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                              Emittance  Definition 
 

Betatron equation (linear!):       0(s)(s)(s) xKx =+″  
 
Solution for particle "i"        
( with Ai and δi  constants given by 
the initial conditions for particle “i”;      
 βx (s) and ψ(s) follow from K(s) ) 
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Letting ψ(s) vary from 0 to 2π one see can see that the  motion of the particle describes an 
ellipse in (x, x’) [ circle in (x, px )] space!  The "single particle emittance" is defined as: 
 
                                  
      space- )p(x, in  circle of area/space-)x'(x, in ellipse ofarea 2

xxβε ==≡ iAi  
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                               Single particle (x x’)-phase-space trajectory                                       
 
K(s)-->                            -->β(s) 
 
 
                    α= -β(s)´/2  

  β(s)-->       γ=(1+ α2)/β 

                    LsQds /2/∫ ≈= πβψ   

                     ∫=
L

dsQ
0

/
2
1 β
π  = nr. of 

                           oscillations per length L 
                           (per turn in circular machine 
                            if L is the circumference) 

Courant&Snyder 
transform  (ana- 
lytic or by codes) 

 
 
                 ‘single particle emittance’ (also called : Courant&Snyder –invariant ) :           

= area of ellipse  [in units π m rad]:    x
2
max

2
ii /xA βε =≡
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                Further remark on β-function 
 

         It follows from the differential equation (“envelope equation”): 
 

                           
β==−+′′ wwhere

sw
swsKsw 0

)(
1)()()( 3  

 
         To obtain a unique solution, we have to specify two boundary condition. For 
          a circular machine, these are automatically given by the cyclic condition 
 

                          Rss πββββ 20 ),(),( == ′=′             (β and β’ repeat after one turn).  
 
           
         For a linear machine or beam line, one usually specifies β and β’ at the entrance 
         (to match the beam coming from the previous stage). Then the β function for the  
          whole line is also uniquely determined. 
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              Phase  space position of a particle at different turns 

            
 

 

 

 

 

          

 
 
         
        Observed turn by turn at a fixed azimutal position (s) in a circular machine,  
        the phase space coordinates  of a particle trace the ellipse. During each 
        revolution the phase ψ advances by 2πQ.   
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             Change of phase space trajectories along a beam channel
 

         As the beta function changes along the channel (line, ring…) the ellipse pattern 
         strongly varies. But the area of the ellipses is the same (as a consequence of  
         Liouville’s theorem, to be discussed later)   
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          Trajectory of particles with different phases and amplitudes  
                                                                                             
 

    
 
 
 
 
 
 
 
 
 
 

             Viewed at fixed position (s) and time, the phase space coordinates of particles  
             with the same ‘amplitude’ A but different initial phases δ trace the ellipse.  
             Particles with different amplitude lie on different concentric ellipses. 
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                Single particle trajectory in normalized phase-space 

  

                         In  ( xxp,x xxx ′+= βα )-phase space, particle trajectories are circles              

                         ‘single particle emittance’ =area of circle/βx :                                         x
22

ii /rA βε =≡
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                             Many Particle Trajectories and Projected Density 
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                                           Beam emittance  definitions 
 
      

    Definition  referring to the a fixed fraction of particles: 

--- Beam emittance = “ some average” of  εi  over all beam 
i l

           The beam emittance  (ε% )  is the area/βx of the circle in ( x, px ) space that contains 
           the motion of  a given  fraction  (F) of the particles. Frequently one refers to 
            F = 39% or 86% or 95% of the beam. 
                                                                                            ε%  is ( sometimes ) called: “geometrical emittance” 
   

    Definition referring to the standard deviation of the projected distribution:
         Let  σx  be the standard deviation of the particle density projected on the x-axis  
        ( i.e. the "rms beam size" as measured e.g. on a profile detector ). Then the k-rms 
        emittance is defined as the area/βx  in ( x, px ) space  with radius kσx .  
        Usually one choses k=1 or 2 or 2.5.  
                                          
                                                       εkσ =(kσ)2/βx  = ½ k2 <Ai

2>   is  called    ‘k -rms emittance ‘ 
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                                         Gaussian distribution

 
Suppose that the distribution in transverse coordinate (x) is Gaussian  
(independend of time) 

                                                           
2
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 Then the fraction of particles that have their motion contained in a circle of  radius  
 "a" in normalised phase space (emittance ε = a2/ β )  can be shown to be  
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k=a/σx εkσ FGauss   Funif 

*)

 1  ( 1 σx)2/ βx 39.3 %  50% 

  2  ( 2 σx)2/ β x 86.4 %  100% 

  2.5  ( 2.5 σx)2/ β x 95.6 % (100 %) 
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Beam temperature 
 

Kinetic theory of gases defines temperature (in each direction and global) as 
 

        )()(, 2
32

2
1

3
12

,,,, kTmvTTTTvmTk syxsyxsyx =++=><=    
          k: Boltzmann constant,  m: mass of molecules,   vx,y, s: velocity components of molecules 
  
Definition of beam temperature in analogy:  
 

,vmTk 2
s,y,x0s,y,x,beam ><=             

                                    where vx,y, s are the velocity spreads in the system moving with the beam. 
  
The transverse  velocity spread in the beam system is given by the r.m.s emittance: 
 
                 similar for y direction s.m.r,xx

2222
x )c()x()c(v εγγβγβ ⋅=>′<>=<

βc: longitudinal beam velocity     β, γ : relativistic parameter,   γx≈1/βx : Twiss (lattice) parameter  
 

===> ⋅= y,x
22

0y,x,beam )(cmTk γβγ rms;y,xε          Hence 
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Beam temperature, II 
 

 
                                   

===> ⋅= y,x
22

0y,x,beam )(cmTk γβγ rms;y,xε  

Property Hot beam Cold beam 
ion mass (mo) heavy ion light ion 

ion energy (βγ) high energy low energy 

beam emittance (ε) large emittance small emittance 

lattice properties (γx,y≈1/βx,y) strong focus (low β ) high β 

 
 
phase space portrait 

 
 
 
 
 

 

       Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving  
                                         cold (light) electron beam. 
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Acceptance  
 

 
 
 
 
 
 
 
 
 
 
 

 The acceptance (or admittance), Ac , of a 
beam channel is the maximum single 
particle emittance that can be transmitted.  
 
 

               xc aA β/2=
 
As both aperture, a, and β-function vary 
along the channel, the minimum determines 
the acceptance.  
 
To avoid excessive loss, one limits the r.m.s 
emittance to ~1/6 Ac (96% emittance ~ Ac) 
for p and ions. For electrons one frequently 
limits εr ms  to ~1/50Ac÷ 1/100 Ac  ( σ < 1/7a 
÷1/10a) 
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Reduction of acceptance 
 

              
 
 
 
 
 
 
 
 
 
 
 

               mis-centred beam                                                                                    obstacle 

    

 
         Mis-steering of the beam and obstacles can greatly reduce the acceptance. 
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(Consequences of ) Liouville’s theorem 
 
 Under certain conditions on the fields, which are thought to be satisfied in accelerators: 
 The phase space area (emittance) occupied by a particle beam is an invariant. 

           
 
 
 
 
 
 
 

Phase space ‘footprints’ of the same beam 
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Corollaries to Liouville 
 

When a beam is accelerated, its emittance decreases such that: 
The normalised emittance  ε*= ε βγ is (ideally!) invariant. 
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                                 Corollaries to Liouville, II 
 

                     With coupling, the emittance in one plain (e.g. vertical) can decrease 
                     at the expense of the emittance in another plain (e.g. horizontal). 
                  The ‘3-dimentional emittance’  εh x εv x εs  remains invariant (at constant N) 
 
          
        Example: 
           trade  of   h  v  
           phase space volume   
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                Ideal and reality: Emittance history for LHC 
 
pppppppp 
 
 
 
 
 
 
 
 
 
 
 
 

                  
                                                                                                                                                           8 TeV                           

π mm mr 
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                                  Emittance and beam density  
 
The number (N) of particle per unit emittance defines the phase space density (P)  
of a beam. 
              1 dimensional:     Px= N/εx   ,     Py= N/εy  ,      Ps= N/εs    

                   transverse:            Pt=N/( εx εy) 

              3 dimensional:      P3=N/( εx εy εs) 
 
E.g.: for experiments using a beam colliding with a target or another similar beam,  
the real space tranverse density  ρt= N/( σx σy )  is important. 
Since  σ2= εr m s β*   ( where:  β*   = focussing function at the interaction point) 
 
                                     ρt ~ { (Px Py) 1/2  } x  {  1/ (β*x β*y)1/2  }                                       
                                                   `--------,------‘   `-----------,-----------‘      
                             property of:            beam              focussing  system 
 
 
            ---> Phase space density is a figure of merit of a beam 
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                                       Matched beams 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                            Matched beam after long time         

              

Suppose a beam with a (β,β’)-function (given e.g. by that of the preceding stage) is injected 
ito a machine. It is matched (in phase space) if the β-function of the beam (at the injection 
point) is the same as that of the machine:  (β,β’)beam=(β,β’)machine.  

                                 Matched beams preserve their shape.  
       The acceptance required is determined by the incoming beam emittance (optimum!) 
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                                                    Mismatched beams 
Suppose a beam matched to the (β,β’)-function of the preceding stage is injected into a 
machine adjusted for a different (β,β’)-function at the injection point. This mismatched 
beam will start to rotate in the machine phase space ( its shape/width oscillate ).         
 
 
 
 
 
 
 
 
 
 
 
 
Machine phasace for a different (β, β’) 
            Mismatched beams oscillate in width! Extra aperture required 

 

 

Necessary acceptance determined by machine ellipse that encloses the injected emittance.  
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            Does  the beam define a beta-function?

 
The β-function is a property of the focussing system. A matched beam ‘conforms’ to this  
(β, β’)-function. Suppose we could determine the statistical properties of the beam 
 

                           >=<>=<>=< 'xx'x,x 2
'xx

22
'x

22
x σσσ

 
The β-function for this beam to be matched and the corresponding r.m.s. emittance can be 
determined as (see J. Buon, CAS 1990)   
 

                   4
'xx

2
'x

2
xrmsrms

2
'xxmatchedrms

2
xmatched /2'/ σσσεεσβεσβ −===  

 
 
 

Quantity emittance β-function matched β-function 
Property of beam focussing system beam 
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Nonlinearity of betatron oscillation causes a dependence of  betatron frequency on 
amplitude ---> particles go around in phase space at (slightly) different speed. Over 
sufficiently long time ( Δωt >> 1) a mismatched beam 'smears  out' and the larger phase 
space becomes filled out. Typical in cicular machines. In a beamline, nr. of betatron 
oscillations is not sufficient, but mismatch (evtl. filamentation) occurs in subsequent stage. 

Filamentation =  Randomisation of betatron phases (in a mismatched beam) 
 ---> emittance dilution (apparent blow up)  

Filamentation (in circular machines) 
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Steering error at injection 
 
 
 
 
 
 
 

 
 

 
 

 
                          (1)                                                                     (2)                                                                    (3)             

  

              A beam injected with position/angular error (1) rotates in phase space (2), (3) -->  
                      Mis-steered beams oscillate in position (‘center of charge’) 
                   Extra aperture ! (required acceptance determined by outer circle).  
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         Damping of oscillations at injection 
 
  

            In circular machines, the oscillation due to mis-steering at injection can (in 
principle) be damped by a feedback system: A position pick up detects the  
beam’s position (Δx) and  a kicker electrode ( a suitable betatron phase advance 
Δψ downstream) gives a kick proportional to Δx which tends to bring the beam to the 
centre of phase space. 
 
Due to limited strength of the (rf-) kicker this takes many tens or hundreds of turns in the 
machine. O.k. if damping time << filamentation time. Emittance increase can then be 
avoided but the large aperture (to accommodate the oscillations) remains necessary. 
 
A similar system, but with quadrupolar electrodes to detect the beam width and to damp 
it, could be used to damp the oscillations following the focussing (β-function) mismatch 
regarded before. 
 
Beam position (‘dipolar’) dampers are successfully used in many small machines  (e.g. PS-
booster); qudrupolar dampers have been discussed but not yet built.   
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                              Steering error after filamentation 
  

 
 
 
 
 
 
 
 
 
 
 
     
     In a circular machine (and without damper), the beam injected with a steering 
     error   ‘smears out’ over the annular region.  For large error the resulting  
     projected distribution is ‘double humped’. 
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Simulation of filamentation 
 

 
                               
                        injection                          after some time                         after long time 
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         Distribution after filamentation as function of the injection error 
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                     Phase space representation of multiturn injection  
                      (Another example of the beauty of phase space plots) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
When the acceptance is much bigger than 

the incoming beam emittance, several 

turns can be injected. The emittance 

increase  ε/εinj  can be deduced from 

simple geometrical considerations (filling 

a circle with smaller circles or ellipses).  

 

 
Examples depicted: 2 turn, non optimum 
and optimum, and 7 turn injection 
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Scattering in a foil or a window 
 

A particle (of charge number qp ( =1 for proton), momentum p [MeV/c], 
velocity β =vp/c) traversing a foil  ( thickness L, material of 'radiation length' 
Lrad   undergoes multiple Coulomb scattering. The rms scattering angle in each 
of the transverse planes is given by  

 

                                                  
rad

prms L
Lq

p
c/MeV14

β
θ =

 

 
 
       This causes an emittance increase which can readily be calculated by using the 
       corresponding phase space plot. 
       The blow up of  r.m.s emittance turns out to be   
   

    x
2
rms2

1 βθεσ =Δ       (*)
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Real space and phase space plot upon transition through a foil 
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Phase space after scattering at the foil and filamentation 
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Multiple Coulomb scattering on the residual gas 
 

This is treated in many papers of which I find the one by W. Hardt (CERN ISR-300/GS/68-11) 
especially instructive. Here we can use our previous results immediately by taking the residal gas 
atmosphere as a "thin distributed scatterer". 
 For pure Nitrogen (N2) at pressure P the radiation length is  LradN2 ≈ 305 m /( P/760 torr)  and the thickness 
traversed by the beam in time t  is  L=βct . Then from the scattering blow up Eq.(*) of a previous slide (#30) 
we get the blow-up of the kσ −emittance (Hardt’s formula) as                

                                           23x2
p

2
p2

k
tP3.0

A
q

k
2
1

γβ
βε σ ≈Δ    ( [π rad m],   P in [torr]   t in [sec] ) 

 
Here xβ is the average beta function as scattering occurs everywhere around the ring;  p=932 MeV/c*Ap 
*β γ,   Ap  and  qp : mass number and charge number of  the ion (Ap  and  qp both1 for protons. 
 
This relation is widely used to determine the vacuum requirement in a storage ring. For a synchrotron one  

has to integrate  
γβ 2

td  over the acceleration cycle to get the blow up of the normalised emittance . For an 

atmosphere with different gases of partial pressures Pi we can define the N2 equivalent P for multiple 
Coulomb scattering as   ( )∑= i,rad2N,radiequ2N LLPP  
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Hardt’s classical internal paper (ISR-300/GS/68-11) 
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Multiple Coulomb scattering, orders of magnitude  
 

 
In LEAR the vacuum pressure (N2 eqivalent for scattering) is of the order of  P=10-12 torr. 
Then: Lrad = 2.3 1017 m (about 25 light years).  
 
At  p=100MeV/c  ( βp≈0.1 ) an rms scattering angle of θrms=5 10-3 rad  (which is about the acceptance limit 
of LEAR, s. below)  is reached after a path length L= 1.3 10-5 x Lrad = 3 1012 m  (about 2.7 light hours).  
 
With the speed βp c = 3 107 m/s  the beam traverses this distance  in    ≈ 27 h  (≈ one day). 
With the circumference of  C≈ 80 m  this corresponds to about 4 1010  revolutions.  
 
For an average beta function of 10m, the rms scattering angle of  5 10-3  rad corresponds to an encrease of the  
1σ -emmittance by  Δε1σ = 125 π mm mrad .  
 
With an acceptance of 125 π mm mrad  60 % of a Gaussian beam would be lost in 27 h.     
 
 
 
 
 
 

 
Transverse dynamics II: emittance                           CAS'2005,  Zeegse May 2005                              D.  Möhl Slide 35 



Mismatch due to nonlinearity (space-charge)  
 

Nonlinearity distorts the phase space (example given in the picture ).  
Space-charge introduces linear and nonliner detuning. Even if the 
linear term is compensated matching to the nonlinear pattern is difficult.  
---> blow up at injection into space-charge limited machines 
 
 
        
 
 
 
       Phase space in the presence 
        of a 3-rd order nonlinearity. 
        Innermost trajectory of the 
        stable area are normalized 

to be circles.
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Resonance crossing 
 

Dangerous, low order resonances are usually avoided by choosing an appropriate 
working point (Qx, Qy). However high order resonances may be touched and 
traversed  due to small,  unavoidable or programmed tune changes. For a rapid 
traversal of a resonance pQ=integer the amplitude increase  (for small Δa/a)  is 
given by 

                                     
typicallyt

3

t Qp
10

Qp
ea/a

Δ
≈

Δ
Δ

≈Δ
−π

      

( p: order,  Δe  : width of the resonance, ΔQt: tune change per turn  ). The 
emittance growth after filamentation (Δε/ε=  ½Δa2/a2  ≈ Δa/a ) is given by the 
same expression. Hence only few transitions can be tolerated even of high order 
resonances. For repeated random crossings the amplitude growth is multiplied 
by the square root of  the number  crossings. 
For slow tune variation, particles can be trapped in resonance ‘bands’ which 
move them outwards, eventually even to the aperture limit. This can happen 
through a momentum diffusion (e.g. due to residual gas scattering s. below) 
leading to a tune diffusion via the chromaticity ξ:   ΔQ/Q=ξ Δp/p. 
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      ------> A very high ‘stability’ of the tune is essential 
 



                      Power supply noise 
 
Noise in the bending fields lead to a ripple of the orgin of the phase space portraits.  
Noise in the focussing fields leads to wiggling trajectories. Both effects lead to emittance 
diffusion 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
Fussy trajectories due 
to noise in focussing  
fields 
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       Noise components with frequencies near the betatron sidebands (n±Q)ωrev   
       lead to a linear increase of  the mean squared betatron amplitudes (and emittance) 
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Hereward and Johnson’s (yellow) report on noise (CERN/60-38) 
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                                    Intra-beam scattering 
 

       Small angle (multiple) Coulomb scattering between beam particles can lead to blow up. 
       In the collisions, energy transfer:  longitudinal <----> horizontal <---->vertical  occurs 
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Outline of the calculation  
(due to A. Piwinski, 1974) 

• Transform the momenta of the two colliding particle into their centre of mass 
system. 

• Calculate the change  of the momenta using the Rutherford cross-section. 

• Transform the changed momenta back into the laboratory system. 

• Calculate the change of the emittances due to the change of momenta at the 
given location of the collision. 

• Take the average over all possible scattering angles (impact parameters from 
the size of the nucleus to the beam radius) and the collision probability (from 
the beam density) 

• Assume a ‘Gaussian beam’ (in all three planes). Take the average over 
momenta and transverse position of the particles at the given location on the 
ring circumference. 

• Finally calculate the average around the circumference (taking the lattice 
function of the ring into account) to determine the change per turn. 
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Particularities of IBS.  
The sum of the three emittances 

• For constant lattice functions and below transition energy, the sum of 
the three emittances is constant (the beam behaves like a ‘gas. in a 
box’). 

• Above transition the sum of the emittances always grows (due to the 
negative mass effect, i.e. particles ‘being pushed go around slower’). 

• In any strong focussing lattice the sum of the emittances always grows 
(also below transition because of the ‘friction’ due to the derivatives of 
the lattice functions). 

• The increase of the 6-dimentional phase space volume can be explained 
by transfer of energy from the common longitudinal motion into 
transverse energy spread. 

• Although the sum grows there can be strong transfer of emittance and 
theoretically even reduction in one at the expense of fast growth in 
another plane (in practise the reduction in one plane has not been 
observed). 
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                         Particularities of IBS, scaling. 
The exact IBS growth rates have to be calculated by computer codes. 
One determines “form factors” F giving 1/τx,y,l =1/τ0 * Fx,y,l . Note that the 
factors F can strongly vary (e.g. with energy). The quantity 1/τ0  is given 
by  

                  *
s

*
y

*
x

22

b

0
*
s

*
y

*
x

22
2
0b

0
A
qN

E/4
A
qrN

/1
εεεγεεεγ

τ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∝
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=   

 
   Nb : number of particles per bunch,    r0 :  classical proton radius,  

γβ,  : relativistic factors, )c/E(, 0p/ps
*
sy,x

2
y,x

*
y,x Δ== σβγσεβσβγε     

   :  normalised 1 σ emittances of bunch,  E0 : proton rest mass 
 

                    From this (neglecting the variations of the “form factors”) one notes: 
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o Strong dependence on ion charge (q4/A2) 
o Linear dependence on (normalised) phase 

space density (Nb/(εx*εy*εl*))  
o Weak dependence on energy  



 
Conclusion 

 
o Emittance and phase space density are usefull concepts to express the 

quality of a particle beam. Their optimisation is an important goal in 
the design and operation of beam lines, accelerators and storage rings. 

 
o A couple of invariants, all related to Liouville’s theorem, apply to 

emittance/phase space density. ‘Non-Liouvillian’ effects, like filament-
tation and diffusion tend to reduce the density; beam cooling (not 
treated in this lecture) aims to increase it. 

 
o Phase space plots are a handy tool to illustrate many common beam 

‘manipulations’ such as injection, beam matching, damping of 
coherent oscillations and cooling, as well as degrading mechanisms 
like filamentation, obstacles,  influence of noise, diffusion …. 
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	Solution for particle "i"        
	              
	Suppose a beam with a (’)-function (given e.g. by that of the preceding stage) is injected ito a machine. It is matched (in phase space) if the -function of the beam (at the injection point) is the same as that of the machine:  (’)beam=(’)machine.  
	                                 Matched beams preserve their shape.  
	                                                    Mismatched beams 
	Suppose a beam matched to the (’)-function of the preceding stage is injected into a machine adjusted for a different (’)-function at the injection point. This mismatched beam will start to rotate in the machine phase space ( its shape/width oscillate ).         
	             Does  the beam define a beta-function? 
	 
	 
	Nonlinearity of betatron oscillation causes a dependence of  betatron frequency on amplitude ---> particles go around in phase space at (slightly) different speed. Over sufficiently long time ( t >> 1) a mismatched beam 'smears  out' and the larger phase space becomes filled out. Typical in cicular machines. In a beamline, nr. of betatron oscillations is not sufficient, but mismatch (evtl. filamentation) occurs in subsequent stage. 
	                      Phase space representation of multiturn injection  
	                      (Another example of the beauty of phase space plots) 
	 Scattering in a foil or a window 

	 Hardt’s classical internal paper (ISR-300/GS/68-11) 
	 Multiple Coulomb scattering, orders of magnitude  
	 Mismatch due to nonlinearity (space-charge)  
	  
	Hereward and Johnson’s (yellow) report on noise (CERN/60-38) 


