

Beam Diagnostics

Ulrich Raich CERN AB - BDI (Beam Diagnostics and Instrumentation)

U. Raich CERN Accelerator School 2005

1

Introduction

An accelerator can never be better than the instruments measuring its performance!

Course Overview

- Generalities
- Intensity measurements
 - Faraday Cup
 - AC current transformer
 - DC current transformer
- Profile measurements
 - TV screens
 - SEMgrids
 - Wire scanners
- Emittance
 - Phase space scans
 - Pepperpot
- Position measurements
- U. Raich CERN Accelerator School 2005

Different uses of beam diagnostics

Regular crude checks of accelerator performance

- Beam Intensity
- Radiation levels

Standard regular measurements

- Emittance measurement
- Trajectories
- Tune

 Sophisticated measurements e.g. during machine development sessions

- May require offline evaluation
- May be less comfortable

U. Raich CERN Accelerator School 2005

Diagnostic devices and quantity measured

Instrument	Physical Effect	Measured Quantity	Effect on beam
Faraday Cup	Charge collection	Intensity	Destructive
Current Transformer	Magnetic field	Intensity	Non destructive
Wall current monitor	Image Current	Intensity Longitudinal beam shape	Non destructive
Pick-up	Electric/magnetic field	Position	Non destructive
Secondary emission monitor	Secondary electron emission	Transverse size/shape, emittance	Disturbing, can be destructive at low energies
Wire Scanner	Secondary particle creation	Transverse size/shape	Slightly disturbing
Scintillator screen	Atomic excitation with light emission	Transverse size/shape (position)	Destructive
Residual Gas monitor	Ionization	Transverse size/shape	Non destructive

Required Competence in a beam diagnostics group

- Some beam physics in order to understand the beam parameters to be measured and to distinguish beam effects from sensor effects
- Detector physics to understand the interaction of the beam with the sensor
- Mechanics
- Analogue signal treatment
 - Low noise amplifiers
 - High frequency analogue electronics
- Digital signal processing
- Digital electronics for data readout
- Front-end and Application Software

Layout of a Faraday Cup

- Electrode: 1 mm stainless steel
- Only low energy particles can be measured
- Very low intensities (down to 1 pA) can be measured
- Creation of secondary electrons of low energy (below 20 eV)
- Repelling electrode with some 100 V polarisation voltage pushes secondary electrons back onto the electrode

U. Raich CERN Accelerator School 2005

Schema: V. Prieto

Faraday Cup

Electro-static Field in Faraday Cup

In order to keep secondary electrons with the cup a repelling voltage is applied to the polarization electrode

Since the electrons have energies of less than 20 eV some 100V repelling voltage is sufficient

Energy of secondary emission electrons

- With increasing repelling voltage the electrons do not escape the Faraday Cup any more and the current measured stays stable.
- At 40V and above no decrease in the Cup current is observed any more

Faraday Cup application Testing the decelerating RFQ

Antiproton decelerator

- Accelerate protons to 24 GeV and eject them onto a target
- Produce antiprotons at 2 GeV
- Collect the antiprotons and cool them
- Decelerate them and cool them
- Output energy: 100 MeV

In order to get even lower energies:

- Pass them through a moderator
 - High losses
 - Large energy distribution
- => Build a decelerating RFQ

13

THE CERN ACCELERATOR SCHOOL

U. Raich CERN Accelerator School 2005

Setup for charge state measurement

The spectrometer magnet is swept and the current passing the slit is measured

U. Raich CERN Accelerator School 2005

Measuring charge state distribution

U. Raich CERN Accelerator School 2005

15

Charge state distribution measured with a Faraday Cup on a heavy ion source

Scan of Bending magnet Current with extraction voltage 20.5kV - 11/04/03 -JCh

U. Raich CERN Accelerator School 2005

16

Histogram contributed by R. Scrivens

Faraday Cup with water cooling

17

Current Transformers

Fields are very low

Capture magnetic field lines with cores of high relative permeability

(CoFe based amorphous alloy Vitrovac: μ_r = 10⁵)

Beam current

$$L_{\text{beam}} = \frac{\text{qeN}}{\text{t}} = \frac{\text{qeN}\beta\text{c}}{1} \qquad L = \frac{\mu_0\mu_r}{2\pi}lN^2\ln\frac{r_0}{r_i}$$

U. Raich CERN Accelerator School 2005

18

The distant and the mer

Principle of a fast current transformer

Diagram by H. Jakob

The transformer installed in the machine

Needs Magnetic Shielding

U. Raich CERN Accelerator School 2005

21

Magnetic shielding

- Shield should extend along the vacuum chamber length > diameter of opening
- Shield should be symmetrical to the beam axis
- Air gaps must be avoided especially along the beam axis
- Shield should have highest µ possible but should not saturate

Calibration of AC current transformers

- The transformer is calibrated with a very precise current source
- The calibration signal is injected into a separate calibration winding
- A calibration procedure executed before the running period
- A calibration pulse before the beam pulse measured with the beam signal

23

Current transformer and its electronics

U. Raich CERN Accelerator School 2005

24

Photo: GSI Darmstatt

Display of transformer readings

- Transformers in a transfer line
- Calculated losses trigger a *watchdog*
- Display distributed via video signal

The DC current transformer

- AC current transformer can be extended to very long droop times but not to DC
- Measuring DC currents is needed in storage rings
- Must provide a modulation frequency
- Takes advantage of non/linear magnetisation curve

Modulation of a DCCT without beam

B=f(t)

U. Raich CERN Accelerator School 2005

28

 $U = NA \frac{dB}{dt}$ $B = \frac{\int Udt}{NA} + B_0$

Modulation current has only odd harmonic frequencies since the signal is symmetric

Modulation current difference signal with beam

- Difference signal has 2ω_m
- ω_m typically 200 Hz 10 kHz
- Use low pass filter with $\omega_c << \omega_m$
- Provide a 3rd core, normal AC transformer to extend to higher frequencies

30

Photo of DCCT internals

31

Interaction of particles with matter

- Coulomb interaction
- Average force in s-direction=0
- Average force in transverse direction <> 0
- Mostly large impact parameter
 => low energy of ejected
 electron
- Electron mostly ejection transversely to the particle motion

Bethe Bloch formula

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \frac{Z_T}{A_T} \rho \frac{Z_p^2}{\beta^2} \left[\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 \right]$$

• with the following constants:

NA: Avogadro's number m_e and r_e : electron rest mass and classical electron radius c: speed of light

• the following target material properties:

p: material density

 A_T and Z_T : the atomic mass and nuclear charge

• and the particle properties:

Z_p: particle charge

β: the particle velocity and $\gamma = \sqrt{1 - \beta^2}$

Dependance on Z_p^2

High energy loss a low energies

Heavy ions at low energy are stopped within a few micro-meters All energy is deposited in a very small volume

U. Raich CERN Accelerator School 2005 34

Scintillating Screens

35

- Method already applied in cosmic ray experiments
- Very simple
- Very convincing
- Needed:
- Scintillating Material
- TV camera
- In/out mechanism
- Problems:
- Radiation resistance
- Heating of screen (absorption of beam energy)
- Evacuation of electric charges

U. Raich CERN Accelerator School 2005

Transparencies on screens by T. Lefevre

Frame grabber

 For further evaluation the video signal is digitized, read-out and treated by program

Test for resistance against heat-shock

Degradation of screen

Degradation clearly visible However sensitivity stays essentially the same

Screen mechanism

• Screen with graticule

In/out mechanisms

Rotary mechanism driven by electric motor

Mechanism driven pneumatically

U. Raich CERN Accelerator School 2005

40

Profile measurements

• Secondary emission grids (SEMgrids)

When the beam passes secondary electrons are ejected from the ribbons

The current flowing back onto the ribbons is Measured

Electrons are taken away by polarisation voltage

One amplifier/ADC chain channel per ribbon

SEMgrids with wires

U. Raich CERN Accelerator School 2005

42

Photos received from C. Dutriat

Profiles from SEMgrids

Projection of charge density projected to x or y axis is Measured

One amplifier/ADC per wire Large dynamic range

Resolution is given by wire distance

Used only in transfer lines

Wire Scanners

A thin wire is quickly moved across the beam Secondary particle shower is detected outside the vacuum chamber on a scintillator/photo-multiplier assembly Position and photo-multiplier signal are recorded simultaneously

U. Raich CERN Accelerator School 2005

Problems at low energy

• Secondary particle shower intensity in dependence of primary

Wire scanner profile

Problems at low energy

• Secondary particle shower intensity in dependence of primary

Wire scanners and partially stripped ions

Partially stripped ions loose electrons when interacting with the wire

The beam is lost

Can measure amplitude distribution however

Emittance measurements

A beam is made of many many particles, each one of these particles is moving with a given velocity. Most of the velocity vector of a single particle is parallel to the direction of the beam as a whole (s). There is however a smaller component of the particles velocity which is perpendicular to it (x or y).

$$\vec{v}_{particle} = v_s \hat{u}_s + v_x \hat{u}_x + v_y \hat{u}_y$$

U. Raich CERN Accelerator School 2005

49

Design by E. Bravin

Emittance measurements

- If for each beam particle we plot its position and its transverse angle we get a particle distribution who's boundary is an usually ellipse.
- The projection onto the x axis is the beam size

The slit method

- If we place a slit into the beam we cut out a small vertical slice of phase space
- Converting the angles into position through a drift space allows to reconstruct the angular distribution at the position defined by the slit

slit

Transforming angular distribution to profile Influence of a drift space

- When moving through a drift space the angles don't change (horizontal move in phase space)
- When moving through a quadrupole the position does not change but the angle does (vertical move in phase space)

x' X Χ Х slit slit Influence of a quadrupole X'

slit

Χ

The Slit Method

U. Raich CERN Accelerator School 2005

53

3d plot from P. Forck

The Slit Method

U. Raich CERN Accelerator School 2005

Moving slit emittance measurement

- Position resolution given by slit size and displacement
- Angle resolution depends on resolution of profile measurement device and drift distance
- High position resolution \rightarrow many slit positions \rightarrow slow
- Shot to shot differences result in measurement errors

U. Raich CERN Accelerator School 2005

Result of single pulse emittance measurement

<u>F</u> ile <u>C</u> ontrol	View	Options							
LBE. SPEM 6ain – 1.0 LTB. TRA60 162.4 mA LBE. TRA65 2.6 mA	LT.BH220DUM LTB.BH240 LBE.QFWV10 LBE.QDWV20 LBE.KH210 LBE.KVT10 LBE.DH210 LBE.DVT10 LBE.KH210A LBE.KH210A	P 192.8 Amp. 0.1 Amp. -6.0 Amp. 10.2 Amp. 395.5 V 380.9 V 9.1 Amp. 5.1 Amp. 6320.0 mV -188.3 mV	LBEX. MKI LBEX. FKJ LBEX. SMJ LBEX. SMJ LBEX. SMJ LX. TCL-1 LX. TCL-1 LX. TCL-1 LX. TCL-1 LX. TCL-1 LX. TCL-1 LX. TCL-1 LX. SBH24 LX. SBH24 LX. SBH24	H210 H210 EASKH210 VT10 EASKVT10 EPS PSB LIND EXTCON MEAS 10 HOEL-SURV 40EL-SURV 40ESB-SRV	-0.1µs -1.0ms -0.1µs -0.1µs -1.0ms -0.1µs -0.1µs -0.1µs -0.1µs -1.0ms -1.0ms -0.1µs -1.0ms -0.1µs -0.1µs -0.1µs -0.1µs	LBE. SLV10AP	2.2 mm 2.0 mm	Aug 15 1 MDPSB PROTON LBE	1:24:35 2003
Plane HOR Mait X 2.40 Unit X 0.50 Pelay -1964.1 m -3.0 a d -6.0 -28. F	Emittance	Surface	28.8 mm	A 6.0 ⁻ n g 3.0 ⁻ l e 0.0 m r -3.0 ⁻ a d -6.0 ⁻¹	Mismatch <i>Ref</i> <i>Measure</i> .8 -14.4 HORIZO	Linac/Booste erence Ellipse O ed Ellipse cent 0.0 14. NTAL Positio	er ered 4 28.8 n mm	E(%I) Xmean Ymean Xmax Ymax α β γ Σ• Misma	11.5mm.mrad 0.9mm 0.6mrad 8.6mm 1.5mrad -0.5 6.4 0.2 96.8♥ 51.1%
FREEZE	CEL BEAM								

Waiting for new acquisition ...

Single Shot Emittance Measurement

- Advantage:
 - Full scan takes 20 µs
 - Shot by shot comparison possible
- Disadvantage:
 - Very costly
 - Needs dedicated measurement line
 - Needs a fast sampling ADC + memory for each wire
- Cheaper alternative:
 - Multi-slit measurement

Multi-slit measurement

Pepperpot

Uses small holes instead of slits

Measures horizontal and vertical emittance in a single shot

U. Raich CERN Accelerator School 2005

60

Photo P. Forck

Adiabatic damping

Change of emittance with acceleration

If the beam is much smaller than w, all field lines are captured and U is a linear function with displacement else: Linear cut (projection to measurement plane must be linear)

U. Raich CERN Accelerator School 2005

62

Shoebox pick-up

U. Raich CERN Accelerator School 2005

Doubly cut shoebox

- Can measure horizontal and vertical position at once
- Has 4 electrodes

Simulatenous horizontal and vertical measurement

U. Raich CERN Accelerator School 2005

Photo of a cylindrical pick-up

The cuts can be made by photo chemical means of mechanically

Here done with a sand-blasting device

A cylindrical pick-up with its connections

U. Raich CERN Accelerator School 2005

66

Photo by L. Søby

Building a cylindrical paper pick-up

• A linear cut in a cylinder:

Unfolding the cylinder

• When unfolded the cut becomes a sine curve

U. Raich CERN Accelerator School 2005

Flipping the sine curve

What happens if we flip use abs (sin(x)) instead? Mirror the negative sine part?

The cylinder is cut twice!

 Horizontal and vertical cut

Flipping half the sin curve upside down

U. Raich CERN Accelerator School 2005

Cut in the same direction

U. Raich CERN Accelerator School 2005

Using all the electrode surface

Calibration of the pick-up

74

Wall Current Monitor (WCM) principle

- The **BEAM** current is accompanied by its **IMAGE**
- A voltage proportional to the beam current develops on the **RESISTORS** in the beam pipe gap
- The gap must be closed by a box to avoid floating sections of the beam pipe
- The box is filled with the **FERRITE** to force the image current to go over the resistors
- The ferrite works up to a given frequency and lower frequency components flow over the box wall

75

U. Raich CERN Accelerator School 2005 Slide by M. Gasior

 $f_{L\Sigma} = \frac{R}{2\pi L_{\Sigma}}$

 $f_{L\Delta} = \frac{R}{2\pi L_{\Delta}}$

WCM as a Beam Position Monitor

- For a centered **BEAM** the **IMAGE** current is evenly distributed on the circumference
- The image current distribution on the circumference changes with the beam position
- Intensity signal (Σ) = resistor voltages summed
- Position dependent signal (
 ⁽) = voltages from opposite resistors subtracted
- The Δ signal is also proportional to the intensity, so the position is calculated according to Δ/Σ
- Low cut-offs depend on the gap resistance and box wall (for Σ) and the pipe wall (for Δ) inductances χ
 - U. Raich CERN Accelerator School 2005 76

Slide by M. Gasior

Measurement with pick-ups

- Trajectory measurements in transfer lines
- Control beam steering

Trajectory measurements in circular machines

Needs integration gate Can be rather tricky Distance between bunches changes with acceleration Number of bunches may change

Raw data from pick-ups double batch injection

U. Raich CERN Accelerator School 2005

78

Changing bunch frequency

- Bunch splitting or recombination
- One RF frequency is gradually decrease while the other one is increased
- Batch compression

For all these cases the gate generator must be synchronized

Batch compression

U. Raich CERN Accelerator School 2005

80

Tune measurements

- When the beam is displaced (e.g. at injection or with a deliberate kick, it starts to oscillate around its nominal orbit (betatron oscillations)
- Measure the trajectory
- Fit a sine curve to it
- Follow it during one revolution

Tune measurements with a single PU

U. Raich CERN Accelerator School 2005

82

Design by P. Forck

Kicker + 1 pick-up

- Measures only non-integral part of Q
- Measure a beam position at each revolution

Fourier transform of pick-up signal

U. Raich CERN Accelerator School 2005

83

Histograms by J. Belleman

Further Reading

- P. Forck, Joint Universities Accelerator School (JUAS) Archamps, France Course notes:http://www-bd.gsi.de/conf/juas/juas.html
- Previous CERN Accelerator Courses (H. Koziol, Beam Diagnostics Jyväskylä)
- CAS on Beam Measurement 1998 Montreux (Switzerland)
- Proceedings of Diagnostics and Instrumentation for Particle Accelerators DIPAC (Europe) and Beam Instrumentation Workshop BIW (USA)

