

Small Synchrotrons

Michael Benedikt

CERN, AB-Department

CAS, Zeegse, 30/05/05

Contents

• Introduction

- Synchrotron linac cyclotron
- Main elements of the synchrotron
- Accelerator physics and technical aspects of small synchrotrons
 - Bending dipoles orbit
 - Focusing quadrupoles betatron oscillations
 - Betatron tune resonances
 - Off-momentum particles dispersion chromaticity
 - Phase space, emittance, adiabatic damping, space charge

• Example

- Synchrotrons for hadron therapy
- The MedAustron project

- Historically, the development of accelerators was always driven by the demands of physics research for higher beam energies.
- Last type of machines developed were synchrotrons (~1950ies):
 - To overcome synchronisation problems (relativistic particles and RF) and technological limitations (huge dipole magnets) of the cyclotron.
 - To use the accelerating structure more efficiently than in a Linac consequences of single use of RF as in a linac (efficiency, size, etc.).

• A synchrotron is a circular accelerator:

- Design orbit is fixed at a given radius independent of the beam energy $(\rho = constant)$ in contrast to the cyclotron.
- Beam is accelerated during many revolutions passing through the same accelerating structure (cavity) in contrast to the linac.
- Accelerating RF is synchronised with particle revolution frequency "SYNCHROTRON".

"Large" and "small" synchrotrons

- Most of the HE physics research accelerators are synchrotrons.
 - The largest machine is the LHC collider, start operation in 2007.
 - 27 km circumference and 7 + 7 TeV proton beam energy.

• 3 main groups of "small" synchrotrons (circumference ~100 m):

Application	Particles	Energy	Machines
Synchrotron light sources	e- or e+	few GeV	~ 50
Neutron spallation sources	р	~ GeV	~ 5
Hadrontherapy synchrotrons	p and C, O	250MeV / 450MeV/n	~ 10

- Presently increasing interest in synchrotrons for hadrontherapy (tumour irradiation with protons or light ions).
 - Discuss technical aspects of "small" proton and ion synchrotrons.
 - Show the MedAustron synchrotron as an example.

"Limitations" for p/ion linacs

- Accelerating structures and RF power sources are expensive and used only during a single beam passage.
- For higher energies the Linacs will become long
 - Typical gradient of ~MV/m (includes space for focusing, etc.).
 - 200 MeV protons with average gradient ~2 MeV/m = 100 m.
- Beam energy cannot be changed.
 - Fixed relation: structure geometry rf frequency particle velocity.
- Particles with different Z/A are difficult to accelerate.
 - Design structure (RF power) for worst (smallest) Z/A.
- Obviously the beam can't be stored in the machine.
- Linacs can provide a quasi dc-beam when designed for that.

"Limitations" for cyclotrons

- For higher energies the magnets become unfeasibly large.
 - Build superconducting cyclotrons.
- For relativistic particles the synchronous condition is lost.
 - Build synchro-cyclotrons.
- Even with improvements clearly limited in energy (p < 1 GeV).
- Beam energy is fixed or difficult to change.
- Obviously the beam can't be stored in the machine!
- Cyclotrons provide a quasi dc-beam.

Main components of a synchrotron

- In contrast to Linac and cyclotron the beam can be stored for longer period in the synchrotron.
- Particles with different Z/A can be accelerated, the extraction energy can easily be changed.

Keep particles on orbit: Dipole

- A dipole produces a homogeneous (vertical) magnetic field B.
 - Equilibrium between Lorentz force and centripetal force to bend the beam on the design orbit.

- Difference between ions (Z,A) and protons:
 - For protons (charge e, mass m_0): $B\rho = m_0 c\beta\gamma/e$
 - For ions (charge Ze, mass Am_0): $B\rho = (A/Z) \cdot m_0 c\beta \gamma / e$
 - For identical momentum/nucleon, the ion beam is stiffer and more difficult to bend.

CAS, Zeegse, 30/05/05

- During acceleration the momentum increases and with $B\rho = p/e$ the magnetic field B has to be increased accordingly to keep the particles on orbit (ρ does NOT change for the synchrotron).
 - In contrast to the cyclotron where B is constant and ρ increases.
- As a consequence the synchrotron CANNOT provide a dc-beam, the beam time structure reflects the magnet ramping (~Hz).
- Dipoles define the "design" orbit of the synchrotron and an "ideal" particle would circulate there forever but...
 - The beam consists of many particles and all have slight deviations from the design orbit (injection errors, energy errors, etc.).
 - The dipole magnets have field imperfection and are misaligned.
 - Gravitation also acts on the beam, etc...
- Therefore we need focusing to stabilise the beam and keep it for long time in the machine.

Focusing particles: Quadrupoles

- Quadrupole produces a constant gradient g=-dBz/dx.
 - Focusing forces increase linearly with displacement (Lorentz force):

$$F_x = -gx \cdot ev$$
 and $F_z = gz \cdot ev$

- Force is focusing in one plane while defocusing in the other.
- Important: no coupling of horizontal and vertical motions.
- Again the gradient has to increase like the momentum when accelerating
- Optical lenses are either focusing (concave) or defocusing (convex).
- Magnetic lenses focus in one plane but are defocusing in the orthogonal plane (from Maxwell's equations) – but that is not a problem...because

Alternate gradient focusing

- Alternating focusing and defocusing quadrupole magnets (in correct way) allows to obtain an overall focusing effect.
 - Intuitive view: beam size increases when passing a defocusing element.
 This gives a larger beam and stronger forces when passing the following focusing element.

• "Non-ideal" particles perform oscillations about the design orbit.

Describing the envelope - Beta Function

- When looking at all particle oscillations, the envelope function is proportional to sqrt of the betatron amplitude function:
 - The shape of the beta-function is determined by the lattice (sequence of quadrupoles and dipoles).
 - The oscillations of the beam particles are called "betatron oscillations".
 - The number of oscillations per revolution in the synchrotron is called the betatron TUNE Q (Q_x horizontal and Q_z vertical). The betatron tune is controlled with the quadrupole magnets.

• Choice of tune and good control are essential for performance.

Forbidden tune values - Resonances

- Integer Tune Q=N
- Dipole error
 - Kick has always same sign independent of position.
- · FORBIDDEN
- Perturbation adds up

Horizontal beam trajectory [m] versus distance [m]

- 1/2 Integ. Tune Q=N+1/2
- OK for dipole error
- Perturbation cancels after each turn

CAS, Zeegse, 30/05/05

Forbidden tune values - Resonances

- 1/2 Integ. Tune Q=N+1/2
- Quadrupole error
 - Kick depends on position and changes sign.
- · FORBIDDEN
- Oscillation amplitude is steadily increasing.

Horizontal beam trajectory [m] versus distance [m]

- Similar problems for 1/3-integer tune, etc...
- All low order resonances are dangerous and have to be avoided.

NQx + MQz = P

with small N and M

• The synchrotron working point (Q_x , Q_z) has to be carefully chosen.

Working point and tune diagram

- Tune diagram
 - Qz over Qx
 - Resonances up to fifth order
 (N+M = P = 5).
- Choose working point (Q_x, Q_z) not too close to resonances.
- Example lower tunes close to diagonal e.g. 1.15/1.18

Off momentum particles ($\Delta p/p \neq 0$)

- Effect from dipoles:
 - For △p/p > 0, the beam is stiffer (higher rigidity) and particles are less bent in the dipoles → should spiral outwards?
 - For △p/p < 0, the beam is less rigid and particles are more bent in the dipoles → should spiral inwards?
- NO, due to the restoring force of quadrupoles there is an equilibrium "Dispersion" orbit for off-momentum particles.
- The dispersion function D(s) defines central orbit for off-momentum particles.

Off momentum particles ($\Delta p/p \neq 0$)

- Effect from quadrupoles:
 - For △p/p > 0, the beam is stiffer (higher rigidity) and particles are less focused by the quadrupoles → they will have a lower tune Q.
 - For △p/p < 0, the beam is less rigid and particles are more focused by the quadrupoles → they will have a higher tune Q.
- Particles with different momenta will have different tunes.
- We need to foresee the required "space" in the tune diagram.

 Dependency of the betatron tune on momentum is called chromaticity:

$$Q' = \Delta Q/(\Delta p/p)$$

- Chromaticity is fundamental for the stability of the machine:
 - For non-relativistic particles (i.e. small proton/ion synchrotrons) the chromaticity must be negative Q' < 0.
 - For relativistic particles (i.e. electron synchrotrons or high energy proton/ion synchrotrons) the chromaticity must be positive Q' > 0.

- The natural chromaticity (only dipoles and quadrupoles) is usually negative.
- Chromaticity can be controlled and adjusted with sextupole magnets ($\Delta x' \propto x^2$) that are positioned in dispersion regions.

- The beam can be accelerated over many turns (medical machine typically 10⁶) so the rf voltage can be relatively moderate.
- In small proton and ion synchrotrons the beams are not fully relativistic, therefore velocity and revolution frequency will change significantly during acceleration.
- Typical rf system parameters:
 - Accelerating voltages 1 10 kV.
 - Frequency range ~MHz.
 - Frequency swing up to factor 5 (to follow beam velocity).
 - Ferrite loaded RF cavities (tuneable).

Acceleration - RF systems

 LC - resonant circuit, change resonant frequency via inductance change by magnetising the ferrites.

CAS, Zeegse, 30/05/05

Longitudinal motion - synchrotron oscillations

Small proton/ion synchrotrons operate below transition

- Particle with higher momentum is faster and has shorter revolution time)
 (in contrast to electron machines and HE p).
- The ideal particle should arrive always at the same RF phase at the cavity after each revolution (synchronous particle).

CAS, Zeegse, 30/05/05

Transverse phase space

• Description of single particles

- Start from projection onto horizontal and vertical planes.
- Phase space coordinates (x,x'), (z,z').

• Observing over many turns

- Describes an ellipse in phase space.
- Imposed by boundary conditions of the circular machine.

- Observing at a different position s along the machine, the ellipse changes shape but it contains the same phase space area!

CAS, Zeegse, 30/05/05

Transverse emittance

- The beam consists of many particles...
 - All particles describe similar ellipses in phase space.
- The elliptical phase space area containing (a certain amount of) the beam is the transverse emittance, ϵ .
 - The area is constant but the ellipse changes shape around the machine.
- Beam size is the projection of the ellipse on horizontal/vertical axis.

- Beta function: machine property (determined by magnet optics).
- Emittance: beam property.

CAS, Zeegse, 30/05/05

Adiabatic damping of emittance

- Acceleration adds longitudinal momentum to the particles while leaving the transverse momentum unchanged (first order).
- As a result the "angular spread" reduces and the emittance decreases.

• This is adiabatic damping, inversely proportional to momentum increase.

$$p(\gamma) = m_0 \mathbf{c} \cdot (\beta \gamma) \implies \varepsilon_{\text{geometrical}}(\gamma) = \frac{\varepsilon_{\text{normalized}}}{\beta \gamma}$$

• LHC beam emittance is defined at injection in the PS Booster (50 MeV). Emittance shrinks by a factor 1500 until injection into LHC (450 GeV).

CAS, Zeegse, 30/05/05

Space charge

- Space charge effect:
 - Electrical force,
 Coulomb interaction,
 repulsive.
 - Magnetic force of parallel currents, attractive.

- Overall force is repulsive but decreases with energy.
- Cancellation of forces for v = c

$$F_{\rm rad} \propto \frac{1}{\beta \gamma^2}$$

- Space charge effects are problematic at low energy.
- Space charge force has a defocusing effect on the beam.

Space charge tune spread

 The defocusing effect of space charge reduces the tune and leads to a tune spread ∆Q in the beam:

$$\Delta Q \propto -\frac{\mathrm{N}}{\mathrm{e_n}} \cdot \frac{1}{\mathrm{\beta \gamma}^2}$$

- Once △Q becomes too big there will be always particles fulfilling a resonance condition and these will be lost.
- THE major problem for high intensity at low energy.

Radio therapy and hadron therapy

• Goal

- Deliver a high radiation dose to the target area to kill all tumour cells.
- Spare out healthy tissue and organs at risk.
- Tumour conformal dose distribution.

Radiation type

- Hadron therapy: protons, light ions
- Conventional therapy: electrons, photons
- More exotic: neutrons, pions

Courtesy GSI

"Bragg-Peak" behaviour of hadrons

Water phantom measurements (~tissue equivalent)

Cobalt 60 (γ, ~1.2 MeV) Electrons 21 MeV Photons 25 MeV C-ions 330 MeV/u

Measurement data: Photons and electrons: University Clinics Vienna C-ions: GSI Darmstadt

CAS, Zeegse, 30/05/05

"Spread out Bragg-Peak" (SOBP)

- Bragg peak has to be widened to cover tumour thickness
 - Overlapping of beams with different energies.
 - Active energy variation from cycle to cycle with the synchrotron.

- Beam must also cover transverse tumour cross section
 - Transverse scanning by fast magnetic scanning.

Active Beam Delivery

CAS, Zeegse, 30/05/05

MedAustron Layout

Synchrotron lattice

CERN- PIMMS design, further optimized by TERA

Injection energy: 7 MeV/n

Extraction energy range:

- Protons: 60 to 250 MeV
- C-ions: 120 to 400 MeV/n

Beam intensity:

- Protons: $\leq 1 \times 10^{10}$
- C-ions: $\leq 4 \times 10^8$
 - Multi-turn injection (≤10turns)
- Slow resonant extraction.
- Spill time ~1s to 10 s
- "Orthogonal" control of resonance and chromaticity

CAS, Zeegse, 30/05/05

MedAustron lattice functions

Betatron amplitude functions [m] versus distance [m]

Lattice structure:

- Periodicity 2 with mirror symmetry in each period.
- Split FODO structure FODOF to give "constant" betas in drift spaces.
- Three quadrupole families (i.e. quadrupoles combined in 3 groups).
- No regular cell structure, typical for small machines customised design.

CAS, Zeegse, 30/05/05

Synchrotron operation

- Change extraction energy from cycle to cycle to create actively a SOPB according to tumour thickness.
- Change intensity from cycle to cycle according to requirements of treatment plan.

• Flexibility of synchrotron fully exploited.