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Main Characteristics of an Accelerator

ACCELERATION is the main job of an accelerator.
•The accelerator provides kinetic energy to charged particles, hence increasing their 
momentum.
•In order to do so, it is necessary to have an electric field , preferably along the 
direction of the initial momentum.

eEdt
dp=

BENDING is generated by a magnetic field perpendicular to the plane of the 
particle trajectory. The bending radius ρ obeys to the relation : 

ρB
e
p

=

FOCUSING is a second way of using a magnetic field, in which the bending 
effect is used to bring the particles trajectory closer to the axis, hence 
to increase the beam density.

E
r
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Acceleration & Curvature

θ
o

x, r
z

s

ρ

Within the assumption:

θEE →
r

zBB →
r

the Newton-Lorentz force:

BveEedt
pd rrrr

×+=

becomes:
( )

rzr uBevueEuvmudt
mvd rrrr

θθθ
θ

θ
θ

ρ −=−
2

leading to:

ρθ

θ
θ

zBe
p

eEdt
dp

=

=
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Methods of Acceleration

1_ Electrostatic Field

Energy gain : W=n.e(V2-V1)

limitation         : Vgenerator =Σ Vi

2_ Radio-frequency Field

Synchronism : L=vT/2

v=particle velocity T= RF period
Wideroe structure

Electrostatic accelerator
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3_ Acceleration by induction

From MAXWELL EQUATIONS :

AHB

t
AE

rrrr

rrr

×∇==

∂
∂−∇−=

μ

φ

The electric field is derived from a scalar potential φ and a vector potential A
The time variation of the magnetic field H generates an electric field E

Methods of Acceleration (2)
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Energy Gain

222
0

2 cpEE +=

zeEdt
dp

dz
dpvdz

dE ===

eVdzEeWdzeEdEdW zz =∫=⇒==

In relativistic dynamics, energy and momentum satisfy the relation:

Hence: vdpdE =

The rate of energy gain per unit length of acceleration (along z) is then:

and the kinetic energy gained from the field  along the z path is: 

where V  is just a potential

( )WEE += 0
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Energy Gain (2)

RF acceleration

( )

Φ=

Φ===∫

cosˆ

cosˆcosˆˆˆ

VeW

tzEtzEzEVdzzE RFω

In this case the electric field is oscillating. So it is for the potential. 
The energy gain will depend on the RF phase experienced by the 
particle.

Neglecting the transit 
time in the gap.
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Betatron

The betatron uses a variable 
magnetic field with time. The 
pole shaping gives a magnetic 
field Bo at the location of the 
trajectory, smaller than the 
average magnetic field. 

A constant trajectory also requires :

dt
Bd

Rdt
d

ER z22 πθπ −=
Φ

−=

Induction law 

Newton-Lorentz force 

dt

Bd
ReeE

dt

dp z

2

1
−== ϑ

dt

dB
Re

dt

dp

BRep

0

0

−=

−=

zo BB
2

1
=
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At each radius r corresponds a velocity v for the 
accelerated particle. The half circle corresponds to 
half a revolution period T/2 and B is constant:

eB

mT

eB

mv

eB

p
r

π
===

2

The corresponding angular frequency is :

m

eB

T
rfr

===
π

πω
2

2

Synchronism if  : rRF ωω =

m = m0 (constant)   if     W  <<  E0

v=Vsinωt

Cyclotron
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Cyclotron (2)

Energy-phase equation:

Energy gain at each gap transit:

Particle RF phase versus time:

φsinV̂eE =Δ

θωφ −= tRF

where θ is the azimuthal angle of trajectory

Differentiating with respect to time gives: E
BecRFrRF

2−=−= ωωωφ&

Smooth approximation allows: φπ
ωφφ Δ=Δ= r

rT 2/
&

⎟
⎠
⎞

⎜
⎝
⎛ −==Δ 12Bec

ERF

r

ωπφω
πφ &Relative phase change at ½ revolution

⎟
⎠
⎞

⎜
⎝
⎛ −=Δ

Δ= 1
sinˆ 2Bec

E
VeEdE

d RFω
φ

πφφAnd smooth approximation again:
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Cyclotron (3)

( ) ( )20
00

0
0

0 ˆ2
1ˆcoscos EE

EVe
EE

Ve r

RF

r

RF −−−⎟
⎠
⎞

⎜
⎝
⎛ −+= ω

ωπ
ω
ωπφφ

with :

( ) dE
Bec
E

Ve
d RF ⎟

⎠
⎞

⎜
⎝
⎛ −−= 1ˆcos 2

ωπφ

Integrating:

Separating:

=
=
=

0

0

0

r

E

ω
φ

Rest energy

Injection phase

Starting revolution 
frequency
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The expression                          shows that if the mass

increases, the frequency decreases : 

m ωr

Synchronism condition:

m
eB

r =ω

γ∝∝mTr

If the first turn is synchronous :

electrons      0.511 MeV
Energy gain per turn

protons        0.938 GeV !!!

Since required energy 
gains are large the 
concept is essentially 
valid for electrons.

)1(intint 0==Δ⇒=Δ γγ egeregerT
T turn
RF

r

Microtron (Veksler, 1954)
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Linear Accelerator

In order to limit the radiated 
power the gap is enclosed 
inside a resonant cavity at 
the operating frequency. A 
zero circulating current in a 
wall makes this wall useless 
( Maxwell ).

A- Relativistic particles

Mode π L= vT/2 Mode 2π L= vT = βλ

In « WIDEROE » the radiated power ∝ ω CV

ALVAREZ structure
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Linear Accelerator (2)

B- Ultra-relativistic particles    v ~ c ,   β ~ 1

The solution consists of using slow waveguide iris loaded waveguide

L increases … unless the frequency ω = 2 π f is increased.  
Following the development of klystrons for radars, it became possible after 1945 
to get high RF power at high frequencies, ω ~ 3000 MHz

Next came the idea of suppressing the drift spaces by using a traveling wave. 
However to benefit from a continuous acceleration the phase velocity of the wave 
should equal that of the particle (~c).
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Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase Φs .

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time.

sVeseV Φ= sinˆ is the energy gain in one gap for the particle to reach the next
gap with the same RF phase: P1 ,P2, …… are fixed points.

Principle of Phase Stability

If an increase in energy is transferred into an increase in velocity, M1 & N1 
will move towards P1(stable), while M2 & N2 will go away from P2 (unstable).
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Transverse Instability
00 <

∂

∂
⇒>

∂

∂

z

zE

t

V
Longitudinal phase stability means : 

The divergence of the field is
zero according to Maxwell : 000. >

∂
∂

⇒=
∂

∂
+

∂
∂

⇒=∇
x

E
z

E
x

EE xzx

defocusing 
RF force

External focusing (solenoid, quadrupole) is then necessary

A Consequence of Phase Stability
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The Traveling Wave Case

( )

( )0

0 cos

ttvz

vk

kztEE

RF

RFz

−=

=

−=

ϕ

ω
ω

velocityparticlev

velocityphasev

=

=ϕThe particle travels along with the wave, and 
k represents the wave propagation factor.

⎟
⎠

⎞
⎜
⎝

⎛
−−= 00 cos φωω

ϕ
tv

vtEE RFRFz

00 cosIf synchronism satisfied: φϕ EEandvv z ==

where φ0 is the RF phase seen by the particle.
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Energy-phase Equations

- Rate of energy gain for the synchronous particle:

s
ss eEdt

dp
dz
dE φsin0==

- Rate of energy gain for a non-synchronous particle, expressed in 
reduced variables,                                 and          :ss EEWWw −=−= sφφϕ −=

( )[ ] ( )ϕϕφφϕφ smalleEeEdz
dw

sss .cossinsin 00 ≈−+=

- Rate of change of the phase with respect to the synchronous one:

( )s
s

RF

s
RF

s
RF vv

vvvdz
dt

dz
dt

dz
d −−≅⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛−= 2

11 ωωωϕ

Since:
( ) ( ) 3

0

22

2
ss

s
s

ss vm
wccvv

γ
βββββ ≅−≅−=−
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Energy-phase Oscillations

one gets: w
vmdz

d
ss

RF
33

0 γ
ωϕ −=

Combining the two first order equations into a second order one:

02
2

2

=Ω+ ϕϕ
sdz

d
33

0

02 cos
ss

sRF
s vm

eE
γ

φω=Ωwith

Stable harmonic oscillations imply:

realands 02 >Ω

hence: 0cos >sφ
And since acceleration also means: 0sin >sφ

One finally gets the results: 20 πφ << s
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The Capture Problem

- Previous results show that at ultra-relativistic energies (γ >> 1) the 
longitudinal motion is frozen. Since this is rapidly the case for electrons, all 
traveling wave structures can be made identical (phase velocity=c).

- Hence the question is: can we capture low kinetic electrons energies (γ ≈ 1), 
as they come out from a gun, using an iris loaded structure matched to c ?

vϕ=c
e-

β0 < 1
gun structure

( )tEEz φsin0=

The electron entering the structure, with velocity v < c, is not synchronous 
with the wave. The path difference, after a time dt, between the wave and 
the particle is: ( )dtvcdz −=
Since:

cvkfactornpropagatiowithkzt RFRF
RF

ωωωφ
ϕ

==−=

one gets: φπ
λ

φω ddcdz g

RF 2== ( )βλ
πφ −= 12 cdt

d
g

and
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The Capture Problem (2)

2
1

0

0
2

0
0 1

1
⎟
⎠
⎞

⎜
⎝
⎛

+
−≥ β

β
λ

π
ge
cmE

21
12coscos

2
1

0

0

0

2
0

0 ≤⎟
⎠
⎞

⎜
⎝
⎛

+
−=− β

β
λ

πφφ Ee
cm

g

α
α

α
λ
πφφ deE

cmd
g

2
0

2
0

sin
cos12sin −=−

dt
d

d
d

dt
d α

α
φφ =

αφα 2

0

0 sinsincm
eE

dt
d −=

( ) ( )
( )

φ
β

ββγ sin
1

0
2
1

2
00 eEdt

dcmdt
dcmmvdt

d =
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
==

From Newton-Lorentz:

Introducing a suitable variable:

the equation becomes:

Using

Integrating from t0 to t

(from β=β0 to β=1)

Capture condition

β = cos α
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Improved Capture With Pre-buncher

A long bunch coming 
from the gun enters an 
RF cavity; the 
reference particle is 
the one which has no 
velocity change. The 
others get accelerated 
or decelerated. After 
a distance L bunch 
gets shorter while 
energies are spread:
bunching effect.   This 
short bunch can now 
be captured more 
efficiently by a TW 
structure (vϕ=c).
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Improved Capture With Pre-buncher (2)

The bunching effect is a space modulation that results from a velocity 
modulation and is similar to the phase stability phenomenon. Let’s look at 
particles in the vicinity of the reference one and use a classical approach.

Energy gain as a function of cavity crossing time:

φφ 0000
2

0 sin2
1 eVeVvvmvmW ≈=Δ=⎟

⎠
⎞⎜

⎝
⎛Δ=Δ

00

0
vm

eVv φ=Δ

Perfect linear bunching will occur after a time delay τ, corresponding to 
a distance L, when the path difference is compensated between a 
particle and the reference one:

RF
vtvzv ω

φτ 00. ==Δ=Δ (assuming the reference particle 
enters the cavity at time t=0)

Since L = vτ one gets:

RFeV
WvL ω0

02=
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Radio-Frequency Gun

4/λ 2/λ

Ez

Photo-cathode

Specifically designed for high intensity, low 
energy, electron beam; a multi-cells high Q 
cavity provides a large electric field that 
rapidly accelerates the beam to ultra-
relativistic energy, hence reducing the 
space charge effect; it also bunches the 
beam but giving large energy spread. 

( )

cathodetheatparticletheofphaseRF
ck

tkzEEz

=

==

+=

0

0

00

2
sincos

φ

ω
λ
π

φω

Generally a short pulse laser hits a photo-
cathode to generate short electrons pulses.
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Radio-Frequency Quadrupole

Specifically designed for intense low velocity protons (or ions) beams; it both 
accelerates and focus to control space charge effects (see A. Lombardi lecture)

4 vanes resonator that 
provides a quadrupolar
symmetry which gives a 
transverse E gradient 
for focusing.

Modulated pole shapes provide a longitudinal E 
field for acceleration and bunching.

)(sincos)(2cos2 0

2

φωψ +⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛= tkzkrIAa

rXVU

( ) ( )( ) )(1;)(/1;2
000

22 kaAIXmkaIkaImmAk −=+−== βλ
π
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The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions:

Be
PB

cteRcte

h

cte

Ve

rRF

s

⇒=

==

=

=Φ=Φ

Φ

ρ

ρ

ωω

sin
^

Energy gain per turn

Synchronous particle

RF synchronism

Constant orbit

Variable magnetic field

If v = c, ωr hence ωRF remain constant (ultra-relativistic e- )
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Energy ramping is simply obtained by varying the B field:

v

BRe
rTBeturnpBe

dt
dp

eBp
′

=′=Δ⇒′=⇒=
ρπ

ρρρ
2

)(

Since: pvEcpEE Δ=Δ⇒+=
222

0
2

•The number of stable synchronous particles is equal to the harmonic 
number h.  They are equally spaced along the circumference.
•Each synchronous particle satifies the relation p=eBρ. They have the 
nominal energy and follow the nominal trajectory.

The Synchrotron (2)

( ) ( ) φρπ ssturn VeRBeWE sinˆ'2 ==Δ=Δ
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The Synchrotron (3)
During the energy ramping, the RF frequency 
increases to follow the increase of the 
revolution frequency :

hence :  

),( s
RF

r RB
h

ωωω ==

)(
)(

2

2

1)(
)(

2

1

2

)()(
tB

sR

r

tsE

ec

h

tRFf
tB

m

e

sR

tv

h

tRFf

πππ
=⇒><==

Since                                              ,  the RF frequency must follow the variation of the

B field with the law :                                           which asymptotically tends 

towards                   when B becomes large compare to  (m0c2 / 2πr) which corresponds to

v           c   (pc >> m0c2 ). In practice the  B field  can follow the law:
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2
cpcmE +=

2
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2
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2
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⎭
⎬
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⎨
⎧
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h
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π

R
cfr π2

→

tBt
B

tB
2

2
sin)cos1(

2
)(

ω
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Dispersion Effects in a Synchrotron

E+δE

E

If a particle is slightly shifted in 
momentum it will have a different 
orbit:

dp
dR

R
p=α

This is the “momentum compaction”
generated by the bending field.

If the particle is shifted in momentum it will 
have also a different velocity. As a result of 
both effects the revolution frequency changes:

dp
df

f
p r

r
=ηp=particle momentum

R=synchrotron physical radius

fr=revolution frequency

cavity

Circumference

2πR
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Dispersion Effects in a Synchrotron (2)

dp
dR

R
p=α

θ

xρ

0s
s

p
dpp +

dθ

x( ) θρ
θρ

dxds
dds
+=

=0

The elementary path difference 
from the two orbits is:

ρ
x

ds
dl

ds
dsds ==−

00

0

leading to the total change in the circumference:

m
m

xdRxdsdsxdRdl =⇒∫=∫ ∫== 00
12 ρρπ

Since:
p

dpDx x= we get: R
D

mx=α

< >m means that 
the average is 
considered over 
the bending 
magnet only
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Dispersion Effects in a Synchrotron (3)

dp
df

f
p r

r
=η R

dRd
f

df
R
cf

r

r
r −=⇒= β

β
π
β

2
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( )

( ) β
ββ

β
β

β
ββγ ddd

p
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c
Emvp 12

2
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2
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2
0 1

1
1 −
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p
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f
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r

r ⎟
⎠
⎞

⎜
⎝
⎛ −= αγ 2

1 αγη −= 2
1

η=0 at the transition energy 
α

γ 1=tr
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Phase Stability in a Synchrotron 

From the definition of η it is clear that below transition an increase in 
energy is followed by a higher revolution frequency (increase in velocity 
dominates) while the reverse occurs above transition (v ≈ c and longer path) 
where the momentum compaction (generally > 0) dominates.

Stable synchr. Particle 
for η<0

η > 0
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Longitudinal Dynamics in a Synchrotron

It is also often called “ synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF 
phase experienced by the same particle. Since there is a 
well defined synchronous particle which has always the same 
phase φs, and the nominal energy Es, it is sufficient to follow
other particles with respect to that particle. So let’s 
introduce the following reduced variables:

revolution frequency :             Δfr = fr – frs

particle RF phase     :              Δφ = φ - φs

particle momentum   :              Δp = p - ps

particle energy         :              ΔE = E – Es

azimuth angle            :              Δθ = θ - θs
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First Energy-Phase Equation

θ
R

∫=Δ−=Δ⇒= dtwithhhff rrRF ωθθφ

For a given particle with respect to the reference one:

( ) ( ) dt
d

hdt
d

hdt
d

r
φφθω 11 −=Δ−=Δ=Δ

Since:
s

r

rs

s

dp
dp

⎟
⎠
⎞

⎜
⎝
⎛= ω

ωη

one gets:
( ) φηω

φ
ηωω

&
rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE −=Δ−=Δ

and
cpEE 222

0
2 +=

pRpvE srss Δ=Δ=Δ ω
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Second Energy-Phase Equation

The rate of energy gained by a particle is: π
ωφ 2sinˆ rVedt

dE=

The rate of relative energy gain with respect to the reference 
particle is then:

)sin(sinˆ2 s
r

VeE φφωπ −=⎟
⎠
⎞⎜

⎝
⎛Δ &

leads to the second energy-phase equation:

( )s
rs

VeE
dt
d φφωπ sinsinˆ2 −=⎟

⎠
⎞

⎜
⎝
⎛ Δ

( ) ( )ETdt
dETTEETTETE rsrsrrsrr Δ=Δ+Δ=Δ+Δ≅Δ &&&&&

Expanding the left hand side to first order:
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Equations of Longitudinal Motion

( )s
rs

VeE
dt
d φφωπ sinsinˆ2 −=⎟

⎠
⎞

⎜
⎝
⎛ Δ( ) φηω

φ
ηωω

&
rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE −=Δ−=Δ

deriving and combining

( ) 0sinsin2
ˆ =−+⎥⎦

⎤
⎢⎣
⎡

s
rs

ss Ve
dt
d

h
pR

dt
d φφπ

φ
ηω

This second order equation is non linear. Moreover the parameters 
within the bracket are in general slowly varying with time…………………
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Small Amplitude Oscillations

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ&&

(for small Δφ)

02 =ΔΩ+ φφ s
&&

ss

srs
s pR

Veh
π

φηω
2

cosˆ
2 =Ω

γ < γtr η > 0             0 < φs < π/2               sinφs > 0

γ > γtr η < 0           π/2 < φs < π sinφs > 0

with

Let’s assume constant parameters Rs, ps, ωs and η:

( ) φφφφφφφ Δ≅−Δ+=− ssss cossinsinsinsin
Consider now small phase deviations from the reference particle:

and the corresponding linearized motion reduces to a harmonic oscillation:

stable for              and  Ωs real02 >Ωs
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Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear:

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ&& (Ωs as previously defined)

Multiplying by   and integrating gives an invariant of the motion:φ&

( ) Is
s

s =+Ω− φφφφ
φ sincoscos2

22&

which for small amplitudes reduces to:

( ) Is =ΔΩ+ 22
2

2
2 φφ& (the variable is Δφ and φs is constant)

Similar equations exist for the second variable : ΔE∝dφ/dt
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Large Amplitude Oscillations (2)

( ) ( ) ( )( )sss
s

s
s

s

s φφπφπφφφφφ
φ sincoscossincoscos2

222
−+−Ω−=+Ω−

&

( ) ( ) ssssmm φφπφπφφφ sincossincos −+−=+

Second value φm where the separatrix crosses the horizontal axis:

Equation of the separatrix:

When φ reaches π-φs the force goes 
to zero and beyond it becomes non 
restoring. Hence π-φs is an extreme 
amplitude for a stable motion which 

in the phase space(            ) is shown 

as closed trajectories. 

φφ ΔΩ ,
s

&
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Energy Acceptance

From the equation of motion it is seen that    reaches an extremum
when        , hence corresponding to        .

Introducing this value into the equation of the separatrix gives:   

φ&
0=φ&& sφφ =

( ){ }sss φπφφ tan222 22
max −+Ω=&

That translates into an acceptance in energy:

This “RF acceptance” depends strongly on φs and plays an important role 
for the electron capture at injection, and the stored beam lifetime.

( )
⎭
⎬
⎫

⎩
⎨
⎧−=⎟

⎠
⎞⎜

⎝
⎛ Δ φηπβ s

ss
G

Eh
Ve

E
E ˆ 2

1

max
m

( ) ( )[ ]φπφφφ ssssG sin2cos2 −+=
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RF Acceptance versus Synchronous Phase 

As the synchronous phase 
gets closer to 90º the 
area of stable motion 
(closed trajectories) gets 
smaller. These areas are 
often called “BUCKET”.

The number of circulating 
buckets is equal to “h”.

The phase extension of 
the bucket is maximum 
for φs =180º (or 0°) which 
correspond to no 
acceleration . The RF 
acceptance increases with 
the RF voltage.
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Ions in Circular Accelerators 

A =atomic number

Q =charge state

q = Q e

W = E – Er

P = q B r

E2 = p2c2 + Er
2

Er = A E0

m  = γ mr

P = m v

E = γ Er

( )222 rBcqEE r =−

( )2
2

02 rBceA
QEA

W
A

W
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ +

Moreover:
⎥⎦
⎤

⎢⎣
⎡ +−== r

dr
B

dB
E

EEdEdW r
22

dr/r = 0   synchrotron                                   dB/B = 0   cyclotron
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