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EQUATION OF MOTION

The motion of charged particles is governed by the Lorentz force :

d(n;i/ v) =F= = e(E +v><B)

Where m 1s the rest mass, y the relativistic factor and v the particle velocity

Charged particles are accelerated, guided and confined by external
electromagnetic fields.

Acceleration 1s provided by the electric field of the RF cavity
Magnetic fields are produced in the bending magnets for guiding the

charges on the reference trajectory (orbit), in the quadrupoles for the
transverse confinement, in the sextupoles for the chromaticity correction.



SELF FIELDS AND WAKE FIELDS

There 1s another important source of e.m. fields : the beam itself

/ . Direct self fields )

\

f Image self fields
J

Wake fields

2l Space Charge




These fields depend on the current and on the charges velocity.

They are responsible of many phenomena of beam dynamics:

 energy loss (wake-fields)

« energy spread and emittance degradation
 shift of the synchronous phase and frequency (tune)
* shift of the betatron frequencies (tunes)

e 1nstabilities.
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Fields of a point charge with uniform motion
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7 - vt is the position of the point charge in the lab. frame O.

* In the moving frame O’ the charge 1s at rest
* The electric field 1s radial with spherical symmetry
» The magnetic field 1s zero
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Relativistic transforms of the fields from O’ to O
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The field pattern is moving = q yr
with the charge and it can - /2
be observed at t=0. WG [7/2)62 + y2 + ZZF

The fields have lost the spherical symmetry but still keep a
symmetry with respect to the x-axis.
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B i1s transverse to the motion direction
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Two charges 1n the rest frame O’

1
F’: B drre zg
q9 @— 0

Two charges in the laboratory frame O

Lo 1 4qq
Relativistic transform s=——> |£7 = ;F ' Are ”?
o

Lorentz force %

2 q
F.=q(E, _VBgo) =q(E, - fp Er):_zEr =

4 472'50 w




Direct Space Charge Forces
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What do we mean with “space charge”?

It 1s the net effect of the Coulomb interactions in a multi-particle
system.

Space Charge Regime dominated by the self field produced by the
particle distribution.

Collective Effects




Debye Length A,

uniform

The particle distribution around a test particle will deviate from the

continuous distribution.



The effective potential of a test charge can be defined as the sum of
the potential of the uniform distribution and a “perturbed” term.

CI)p(F)zgeMD
A = golgBT
e’n

ky= Boltzman constant

T = Temperature

kg T = average kinetic energy of the particles
n = particle density (N/V)
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The effective interaction range of the test charge 1s limited to the
Debye length

Smooth functions for the charge and field distributions can be used
as long as the Debye length remains small compared to the particle
bunch size




Longitudinal Electric field of a uniform charged cylinder
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Space charge of a relativistic cylindrical distribution

Cylindrical finite bunch, uniformly charged,
With circular cross section

Transverse electric field atr = a
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Relativistic Uniform Cylinder

Gauss’s law
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Ampere’s law
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* has only radial component

* 1s a linear function of the transverse coordinate

The attractive magnetic force, which becomes significant at high
energy, tends to compensate the repulsive electric force.
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Longitudinal Space Charge Forces

In order do derive the relationship between the longitudinal and
transverse forces inside a beam, let us consider the case of
cylindrical symmetry and ultra-relativistic bunches. We know that a
varying magnetic field produces a rotational electric field:

5
§E-dl=—5£B-nds

We choose as path a
' ' rectangle going through the

beam pipe and the beam,

parallel to the axis.
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E (r,z)=E.(b,z)+(1— ,Bz)é | E,(r.2)r

where (1-B?)=1/y. For perfectly conducting walls E_=0.

E.(r,z)= j E,.(r,z)dr

7/2 82

Uniform beam in a circular p.c. pipe.
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Beam motion in a inear channel
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r.m.s. emittance
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Emittance degradation

Longitudinal correlation along

non linear e.m. fields

the bunch induced by e.m
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Equation of motion in a drift space:
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Transport in a Long Solenoid
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Small perturbations around the equilibrium solution




Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam
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Envelope oscillations drive Emittance oscillations
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BEAM DYNAMICS MODELING
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CODES used for simulations of Space Charge Effects

PARMELA, ASTRA

Multi-particle tracking code, includes space charge but not wake fields

HOMDYN

Relies on a multi-envelope model based on the time dependent evolution
of a uniform bunch
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Q=1.1 nC, pulse length (FWHM) = 10 psec, rise time=1 psec

45 £th+0.34 mm mrad | |

— EXnrms(mm-mrad)

—Xrms(mm)

3.5

25

1.5 -

0.5 \\\

0 150 300 450 600 750 900 1050 1200

z(cm)

dgun=33°, rcathode=1.13 mm, Bgun=2.73 Kgauss,B(TW1)=750 gauss

CAS, 23 Wlay 2003



Slice analysis through the bunch

Q=1.1 nC, pulse length (FWHM) = 10 psec, rise time=1 psec

RMS energy spread
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Space charge with image currents
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Effects of conducting or magnetic screens

Let us consider a point charge q close to a conducting screen.

The electrostatic field can be derived through the "image method".
Since the metallic screen 1s an equi-potential plane, 1t can be removed
provided that a "virtual" charge 1s introduced such that the potential

1S constant on the screen




A constant current in the free space produces circular magnetic field.

the case of a good conductor, does not

1n

If p ~1, the material, even
affect the field lines.
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For ferromagnetic type, with p >>1, the very high magnetic
permeability makes the tangential magnetic field zero at the
boundary so that the magnetic field 1s perpendicular to the surface,
just like the electric field lines close to a conductor.

In analogy with the image method we get the magnetic field, in the
region outside the material, as superposition of the fields due to two
symmetric equal currents flowing in the same direction.
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Satisfving a magnetic boundary condition by an image current

A. Hofmann
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Time-varying fields

Static electric fields vanish inside a conductor for any finite
conductivity, while magnetic fields pass through unless of an high
permeability.

This 1s no longer true for time changing fields, which can penetrate
inside the material only in a region o, called skin depth. Inside the
conducting material we write the following Maxwell equations:

r

VXE:—a—B B = uH

< ot {D=E
oD

VXHZJ-*-E | J=0F

Copper 6 = 5.8 107 (Qm)-!
Aluminium ¢ = 3.5 107 (Qm)-!
Stainless steel o = 1.4 106 (Qm)-1 .
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Consider a plane wave (H,,E ) propagating in the material

2 2
0°E, 0°E, - OE, ~
—&U ou—-—=>0
ox” ot Ot

( the same equation holds for H ). Assuming that fields propagate
in the x-direction with the law:

H = ]jlaeia)t—j/x [Ey
Z
S
E, = E, ™" N i
(7" +que’ —iouo)E,e 7 = 0 g
We say that the material behaves like a conductor if o>>we thus:
oLE

y=(1+i) %
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Fields propagating along “x” are attenuated.
The attenuation constant measured in meters is called skin depth o_:

<“-»

0
s o~ L _ 2 N
TRy \oou

112

The skin depth depends on the material properties and the frequency.
Fields pass through the conductor wall if the skin depth 1s larger than
the wall thickness A . This happens at relatively low frequency.

At higher frequency, for a good conductor o6 <<A_ and both
electric and magnetic fields vanish inside the wall.

For th 5,0 = 2% (cm)
or the copper w = 7

For a pipe 2mm thick, the fields pass through the wall up to 1 kHz.
(Skin depth of Aluminium is larger by a factor 1.27)
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e compare the wall thickness and the skin depth (region of
penetration of the e.m. fields) in the conductor.

« [f the fields penetrate and pass through the material, they can
interact with bodies in the outer region.

e [f the skin depth 1s very small, fields do not penetrate, the
electric filed lines are perpendicular to the wall, as in the static
case, while the magnetic field line are tangent to the surface.

0 ERGCCK




Circular Perfectly Conducting Pipe

(Beam at Center)

In the case of charge distribution, and
y—o, the electric field lines are
perpendicular to the direction of motion.
The transverse fields intensity can be
computed like 1n the static case,
applying the Gauss and Ampere laws.

2

A=A~ : _[ E (27 dp = HE

a) s g
Er:/’L(r)AZ’. BHZEEF

27mE c

A r AP r
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e

Fi(r)=e(E,~fe B) = F,
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* Due to the symmetry, the transverse fields produced by an ultra-
relativistic charge inside the pipe are the same as in the free space.

 For a distribution with cylindrical symmetry, in the ultra-
relativistic regime, there 1s a cancellation of the electric and
magnetic forces.

e The uniform beam produces exactly the same forces as in the
free space.

* This result does not depend on the longitudinal distribution of the
beam. In general one has to consider the local charge density A(z)




Parallel Plates (Beam at Center)

e | T

In some cases, the beam pipe cross
section 1s such that we can consider
only the surfaces closer to the beam,
which behave like two parallel
plates. In this case, we use the image
method to a charge distribution of
radius a between two conducting
plates 2h4 apart. By applying the
superposition principle we get the
total 1mage field at a position y
inside the beam.
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im _ Mz) ~ AlE) w
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2me, = h—y
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Where we have assumed 7>>a>y. ‘

For d.c. or slowly varying currents, the boundary condition imposed
by the conducting plates does not affect the magnetic field.




From the divergence equation we derive also the other transverse
component:

2
Opm—_Zpm s gz x) = MZC " 5
X g 4dmreh” 12

Including also the direct space charge force, we get:

F(z,x)= el(z)x( 1 7’ J

re, \2a’y’ 48K

eld(z)y| 1 7’ j
F(z,x)= +
(23 TE (2&27/2 48h°

There is no cancellation of the electric and magnetic forces due to

the "image' charges.




Parallel Plates (Beam at Center) a.c. currents

Usually, the frequency beam spectrum 1s quite rich of harmonics,
especially for bunched beams.

It 1s convenient to decompose the current into a d.c. component, I,
for which Sw>>Aw, and an a.c. component, I, for which § << A, .

While the d.c. component of the magnetic does not perceives the
presence of the material, its a.c. component is obliged to be
tangent at the wall. For a charge density A we have [=Av.

We can see that this current produces a magnetic field able to
cancel the effect of the electrostatic force.
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There is cancellation of the electric and magnetic forces !!
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Parallel Plates - General expression of the force

Taking into account all the boundary conditions for d.c. and a.c.
currents, we can write the expression of the force as:

B 2 - 2 )
F=— 1 s ™ L3p| = o " Tk
2T g,V \a 24h 24h 12g |

U=2Xx,y

where A is the total current, and A its d.c. part. We take the sign (+) if
u=y, and the sign (-) 1f u=x.
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Space charge effects in storage rings
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Self Fields and betatron motion

Consider a perfectly circular accelerator with radius p,. The beam
circulates inside the beam pipe. The transverse single particle
motion in the linear regime, 1s derived from the equation of
motion. Including the self field forces in the motion equation, we

have




For the single particle "transverse dynamics" we write:

V=xex+ye,+a (px+x)éz

=[x —w, (px—lrx)]e + je,, +[ (px+x)+2a) x]e

For the motion along x:

1
¥ 0 (pctx) =+ Y

my
Which, with respect to the azimuthal position s=v t becomes:
§=v2x"= @ (pyx)’ 5"
o 1 _ 12 (erxt +F;elf)

PxtX  mviy
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We assume small transverse displacements x with respect to the
closed orbit, and only dipoles for bending and quadrupole to keep
the beam around the closed orbit:

Of};vext

ext ext X

F* =F +( @Cj X X <0,
x=0

Around the closed orbit, putting v,= Bc, we get

ext
px BE,\ & ) _| PBE,

where E 1s the particle energy. This equation expressed as function of
“s” reads:

x"(s)+{ 21 +Kx(s)}x(s) =
Py (s)

I
PE,

Ecself (x’ S)
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In the analysis of the motion of the particles in presence of the
self field, we will adopt a simplified model where particles
execute simple harmonic oscillations around the reference orbit.

*This 1s the case where the focussing term 1s constant. Although
this condition 1n never fulfilled 1n a real accelerator, it provides a
reliable model for the description of the beam instabilities

X(5)+ K 3(5) = ——F (1 = A
p EO ax\/ﬁx = A = p. const.
K.()f =1
2 L
x"(s){ij X(s)= 1 FV (x,5) C o oK
x Eo ﬂx(S)Z KxS
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Transverse Incoherent Effects

We take the linear term of the transverse force in the betatron

equation:
OfFvS.C.
F)f'c'(x,z);( X j X
x=0

x

2 S.C.
06k (ij X = 21 [ﬂFx J X
Px ’B EO 2 x=0

2 S.C.
2 o N2 _ Px an
(0, +AQ, ) =05 +20,A0, = AQ, = 5E O, [ = J

The betatron shift is negative since the space charge forces are
defocusing on both planes. Notice that the tune shift is in general
function of “z”, therefore there 1s a tune spread inside the beam.
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Consequences of the space charge tune shifts

In circular accelerators the values of the betatron tunes should not be
close to rational numbers in order to avoid the crossing of linear and
non-linear resonances where the beam becomes unstable.

The tune spread induced by the space charge force can make hard to
satisfy this basic requirement. Typically, in order to avoid major
resonances the stability requires

<0.3

AQ,



Example: Incoherent betatron tune shift for an uniform

electron beam of radius a, length 1, inside circular perfectly
conducting Pipe

OF | J elx el AO = — p.Ne*
O x Ox2ney’a’ 2rmey’a’ Y drea’BPyPE Q. L
2
r,, = -~ (electrons :2.82 10~ m, protons :1.53 10" m)
" Aremoc
2
Nr
AQX — 2px2 3€,p
a IB V4 onlo

For a real bunched beams the space charge forces, and the tune shift
depend on the longitudinal and radial position of the charge.
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PS Booster, accelerate proton bunches
From 50 to 800 MeV in about 0.6 s.
The tunes occupied by the particle are
indicated in the diagram by the shaded
area. As time goes on, the energy
increase and the space charge tune
spread gets smaller covering at t=100
ms the tune area shown by the darker
area. The point of highest tune
correspond to the particles which are
least affected by the space charge. This
point moves 1n the Q diagram since the
external focusing is adjusted such that
the reduced tune spread lies in a region
free of harmful resonances.

Finally, the small dark area shows the situation at t=600 ms when the beam has
Reached the energy of 800 MeV. The tune spread reduction is lower than
expected with the energy increase (1/y°) dependence since the bunch dimensions

also decrease during the acceleration.
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