

CAS / INTRODUCTION TO ACCELERATOR PHYSICS Zakopane, Poland, 1-13 October 2006

FREE ELECTRON LASERS (FEL)

AN INTRODUCTION

Albin F. Wrulich

- FEL = 4th Generation Light Source
- FEL Basics

Lasing conditions \rightarrow

Electron beam characteristics \rightarrow

Accelerator and experimental systems

- FEL Concepts
- FEL Extending the scietific endeavor
- FEL Projects in the world

LIMITS OF 3rd GENERATION LIGHT SOURCES

Performance Limits of 3rd Generation Light Sources:

Storage ring based light sources are for short wavelengths (high photon energies) far away from the theoretical limits →

Free Electron Laser

FEL BASICS

Requires a small electron beam !

FEL MAIN COMPONENTS

FEL Main Components (1)

FEL Main Components (2)

LINEAR ACCELERATOR

→acceleration to reduce beam size by adiabatic damping

FEL Main Components (3)

UNDUALTOR
→micro-bunching
→coherent emission

LASING PROCESS

FEL interaction

Interaction between an electron and the optical field

Interaction between an electron and the optical field

Resonance Condition

Resonance Condition

Electron Dynamics

electron rest-frame: $\langle v_z \rangle = 0$

Electron Dynamics

Bunching

 \rightarrow Inject electrons with energy slightly above the resonance energy

at resonance

above resonance

ELECTRON BEAM REQUIREMENTS FOR LASING

- 1 SMALL BEAM SIZE (EMITTANCE)
 - → to have a good overlap of the electron beam with the photon beam

2 MANY PARTICLES IN THE ELECTRON BEAM → high peak current I_p

- 3 SMALL ENERGY SPREAD
 - \rightarrow to have many particles within
 - \rightarrow the lasing bandwidth

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

Gain (RHO) Parameter:

$$P_{hv} = \rho P_{beam}$$

 \rightarrow Defines the fraction of beam power extracted from the electron beam

$$\rho \sim \left(\frac{I_p}{\gamma^2 \varepsilon_n}\right)^{1/3}$$

Resonance condition
$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right)$$

Electron Beam Requirements

Sufficient Beam Energy:

λ	E
100 μm	15 MeV
10 nm	~1 GeV
1 nm	~3 GeV

Sufficient Current:

$$\begin{split} N_{e,\lambda} &= \frac{I\lambda}{ec} \\ N_{e,\lambda} &= 1 \longrightarrow \begin{cases} 0.5 \ \mu \text{A} \ (\lambda = 100 \ \mu \text{m}) \\ 0.5 \ \text{A} \ (\lambda = 0.1 \ \text{nm}) \end{cases} \end{split}$$

Good Electron Beam Quality:

Transverse Emittance : $\varepsilon \leq \frac{\lambda}{4\pi}, \quad \varepsilon = \varepsilon_n / \gamma$ Energy spread : $\frac{\sigma_E}{E} \le 10^{-3} \ (\le \frac{1}{4N}, \le \rho)$

Difficult for short wavelengths Difficult for long wavelengths

LOW EMITTANCE BEAM GENERATION

Difficulties

1 / To get a small emittance from the electron source
 2 / To maintain the small emittance during the acceleration process → Emittance blow up due to:

- space charge effects
- nonlinearities of the acceleration field
- wake fields
- coherent synchrotron radiation

ELECTRON SOURCES

There are 3 methods to extract electrons from a material

T=1500K

Thermionic Emission

ission $E_{kin} \sim \frac{3}{2}kT$

Emission Characteristics:

$$J(T) = a T^2 \exp\left[-\frac{b \cdot \phi}{T}\right]$$

RICHARDSON/DUSHMANN EQUATION

a, bconstantsTtemperature ϕ work functionrspot radius

a = 120 A/cm² b = 11'600

Emittance Limitation:

$$\boldsymbol{\varepsilon}_{thermal} = \frac{\boldsymbol{r}}{2} \sqrt{\frac{2\boldsymbol{E}_{kin}}{3\boldsymbol{m}_{o}\boldsymbol{c}^{2}}}$$

THERMAL EMITTANCE

Photoemission

Emission Characteristics:

$$E_{kin} = h v - \phi + e \sqrt{\frac{eE}{4\pi\varepsilon_o}}$$

SCHOTTKY EFFECT

STATE OF THE ART \rightarrow **Laser driven cavity gun:**

Field Emission

Emission Characteristics:

$$I(E) = a A \frac{E^2}{\phi} \exp\left[\frac{b}{\sqrt{\phi}} - \frac{c \cdot \phi^{3/2}}{E}\right]$$
FOWLER NORDHEIM LAW
a, b, c constants
A area
E electric field $\ln\left(\frac{I}{E^2}\right)$

In principle much smaller emittances can be reached

1

PRINCIPLE OF FIELD EMISSION

Under the action of a strong electric field the surface potential barrier can become narrow enough (< 2nm) so that electron near the Fermi-Energy can tunnel trough.

 Φ = 4.5 eV ; w = 2 nm (TUNGSTEN)

$$\Rightarrow F = \frac{\phi}{e \cdot w} = 2.25 \left[GVm^{-1} \right]$$

Difficulty: Very high fields are needed \rightarrow few GV/m

To overcome this problem use nanostructured tips with large field enhancement factor \rightarrow

Apex radius r

Field amplification

$$\boldsymbol{E} = \boldsymbol{\beta} \boldsymbol{E}_o \qquad \boldsymbol{\beta} \sim \frac{1}{r}$$

Difficulty: One tip does not provide enough current

 \rightarrow USE SEVERAL THOUSENDS OF TIPS

Problem: The emission area is increased, the divergence is as large as for the single tip, i.e. the emittance is increased !!

→

Introduce focusing for the electron beams emitted from a single tip.

NEW APPROACH:

■ Field emitter array (cold emission) with gate and focusing layer →

EMITTANCE DEGRADATION

Emittance Blow Up due to Space Charge Effects

due to the intensity variation over the bunch length, the defocusing transverse space charge forces are changing \rightarrow blow up of the projected emittance!

For a homogeneous charge distribution of an infinite cylindrical beam the space charge force inside the beam is purely linear and defocusing

Emittance Blow Up due to RF-Nonlinearities

KIM – NIM A 275

$$\varepsilon_x^{RF} = \frac{eE_o}{2mc^2} \frac{k_{RF}^2 \sigma_x^2 \sigma_y^2}{\sqrt{2}}$$

PEAK CURRENT GENERATION

Maximum Current from a Photocathode:

EXAMPLE BNL/PITZ:

1 nC in pulse with 10 ps length \rightarrow 100 A

BUT

Several 1000s Amperes are needed for the lasing process

WAY OUT

Take longer pulses and compress them

/1/ Velocity (Ballistic) Compression

Works good at low energies when the electrons are not yet relativistic!

Principle:

Create a velocity chirp in the beam and add a drift length \rightarrow

/2/ Magnetic Compression

At high energies the difference in velocity difference between particles with different energies is strongly reduced

$$\gamma = \frac{1}{\sqrt{1-\beta^2}} \rightarrow d\beta = \frac{d\gamma}{\beta\gamma^3}$$
 THE BEAM IS FROZEN !

Way out:

Use path length changes in a dispersive magnet system

Magnetic Bunch Compression

1. Initial condition

2. Offcrest RF acceleration

Magnet bunch compressors create a sever problem → COHERENT SYNCHROTRON RADIATION

Powerful radiation generates energy spread in bends Induced energy spread breaks achromatic system Causes bend-plane emittance growth (short bunch is worse)

FEL CONCEPTS

Classical FEL Scheme

SEEDING

Seeding: SELF SEEDING

(demo for X-FEL)

FEL EXPERIMENTS

Users Dream will become Reality \rightarrow

 SINGLE SHOT imaging of single biomolecular complexes

> NEEDS MANY PHOTONS ON THE SAMPLE !

Light induced structural changes during photocycle

TIME RESOLVED studies of structural processes during chemical and biological reactions

NEEDS VERY SHORT PULSES !

\rightarrow permits time resolved studies at the atomic level

SHORT PULSES in the range of fs are needed in order to study the dynamics on the atomic and molecular level

Myoglobin:

How does the oxygen get in and out of the haeme unit?

- t=0: Photodissociation
- 4 ns: CO rotates 90°, moves 4Å from Fe and stays in site for 350 ns
- 1 ms: CO located in outer protein coat

Schotte et al Science 300 1944 (2003)

Coulomb Explosion of Lysozyme (50 fs) Single Molecule Imaging with Intense X-rays

SHORT PULSES are mandatory to take snap shot before molecule flies apart (takes only 4-20 fs!)

Atomic and molecular dynamics occur at the *fs*-scale

J. Hajdu, Uppsala U.

FEL PROJECTS (a selection)

The Elettra Storage Ring FEL

JLAB recirculating FEL

Driver Accelerator	Design Spec.	Achieved (as of Jul. 21 200	4)
Linac Energy	145 MeV	160	
Linac Ave. Current	10 mA	9.1	
Charge	135 pC	150	
Transverse Emittance	30 mm-mrad	<15	
Energy Spread	0.3%	0.3	
Bunch length *	0.5ps	0.35	
3			
<u>FEL System</u>			
Ave. Power (cw)	10 kW	8.5	
Lasing efficiency	1 kW/mA	2.6	
Stored Optical Power (@6µm)		132 kW	
*at desired energy spread		Injecto	r
acce	leration Accelerators		
			L.
< <u>←</u>			`
		LET 1620119101	

PAUL SCHERRER INSTITUTE

4GLS Daresbury

TESLA X - FEL at DESY

Beam Energy and Wavelength

TESLA

FLASH (DESY)

Bunch Bunch Compressor Compressor FEL 5 MeV 127 MeV 370 MeV 445 MeV bypass diagnostics

FERMI (Sincrotrone Trieste)

PSI-FEL (Switzerland)

R. Bakker

PSI-XFEL Project

NEW APPROACH – has 4 characteristic elements:

Field emission from a nano-structured tip array → homogeneous beam distribution

Focusing of the individual beamlets → reduction in emittance

High gradient acceleration in diode configuration → reduction of beam blow up due to space charge forces

Two frequency cavity for linear gradient
→ allows longer pulses and higher compression

CATHODE AND DIODE ASSEMBLY WITH 2 FREQUENCY RF-CAVITY

... and many more !

Single Pass FEL Activity

SC technology / NC technology

