Applications of Ion Implanters

Jörg K.N. Lindner

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

ION IMPLANTATION

More than a standard technique for the doping of semiconductor devices

What is an Ion Implanter?

.... any machine implanting ions into solids* at energies of

~ 500 eV - 500 MeV

not included in this talk:

- •ion sources (for sputtering, surface smoothing ...)
- ion beam assisted deposition apparatusses
- plasma immersion ion implantation
- •cluster ion set-ups
- focused ion beams

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

SOILLUM HUNKLEY

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

Augsburg 2 MV Tandem Accelerator

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

Ion Implanter – Beam Line

Wafer Handling System of an Implanter Endstation

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

Rotating Wafer Hub

http://www.ibis.com/2000.htm

Jörg K.N. Lindner

Universität Augsburg

Plan view of a dedicated high-dose oxygen implanter

Requirements for semiconductor doping

Throughput: ~ 250 wafers/h, 150, 200, 300 mm Ø, incl. wafer handling

Dose uniformity: $3\sigma = 1.5$ % on 300 mm Ø target Wafer-to-wafer repeatability, batch-to-batch Energy variation: $3\sigma = 3$ % Implant angles: $\leq 60^{\circ}$, $3\sigma = 1^{\circ}$ Metal contamination (Fe, Ni, Cu, Cr, Zn): $< 5 \times 10^{10}$ cm⁻²

•1980-2005: 6000 implanters

- •Capacity up to 270 wafers/h
- •Assuming 4000 in operation: mass transfer of **18 g/h**

 $\frac{1}{\sqrt{2}}$

What happens when an ion hits a target?

Ion-Implantation: Stopping Mechanisms

For ions in the eV to 10² MeV region, only two stopping mechanisms are important:

1) Elastic collisions of ions and nuclei, nuclear stopping power

2) Inelastic collisions of ions and electrons, electronic stopping power

Stopping of Ions in Matter: Energy Dependence

Stopping cross section S:

stopping power ~
velocity: LSS region
$$S = -\frac{1}{N} \left(\frac{dE}{dx} \right) = S_n + S_e = -\frac{1}{N} \left(\frac{dE}{dx} \right)_n - -\frac{1}{N} \left(\frac{dE}{dx} \right)_e$$

Stopping power nuclear electronic
 N : target density
 $\int_{0}^{10} \int_{0}^{10} \int_{$

CERN Accelerator School 2005

Ion Profiles

Ion ranges calculated from stopping cross sections:

$$R = \frac{1}{N} \int_{0}^{E} \frac{dE}{S_e(E) + S_n(E)}$$

With atomic target density N.

Statistics of collisions: \rightarrow range distributions. One measures mean projected range R_p and standard deviation ΔR_p . Best description as Pearson IV distribution, but often Gauss approx:

$$C(x) = \frac{D}{\sqrt{2\pi}\Delta R_p} \exp\left(-\frac{(x-R_p)^2}{2\Delta R_p^2}\right)$$

Figure 3.8 Experimental B profiles into polycrystalline silicon (from ref. 3.16). The four moment distributions are calculated with the following β values (800 keV - 60; 300 keV - 19; 100 keV - 7; 30 keV - 3.6).

Monte-Carlo-Simulation of Ion Profiles

Example

Profile calculation of many (~10⁵) ion trajectories via Monte-Carlo simulation of collision statistics.

Popular code: SRIM or TRIM (Stopping and Range of lons in Matter).

Public domain program @ http://www.srim.org/

Ion-Solid-Interactions: Structural Changes

Jörg K.N. Lindner

Ion-Solid-Interactions: Physics over Orders of Magnitude

CERN Accelerator School 2005

Ion Profiles: Axial and Planar Channeling

Ions are usually implanted in a "random" orientation of the target.

If not:

 Ions at low angle of incidence with respect to low index lattice planes or lattice directions
see reduced electron and atomic density

Steering along planar or axial channels

Larger ranges Deformed ion profiles Reduced lattice damage

CERN Accelerator School 2005

Ion Implantation for Semiconductor Devices

and Nanostructure Formation

Jörg K.N. Lindner

NI EXPERIMENT

Common Ion Species in Semiconductor Industries

on the periodic table, along with typical concentration-versus-depth traces for various implant energies.

L. Rubin et al., The Ind. Phys. (2003)

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

L.Rubin, J.Poate (2003)

CERN Accelerator School 2005

STATIS

Lowest doses

Physical Limits to Silicon - CMOS Device Scale Down

Attempts towards single ion implantations

STM image of a Xe²²⁺ impact site on a HOPG surface.

M. Tona, S. Takahashi, J. Phys. Conf. Ser. 2 (2004) 57

Focused Ion Beam Etched Hole Pattern for SII masks

T. Shinda et al., JJAP 41 (2002) L 287

Highly Charged Ions from Electron Beam Ion Trap (EBIT) at LBNL

T.Schenkel, LBNL (2003)

CERN Accelerator School 2005

Energy requirements in future single ion implants

M. Tona, S. Takahashi, J. of Phys. Conf. Ser. 2 (2004) 57

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

AI EXPE

Tumor Therapy with Ions

Eye cancer treatment at Hahn-Meitner-Institute HMI Berlin with Protons

WWW-Links: http://www.eyecancer.com/, http://www.uni-essen.de/augenklinik/if/infoahmm.html

CERN Accelerator School 2005

Jörg K.N. Lindner

Images: http://www.hmi.de/isl/att/

Self-Assembled Colloidal Crystal

Template for an photonic bandgap crystal

CERN Accelerator School 2005

Jörg K.N. Lindner

HXDA

MeV Ion Irradiation of Colloidal Particles and Crystals

E. Snoeks et al., NIM B 178 (2001) 62

K.P. Velikov et al., APL81 (2002)

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

Colloidal Nanomasks

CERN Accelerator School 2005

Jörg K.N. Lindner

AL EXPE

Ion Tracks

Direct Evidence of Reduced Densities in Single Ion Tracks

In collaboration with Ch. Dais, W. Bolse, Uni Stuttgart

CERN Accelerator School 2005

Ion Tracks: Graphitization of Diamond-like Carbon

Current image of a DLC film, 100 nm thick, irradiated with 10^{10} U/cm². Current measurements performed with a conducting AFM tip.

Current/voltage curve for a single ion track (AFM tip on top of a track). For comparison, the corresponding curve for the off track position is shown. DLC film 100 nm thick.

A. Weidinger et al. (2003)

Fe single crystals in etched ion tracks of polymer foils

FIG. 1. Scanning electron micrograph of etched ion tracks in PET foil. In the present work the diameter of the tracks is approximately 180 nm, the lateral density was 7×10^7 cm².

J. Chen et al., APL85 (2004)

Iron single crystals oriented along the [110] crystallographic axis

D. Dobrev et al., Appl. Phys. A 72 (2001) 729

CERN Accelerator School 2005

Vertical nanowire transistors

FIG. 3. Electrical characteristic of an array of ~1600 nanowire transistors in polymer foil. (a) Transfer characteristic; the source-drain voltage is 1.6 V. (b) Source-drain characteristics at different gate potentials.

Ion Guiding in Insulating Capillars

Fig. 1. Capillary guiding of highly charged ions in a PET capillary. A scattering region and a guiding region are considered to explain characteristic features of the guiding (see text). The guiding region is affected by a potential of depth U_g wherein the ions are deflected if their perpendicular energy E_{\perp} does not exceed the value of $q_f U_g$, where q_f is the final charge state of the ion.

N. Stolterfoht et al., NIMB 255 (2004)

Ion Beam Synthesis of Precipitate Layers and Homogeneous Layers

Ion-Implantation: Ion Profiles

ION BEAM SYNTHESIS

Optical Properties of Metallic Nanoclustes in Insulators

Lustre decorations in the glazes of Medieval and Renaissance Pottery of the Middteranean basin consist of Cu and Ag nanoparticles (5-100 nm) in a glassy matrix

Classical Pottery from Deruta (Italy)

Formation of Metallic Nanoparticles in SiO₂

CERN Accelerator School 2005

Jörg K.N. Lindner

60 kV MEVVA Implantation Ni → Fused Silica Glass

 $D = 2 \times 10^{17} \text{Ni/cm}^2$, $T_i = RT$

Nonlinear optical constant

 $n = n_0 + l n_2$

In collaboration with PS Chung & SP Wong, CUHK

Combinatorial Ion Beam Synthesis of Compound-Nanoclusters

Sequential implantation of keV Cd⁺ and Se⁺ ions into SiO₂

FIGURE 3. Dose profile generated by using the aperture setup of Fig. 2 a) and the parameters a = 1.1 and n = 10.

FIGURE 4. Daylight scattered image of a 4-inch Silicon wafer implanted with Cd and Se with the herein discussed parameters and dose d_o of 2.85 x 10¹⁶ cm⁻².

I. Großhans et al., Proc. CAARI 2002

Jörg K.N. Lindner

Adding complexity to Nanoparticles

Au-enriched "satellite" nanoparticles around original Au_xCu_{1-x} clusters

190 keV Ne⁺ , D = 1 x 10^{17} cm⁻², RT

G. Mattei et al., PRL90 (2003)

Deformation of Metallic Nanoparticles in SiO₂

160 keV Co \rightarrow SiO₂/Si, D = 1 x 10¹⁷ Co/cm⁻²

200 MeV ¹²⁷I, $D = 3 \times 10^{12} \text{ I/cm}^2$

CERN Accelerator School 2005

Jörg K.N. Lindner

Universität Augsburg

ION BEAM SYNTHESIS

Ion Beam Synthesis of (Buried) SiC Layers

CERN Accelerator School 2005

Jörg K.N. Lindner

MEVVA Ion Beam Synthesis of a-SiC:C Layers

Ion Beam Synthesis of SiC Layers in SIMOX

B. Götz, J.K.N. Lindner, B. Stritzker, Nucl. Instr. and Meth. B127/128 (1997) 333

SiC₍₀₂₂₎-DF

CERN Accelerator School 2005

Jörg K.N. Lindner

BF

Universität Augsburg

Si(111)-DF

Ion Beam Synthesis of SiC Layers in SIMOX

CERN Accelerator School 2005

AUGUS

STATIS

Jörg K.N. Lindner

Universität Augsburg

Ion Beam Synthesis of TiSi₂ Layers on SiC

CERN Accelerator School 2005

SIMOX

Si

Jörg K.N. Lindner

7

Si

Ζ

ION IMPLANTATION

Today:

95 % of all doping steps done by implantation

The technique for the

<u>controlled</u> insertion of atoms into a near surface layer

nanoscale modification of structural properties

Thanks for your attention

Thanks to : Bernd Stritzker Wolfgang Reiber Wolfgang Brückner Birgit Knoblich Sibylle Heidemeyer

> Maik Haeberlen Frank Zirkelbach Daniel Kraus Martin Tremmel

CERN Accelerator School 2005

Recommended Reading:

- •Ziegler, Biersack, Littmark; The Stopping and Range of Ions in Matter
- •E. Rimini: Ion Implantation: Basics to Device Fabrication, (Kluwer)
- •*Ion Implantation and Beam Processing*, ed.: J.S. Williams, J.M. Poate (Academic Press)
- •M. Nastasi, J.W. Mayer, J.K. Hirvonen; *Ion Solid Interactions: Fundamentals and Applications* (Cambridge University Press)
- •Nuclear Instruments and Methods in Physics Research B

