2
2 πΦ )k(nm

C +=+

...,k,nsin

or...,k,nsin

C

C

31
2
1

2

20
2
1

2

=−=

==

Φ

Φ

Example:

phase advance in the arc ΦC = 60°
number of suppr. cells     m = 1 
number of regular cells  n = 1
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Resume‘Resume‘
1.) Dispersion in a FoDo cell: 

small dispersion ↔ large bending radius
short cells
strong focusing 2

22
11

2

2

µ

µ

ρ sin

)sin(
*D̂

+
= �

2.) Chromaticity of a cell: 
small ξ ↔ weak focusing

small β
{ }ds)s()s(D)s(m)s()s(Ktotal � −−= ββ

π
ξ

4
1

3.) Position of a waist at the cell end: 
α0 β0 = values at the end of the cell

0

0

γ
α=�

0

1
γβ =)( �

5.) Mini β insertion
small β↔ short drift space required
phase advance ≈ 180 ° 0

2

0 β
ββ �

� +=)(

4.) β function in a drift 2
000 2 ss)s( γαββ +−=

Dispersion in a FoDo Cell:
lD

L

QF QD

in analogy to the derivations of
∨

ββ ,ˆ

* thin lens approximation:
Q

Q

l
Kl

f >>= 1

Ll,l DQ 2
10 =→≈

ff~ 2
11 =

* length of quad negligible

* start at half quadrupole

22
QFBQDCellHalf M*M*MM =

Appendix: some usefull formulae in more detail
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matrix of the half cell
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... neglecting as usual the  
weak focusing   
term of the dipole
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Complete Matrix including the terms for D, D‘:
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require boudary conditions for half cell solution:
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∨

)()
f~

l(lD̂*
f~
l 2

2
10

2
++−=→

ρ

f~*)()( 21 − )
f~

l(f~llD̂D
2

1
2

2

+−+=→
∨

ρρ

ρρρρ
f~lD̂lf~llD̂D −=+−+=

∨

22

22

ρρ 2

2l
f~
lD̂D̂f~lD̂ +−=−→put result in (1)
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Dispersion: Example: Dipole sector magnet
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Dispersion: Example: Dipole sector magnet

Using these expressions for D and D‘ the extended matrix of a Using these expressions for D and D‘ the extended matrix of a 
dipole sector magnet is given by:dipole sector magnet is given by:
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The MiniThe Mini--ββ InsertionInsertion::

thin lens approximation for the mini β doublet:
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now we add the boundary condition 
for a symmetric problem:α0 = 0
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using the matrix elements calculcated above for the doublet:using the matrix elements calculcated above for the doublet:
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Dispersion SuppressorsDispersion Suppressors
... the calculation in full detail (for purists only)

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres) 

* periodic solution of the arc                    periodic β, periodic dispersion D
* section of the dispersion suppressor      periodic β, dispersion vanishes
* FoDo cells without dispersion periodic β, D = D´ = 0

2.) calculate the dispersion D in the periodic part of the lattice

transfer matrix of a periodic cell:
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for the transformation from one symmetriy point to the next (i.e. one cell) we have: 
ΦC = phase advance of the cell, α = 0 at a symmetry point. The index “c” refers to the periodic 
solution of one cell. 
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The matrix elements D and D‘ are given by the C and S elements in the usual way:
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here the values C(l) and S(l) refer to the symmetry point of the cell (middle of the quadrupole) and the 
integral is to be taken over the dipole magnet where ρ ≠ 0. For ρ = const the integral over C(s) and S(s) is 
approximated by the values in the middle of the dipole magnet.

φm

ΦC /2

-φm

dipole magnet dipole magnet

Transformation of C(s) from the symmetry point in the foc. quad to the center of the dipole:

)cos(cosC m
C

C

m

C

m
m ϕΦ

β
β∆Φ

β
β ±==

2
)sin(S m

C
Cmm ϕΦββ ±=

2

where βC is the periodic β function at the beginning and end of the cell, βm its value at the middle of 
the dipole and φm the phase advance from the quadrupole lens to the dipole center.

Now we can solve the intergal for D and D’: 
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remember the relations 
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remember: xcos*xsinxsin 22 =
xsinxcosxcos 222 −=
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�
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22222
22 222 CCCCC

mCm sin*)sin(coscos*sincos*)l(D ΦΦΦΦΦϕββδ

I have put δ = L/ρ for the strength of the dipole 
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in full analogy one derives the expression for D‘:

2
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As we refer the expression for D and D‘ to a periodic struture, namly a FoDo cell we require 
periodicity conditons:
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and by symmetry: 0=C'D

With these boundary conditions the Dispersion in the FoDo is determined:

C
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mCmCC Dsin*cos*cos*D =+
2

2 ΦϕββδΦ

2
C

mCmC sin/cos*D Φϕββδ=

This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets.

3.) Calculate the dispersion in the suppressor part:

We will now move to the second part of the dispersion suppressor: The section where ... starting 
from D=D‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is 
reduced to zero.
The goal will be to generate the dispersion in this section in a way that the values of the periodic cell 
that have been calculated above are obtained.
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dipole magnet dipole magnet
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The relation for D, generated in a cell still holds in the same way:

(A1)
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replacing the integral over the n cells of the suppressor by thereplacing the integral over the n cells of the suppressor by the sum over the n cells we obtain for D:sum over the n cells we obtain for D:
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and in similar calculations: 
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This expression gives the dispersion generated in a certain number of n cells as a function of the dipole 
kick δ in these cells.
At the end of the dispersion generating section, the value obtained for D(s) and D‘(s) has to be equal 
to the value of the periodic solution: 

�equating (A1) and (A2) gives the conditions for the matching of the periodic dispersion in the arc 
to the values D = D‘= 0 afte the suppressor.  
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and at the same time the phase advance in the arc cell has to obey the relation:

...,,k,*kn C 31== πΦ


