

Relativity for Accelerator Physicists

Christopher R. Prior

Fellow and Tutor in Mathematics

Trinity College, Oxford

Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K.

Overview

- **The principle of special relativity**
- q Lorentz transformation and its consequences
- q4-vectors: position, velocity, momentum,invariants. Einstein's equation $E=mc^2$
- q Examples of the use of 4-vectors
- Inter-relation between β and γ , momentum and energy
- g Electromagnetism and Relativity

Reading

- W. Rindler: Introduction to Special Relativity (OUP 1991)
- Image: General ScienceImage: Construction of Construction ConstructionImage: General ScienceImage: Construction of Construction ConstructionImage: General ScienceImage: Construction of Construction ConstructionImage: General ScienceImage: Construction of Const
- N.M.J. Woodhouse: Special Relativity (Springer 2002)
- qA.P. French: Special Relativity, MITIntroductory Physics Series (Nelson Thomes)

Historical background

- Groundwork by Lorentz in studies of electrodynamics, with crucial concepts contributed by Einstein to place the theory on a consistent basis.
- ^q Maxwell's equations (1863) attempted to explain electromagnetism and optics through wave theory
 - S light propagates with speed $c = 3 \times 10^8$ m/s in "ether" but with different speeds in other frames
 - S the ether exists solely for the transport of e/m waves
 - S Maxwell's equations not invariant under Galilean transformations
 - S To avoid setting e/m apart from classical mechanics, assume light has speed *c* only in frames where source is at rest
 - S And the ether has a small interaction with matter and is carried along with astronomical objects

Nonsense! Contradicted by:

- Aberration of star light (small shift in apparent positions of distant stars)
- qFizeau's 1859 experiments on velocity of light in
liquids
- Michelson-Morley 1907 experiment to detect motion of the earth through ether
- g Suggestion: perhaps material objects contract in the direction of their motion $L(v) = L_0 \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}$

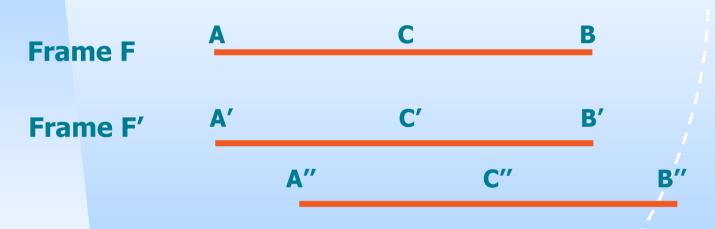
This was the last gasp of ether advocates and the germ of Special Relativity led by Lorentz, Minkowski and Einstein.

The Principle of Special Relativity

- A frame in which particles under no forces move with constant velocity is "inertial"
- Consider relations between inertial frames where measuring apparatus (rulers, clocks) can be transferred from one to another.
- g Behaviour of apparatus transferred from F to F' is independent of mode of transfer
- ^q Apparatus transferred from F to F', then from F' to F'', agrees with apparatus transferred directly from F to F''.
- **The Principle of Special Relativity states that all physical** *laws take equivalent forms in related inertial frames, so that we cannot distinguish between the frames.*

Simultaneity

Two clocks A and B are synchronised if light rays emitted at the same time from A and B meet at the mid-point of AB



G Frame F' moving with respect to F. Events simultaneous in F cannot be simultaneous in F'.
 G Simultaneity is not absolute but frame dependent.

The Lorentz Transformation

- Must be linear to agree with standard Galilean transformation in low velocity limit
- qPreserveswave fronts ofpulses of light,

i.e. $P \equiv x^2 + y^2 + z^2 - c^2 t^2 = 0$ whenever $Q \equiv x'^2 + y'^2 + z'^2 - c^2 t'^2 = 0$

^q Solution is the **Lorentz transformation** from frame F(t,x,y,z) to frame F'(t',x',y',z') moving with velocity *v* along the *x*-axis:

$$t' = \gamma \left(t - \frac{vx}{c^2} \right)$$

$$x' = \gamma (x - vt)$$

$$y' = y$$

$$z' = z$$

where $\gamma = \left(1 - \frac{v^2}{c^2} \right)^{-1/2}$

CERN School on Small — Accelerators

Outline of Derivation

Set
$$t' = \alpha t + \beta x$$

 $x' = \gamma x + \delta t$
 $y' = \varepsilon y$
 $z' = \varsigma z$
Then $P = kQ$
 $\Leftrightarrow c^2 t'^2 - x'^2 - y'^2 - z'^2 = k(c^2 t^2 - x^2 - y^2 - z^2)$
 $\Rightarrow c^2 (\alpha t + \beta x)^2 - (\gamma x + \delta t)^2 - \varepsilon^2 y^2 - \varsigma^2 z^2 = k(c^2 t^2 - x^2 - y^2 - z^2)$
Equate coefficients of x, y, z, t .
Isotropy of space $\Rightarrow k = k(\vec{v}) = k(|\vec{v}|) = \pm 1$
Apply some common sense (e.g. $\varepsilon, \varsigma, k = +1$ and not -1)

Consequences: length contraction Frame F z' A K Rod B X'

Rod AB of length L' fixed in F' at x'_A , x'_B . What is its length measured in F?

Must measure positions of ends in F at the same time, so events in F are (t,x_A) and (t,x_B) . From Lorentz:

$$x'_{A} = \gamma(x_{A} - vt) \qquad x'_{B} = \gamma(x_{B} - vt)$$
$$L' = x'_{B} - x'_{A} = \gamma(x_{B} - x_{A}) = \gamma L > L'$$

Moving objects appear contracted in the direction of the motion

CERN School on Small Accelerators

Consequences: time dilatation

- qClock in frame F at point with coordinates (x, y, z)at different times t_A and t_B
- In frame F' moving with speed v, Lorentztransformation gives

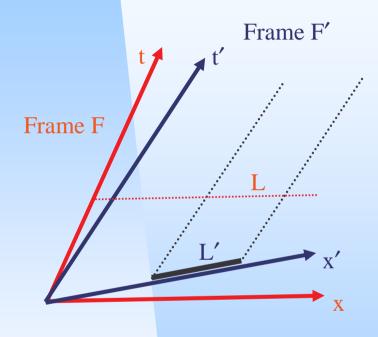
$$t'_{A} = \gamma \left(t_{A} - \frac{vx}{c^{2}} \right) \qquad t'_{B} = \gamma \left(t_{B} - \frac{vx}{c^{2}} \right)$$

$$\Delta t' = t'_B - t'_A = \gamma (t_B - t_A) = \gamma \Delta t > \Delta t$$

Moving clocks appear to run slow

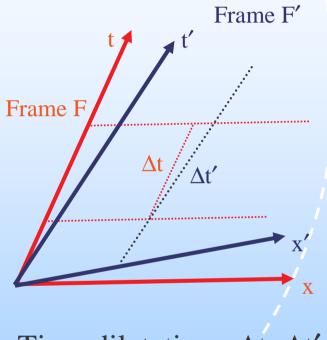
CERN School on Small Accelerators

Schematic Representation of the Lorentz Transformation



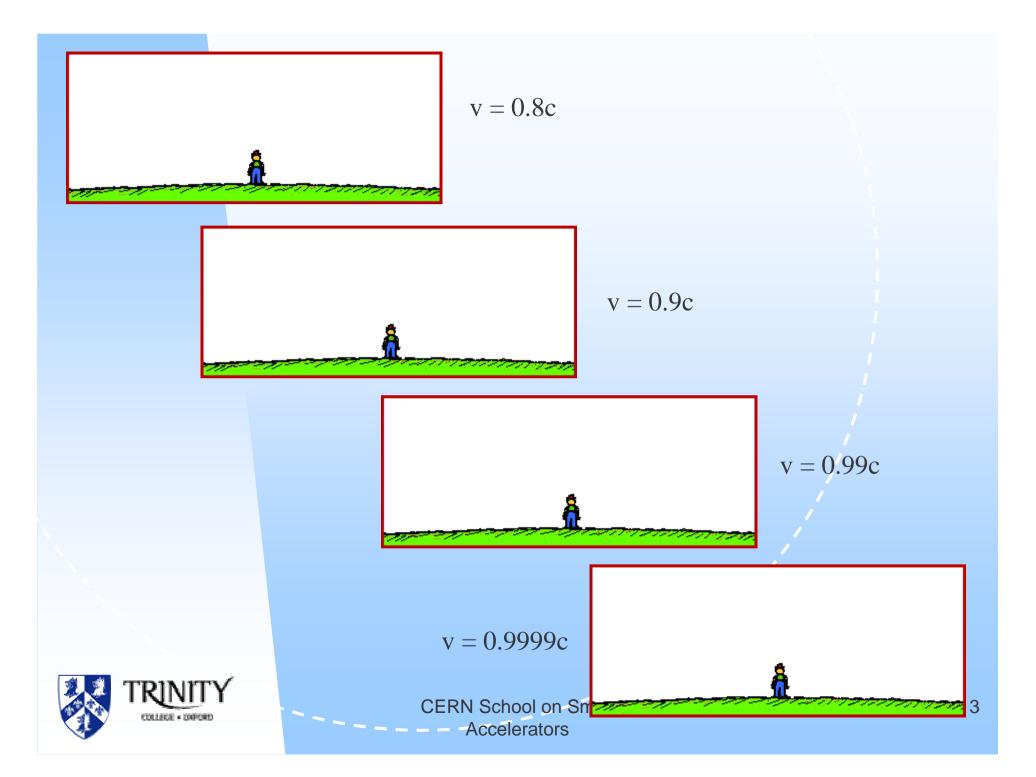
Length contraction L<L'

Rod at rest in F'. Measurement in F at fixed time t, along a line parallel to x-axis



Time dilatation: $\Delta t < \Delta t'$

Clock at rest in F. Time difference in F' from line parallel to x'-axis



Example: Rocket in Tunnel

- q All clocks synchronised.
- ^q Observers X and Y at exit and entrance of tunnel say the rocket is moving, has contracted and has length

$$\frac{100}{\gamma} = 100 \times \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}} = 100 \times \left(1 - \frac{3}{4}\right)^{\frac{1}{2}} = 50 \text{m}$$

^q But the tunnel is moving relative to the ends A and B of the rocket and obesrvers here say the rocket is 100 m in length but the tunnel has contracted to 50 m

Questions

If X's clock reads zero as the
 A exits tunnel, what does Y's
 clock read when the B goes
 in?

Moving rocket length 50m, so B has still 50m to travel before his clock reads 0. Hence clock reading is $-\frac{50}{v} = -\frac{100}{\sqrt{3}c} \approx -200 \,\mathrm{ns}$

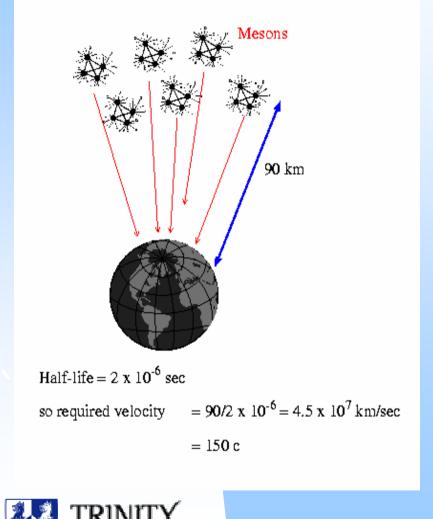
- qWhat does the B's clock read
as he goes in?
- qWhere is the B when hisclock reads 0?

To the B, tunnel is only 50m long, so A is 50m past the exit as B goes in. Hence clock reading is

 $+\frac{50}{v} = +\frac{100}{\sqrt{3}c} \approx +200 \,\mathrm{ns}$

B's clock reads 0 when A's clock reads 0, which is as A exits the tunnel. To A and B, tunnel is 50m, so B is 50m from the entrance in the rocket's frame, or 100m in tunnel frame.

Example: π -mesons



- ^q Mesons are created in the upper atmosphere, 90km from earth. Their half life is $\tau=2 \mu s$, so they can travel at most $2 \times 10^{-6}c=600m$ before decaying. So how do more than 50% reach the earth's surface undecayed?
- a Mesons see distance contracted by γ, so $v\tau \approx \left(\frac{90}{\gamma}\right)$ km

 $v(\gamma \tau) \approx 90 \,\mathrm{km}$

g Both give

$$\frac{\gamma v}{c} = \frac{90 \text{ km}}{c \tau} = 150, \quad v \approx c, \quad \gamma \approx 150$$

16

Invariants

- An invariant is a quantity that has the same value in all inertial frames.
 S Examples: phase of a wave, rate of radiation of moving charged particle
- ^q Lorentz transformation is based on invariance of

$$c^{2}t^{2} - (x^{2} + y^{2} + z^{2}) = (ct)^{2} - \vec{x} \cdot \vec{x}$$

- ^q Write this in terms of the 4-position vector $\mathbf{X} = (ct, \vec{x})$ as $\mathbf{X} \cdot \mathbf{X}$
 - If $X = (x_0, \vec{x}), Y = (y_0, \vec{y}),$ define the invariant product $X \cdot Y = x_0 y_0 \vec{x} \cdot \vec{y}$
- q Fundamental invariant (preservation of speed of light):

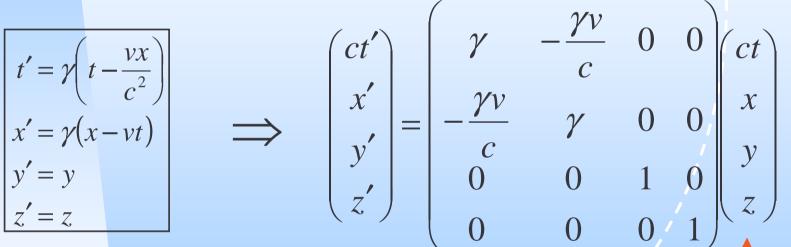
$$c^{2}\Delta t^{2} - \Delta x^{2} - \Delta y^{2} - \Delta z^{2} = c^{2}\Delta t^{2} \left(1 - \frac{\Delta x^{2} + \Delta y^{2} + \Delta z^{2}}{c^{2}\Delta t^{2}}\right)$$
$$= c^{2}\Delta t^{2} \left(1 - \frac{v^{2}}{c^{2}}\right) = c^{2} \left(\frac{\Delta t}{\gamma}\right)^{2}$$

- q Write $\Delta \tau = \Delta t / \gamma$, τ is the proper time
- g When v=0, $\tau = t$, so τ is the time in the rest-frame.

CERN School on Small - - - Accelerators

4-Vectors

The Lorentz transformation can be written in matrix form



An object made up of 4 elements which transforms like X is called a 4-vector

(analogous to the 3-vector of classical mechanics)

COLLEGE + DOPORD

CERN School on Small Accelerators

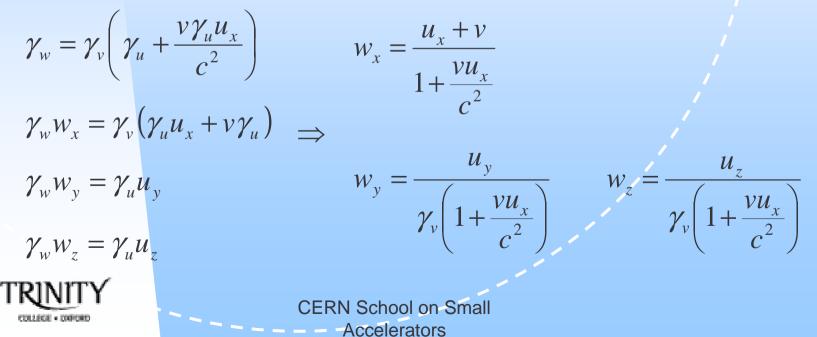
Position 4-vector $\mathbf{X} = (ct, \vec{x})$

4-Vectors in Special Relativity Mechanics $V = \frac{dX}{d\tau} = \gamma \frac{dX}{dt} = \gamma \frac{d}{dt}(ct, \vec{x}) = \gamma(c, \vec{v})$ q Velocity: g Note invariant $V \cdot V = \gamma^2 (c^2 - \vec{v}^2) = c^2$ $P = m_0 V = m_0 \gamma(c, \vec{v}) = (mc, \vec{p})$ g Momentum $m = m_0 \gamma$ is relativistic mass $\vec{p} = m_0 \gamma \vec{v} = m \vec{v}$ is the 3 - momentum

> CERN School on Small Accelerators

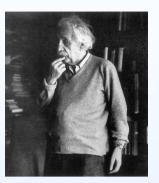
Example of Transformation: Addition of Velocities

- A particle moves with velocity $\vec{u} = (u_x, u_y, u_z)$ in frame F, so has 4-velocity $V = \gamma_u(c, \vec{u})$
- Add velocity $\vec{v} = (v, 0, 0)$ by transforming to frame F' to get new velocity \vec{w} .
- q Lorentz transformation gives $(t \leftrightarrow \gamma, \quad \vec{x} \leftrightarrow \gamma \vec{u})$



20

Einstein's relation



q Momentum invariant $P \cdot P = m_0^2 (V \cdot V) = m_0^2 c^2$

- q Differentiate $P \cdot \frac{dP}{d\tau} = 0 \implies V \cdot \frac{dP}{d\tau} = 0$
- q From Newton's 2nd Law expect 4-Force given by $F = \frac{dP}{d\tau} = \gamma \frac{dP}{dt} = \gamma \frac{d}{dt} (mc, \vec{p}) = \gamma \left(c \frac{dm}{dt}, \frac{d\vec{p}}{dt} \right) = \gamma \left(c \frac{dm}{dt}, \vec{f} \right)$ q But $V \cdot \frac{dP}{d\tau} = 0 \implies V \cdot F = 0$ Rate of doing work, $\vec{v} \cdot \vec{f} =$ rate of change of kinetic energy Therefore kinetic energy Therefore kinetic energy $T = mc^2 + \text{constant} = m_0 c^2 (\gamma - 1)$ $E = mc^2$ is total energy CERN School on Small CERN School on Small $T = mc^2 + \text{constant} = m_0 c^2 (\gamma - 1)$

Basic quantities used in Accelerator calculations

Relative velocity $\beta = \frac{V}{c}$

Velocity $v = \beta c$

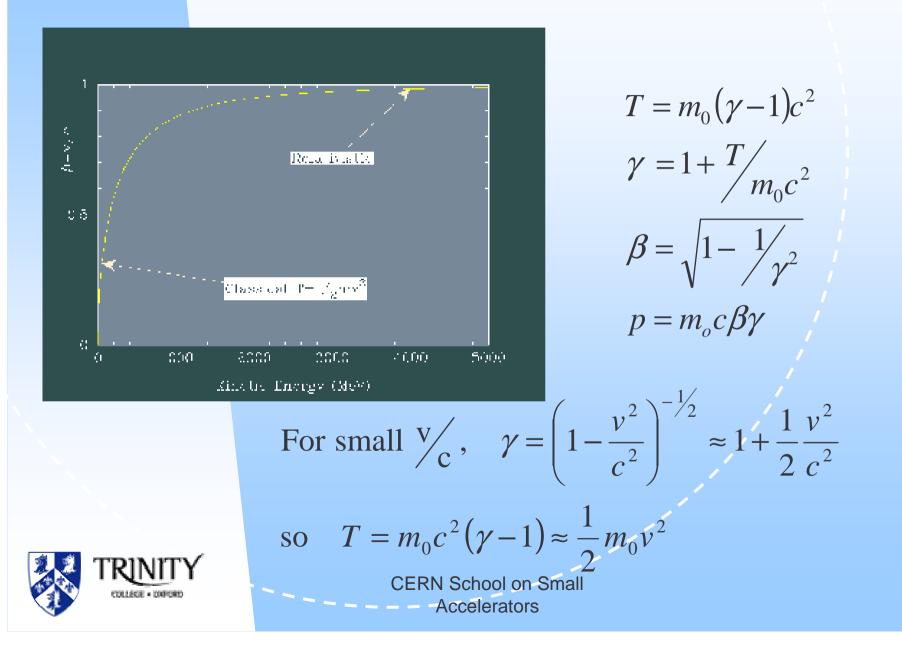
Momentum $p = mv = m_0 \gamma \beta c$

Kinetic energy $T = (m - m_0)c^2 = m_0 c^2 (\gamma - 1)$ $\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}} = \left(1 - \beta^2\right)^{-\frac{1}{2}}$

$$(\beta\gamma)^2 = \frac{\gamma^2 v^2}{c^2} = \gamma^2 - 1 \implies \beta^2 = \frac{v^2}{c^2} = 1 - \frac{\gamma^2}{\gamma}$$

CERN School on Small — Accelerators 2

Velocity as a Function of Energy



23

Relationships between small variations in parameters ΔE , ΔT , Δp , $\Delta \beta$, $\Delta \gamma$

$$(\beta\gamma)^{2} = \gamma^{2} - 1$$

$$\Rightarrow \beta\gamma\Delta(\beta\gamma) = \gamma\Delta\gamma$$

$$\Rightarrow \beta\Delta(\beta\gamma) = \Delta\gamma \qquad (1)$$

$$\frac{1}{\gamma^{2}} = 1 - \beta^{2}$$

$$\Rightarrow \frac{1}{\gamma}\Delta\gamma = \beta\Delta\beta \qquad (2)$$

$$\frac{\Delta p}{p} = \frac{\Delta(m_0 \gamma \beta c)}{m_0 \gamma \beta c} = \frac{\Delta(\beta \gamma)}{\beta \gamma}$$
$$= \frac{1}{\beta^2} \frac{\Delta \gamma}{\gamma} = \frac{1}{\beta^2} \frac{\Delta E}{E}$$
$$= \gamma^2 \frac{\Delta \beta}{\beta}$$
$$= \frac{\gamma}{\gamma + 1} \frac{\Delta T}{T} \quad \text{(exercise)}$$

	$\frac{\Delta\beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\Delta E}{E} = \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta\beta}{\beta} =$	$\frac{\Delta\beta}{\beta}$	$\frac{\frac{1}{\gamma^2} \frac{\Delta p}{p}}{\frac{\Delta p}{p} - \frac{\Delta \gamma}{\gamma}}$	$\frac{1}{\gamma(\gamma+1)}\frac{\Delta T}{T}$	$\frac{\frac{1}{\beta^2 \gamma^2} \frac{\Delta \gamma}{\gamma}}{\frac{1}{\gamma^2 - 1} \frac{\Delta \gamma}{\gamma}}$
$\frac{\Delta p}{p} =$	$\gamma^2 \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\gamma}{\gamma+1}\frac{\Delta T}{T}$	$rac{1}{eta^2}rac{\Delta\gamma}{\gamma}$
$\frac{\Delta T}{T} =$	$\gamma(\gamma+1)\frac{\Delta\beta}{\beta}$	$\left(1+\frac{1}{\gamma}\right)\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\gamma}{\gamma-1}\frac{\Delta\gamma}{\gamma}$
$\begin{array}{c} \frac{\Delta E}{E} \\ \frac{\Delta \gamma}{\Delta \gamma} \end{array} =$	$\frac{(\beta\gamma)^2 \frac{\Delta\beta}{\beta}}{(\gamma^2 - 1)^{\Delta\beta}}$	$\frac{\beta^2 \frac{\Delta p}{p}}{\Delta p \Delta \beta}$	$\left(1-rac{1}{\gamma} ight)rac{\Delta T}{T}$	$\frac{\Delta\gamma}{\gamma}$
$\frac{1}{\gamma} =$	$(\gamma^2 - 1) \frac{1}{\beta}$	$\frac{1}{p} - \frac{1}{\beta}$		1

4-Momentum Conservation

^q Equivalent expression for 4-momentum $P = m_0 \gamma(c, \vec{v}) = (mc, \vec{p}) = \left(\frac{E}{C}, \vec{p}\right)$

q Invariant
$$m_0^2 c^2 = P \cdot P = \frac{E^2}{c^2} - \vec{p}^2$$
 $\frac{E^2}{c^2} = m_0^2 c^2 + \vec{p}^2$

 \P Classical momentum
conservation laws \rightarrow
conservation of 4-
momentum. Total 3-
momentum and total
energy are conserved.

 $\sum_{\text{particles,i}} P_i = \text{constant}$ $\Rightarrow \sum_{\text{particles,i}} E_i \text{ and } \sum_{\text{particles,i}} \vec{p}_i \text{ constant}$

Example of use of invariants

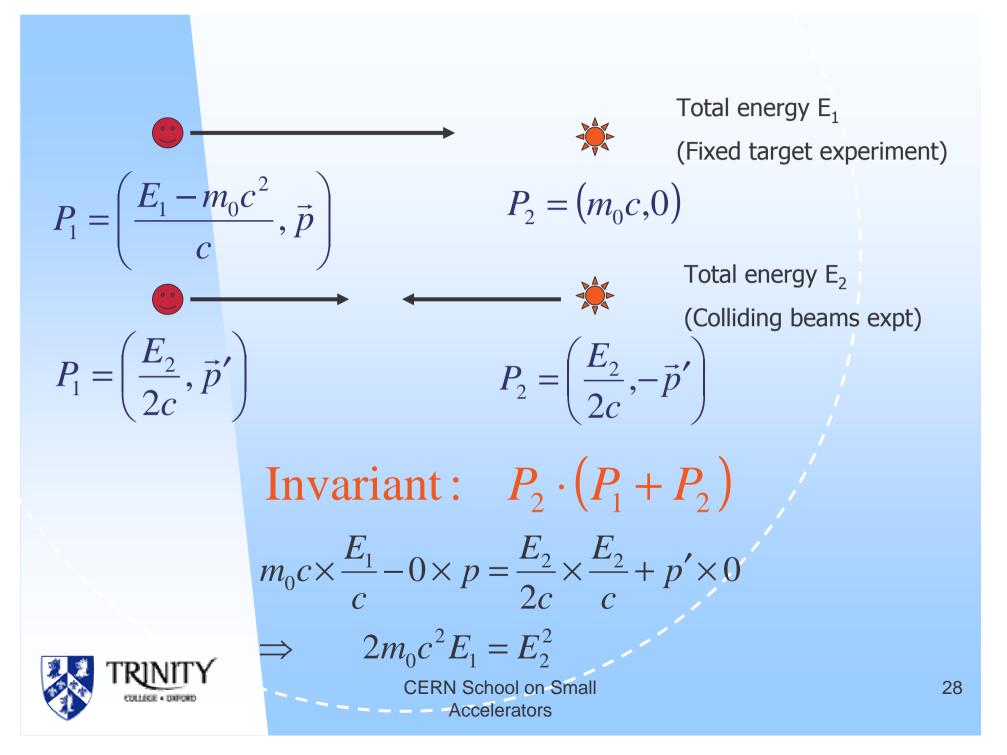
 \mathbf{q} Two particles have equal rest mass \mathbf{m}_0 .

§ Frame 1: one particle at rest, total energy is E_1 .

§ Frame 2: centre of mass frame where velocities are equal and opposite, total energy is E_2 .

Problem: Relate E_1 to E_2

CERN School on Small — — Accelerators



Electromagnetism and Relativity

g Maxwell's equations are relativistically invariant

$$7 \cdot \vec{B} = 0 \quad \nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \quad \text{so}$$
$$7 \cdot \vec{D} = \rho \quad \nabla \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{j} \quad \text{ch}$$

$$\vec{B} = \mu_0 \vec{H} \qquad \vec{D} = \varepsilon_0 \vec{E}$$

source - free

charge and current densities

in vacuum
$$\mathcal{E}_0 \mu_0 = \frac{1}{c^2}$$

q Lorentz force law:

 $\vec{f} = q \left(\vec{E} + \vec{v} \wedge \vec{B} \right)$ for single particle charge q $\vec{f} = \rho \vec{E} + \vec{j} \wedge \vec{B}$ for charge distribution

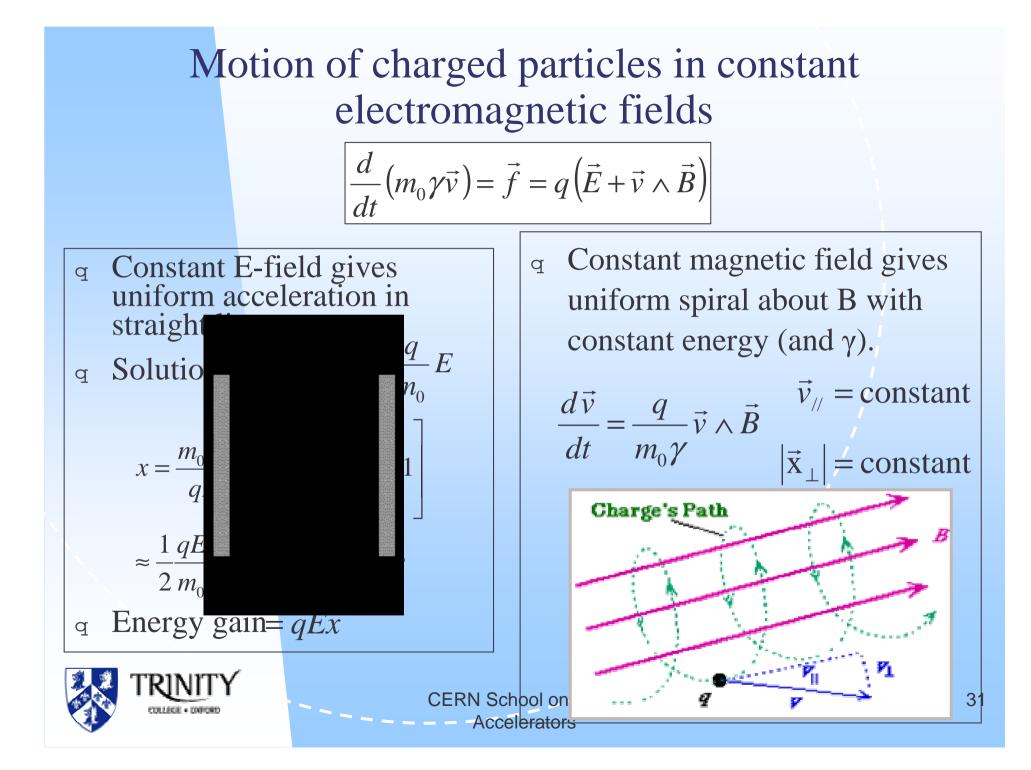
CERN School on Small — Accelerators

Lorentz force law

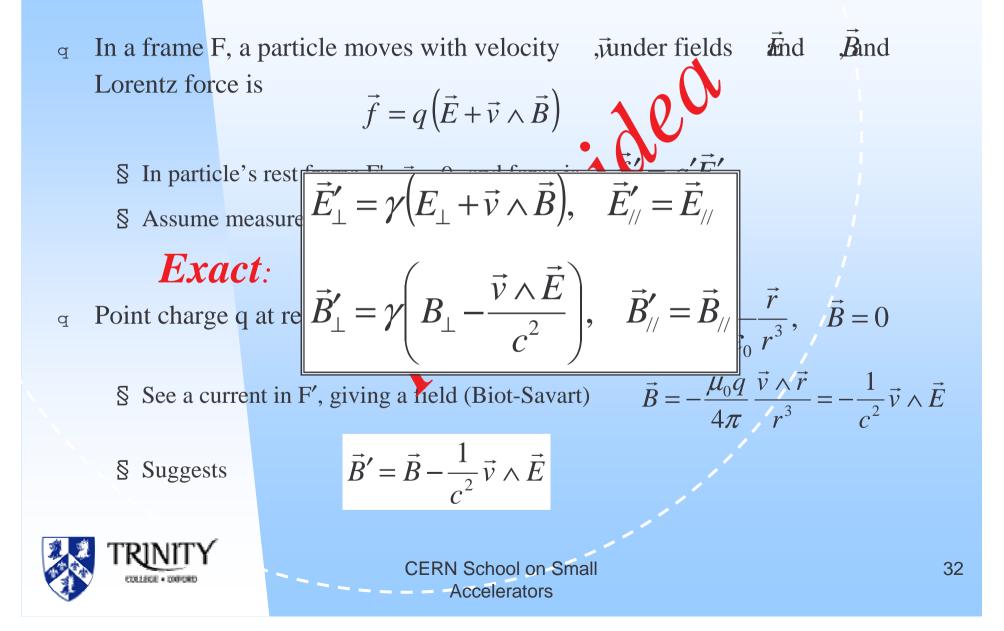
g Relativistic equation of motion

§ 4-vector form: $F = \frac{dP}{d\tau} \Rightarrow \gamma \left(\frac{\vec{v} \cdot \vec{f}}{c}, \vec{f}\right) = \gamma \left(\frac{1}{c} \frac{dE}{dt}, \frac{d\vec{p}}{dt}\right)$ § 3-vector component: $\frac{d}{dt} \left(m_0 \gamma \vec{v}\right) = \vec{f} = q \left(\vec{E} + \vec{v} \wedge \vec{B}\right)$

S Lorentz force derives naturally from relativistic 4-vector (4×4 matrix) formulation of Maxwell's equations and is not an additional hypothesis.

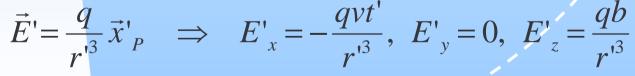


Relativistic Transformations of E and B



Electromagnetic Field of a Single Particle

Charged particle moving along x-axis of Frame F a Frame F Frame F' **Observer** P Origins coincide at t=t'=0b charge q q In F', P is at $\vec{x}'_{P} = (-vt', 0, b), \text{ so } |\vec{x}_{p}| = r' = \sqrt{b^{2} + v^{2}t'^{2}}, \quad t'_{P} = \gamma \left(t_{p} - \frac{vx_{p}}{c^{2}}\right) = \gamma t_{P}$ q And fields are only electrostatic (B=0), given by



CERN School on Small — Accelerators **Transform** to laboratory frame F:

- $E_{x} = E'_{x} = -\frac{q\gamma vt}{(b^{2} + \gamma^{2}v^{2}t^{2})^{3/2}} \qquad B_{y} = -\frac{\gamma v}{c^{2}}E'_{z} = -\frac{\beta}{c}E_{z}$ $E_{y} = 0 \qquad B_{x} = B_{z} = 0$ $E_{z} = \gamma E'_{z} = \frac{q\gamma b}{(b^{2} + \gamma^{2}v^{2}t^{2})^{3/2}}$ $q \text{ As } v \rightarrow c, \ \beta \rightarrow 1, \text{ and magnetic induction } cB_{y} \approx -E_{z}$
- At non-relativistic energies, $\gamma \approx 1$, and restores the Biot-Savart law: $\vec{v} \wedge \vec{r}$

$$\vec{B} \propto q \, \frac{v \wedge r}{r^3}$$

Electromagnetic Field of a Beam of Particles

- \mathbf{q} Coasting beam, momentum $p\pm p$
- In effective rest frame, see only an electrostatic field, E'_{\perp} , and $B'_{\perp}=0$
- **Transform** to laboratory frame: $E_{//} = E'_{//} = 0$, $E_{\perp} = \gamma E'_{\perp}$

$$B_{//} = B'_{//} = 0, \quad B_{\perp} = \gamma \frac{\vec{v} \times \vec{E'}_{\perp}}{c^2}$$

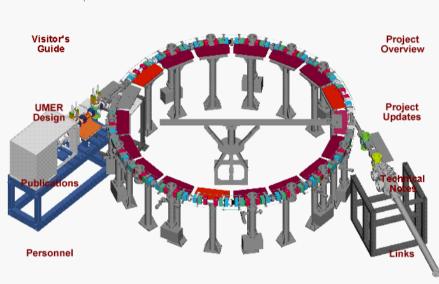
35

^q So particle in beam is affected by a space charge force proportional to $(\vec{E} + \vec{v} \times \vec{P}) = c \left(\vec{E} + \vec{v} \times \vec{E}' \right) - c \left(1 - v^2 \right) \vec{E}'$

$$(E + v \times B)_{\perp} = \gamma \left(E'_{\perp} + v \times \frac{1}{c^2} \right) = \gamma \left(1 - \frac{1}{c^2} \right) E'_{\perp}$$

Electrostatic repulsion between particles minus Magnetostatic attraction between thin current wires
CERN School on Small

University of Maryland Electron Ring



The Electron Ring is being constructed in the Institute for Research in Electronics and Applied Physics

A small ring used to explore aspects of beam dynamics, including effects of strong space-charge forces in the beam.

CERN School on Small — Accelerators

Effect of Space Charge on an Intense Beam

Injected beam in Proposed Fermilab Booster

