

Beam Diagnostics

Ulrich Raich CERN AB - BI (Beam Instrumentation)

U. Raich CERN Accelerator School Zakopane 2006 1

Overview

- First 2 hours:
 - Introduction
 - Overview of measurement instruments
- Last hour
 - Some depicted examples of beam parameter measurements

Contents of lecture 1

- Introduction
- Generalities about beam diagnostic devices
- Current measurements
 - Faraday Cup
 - Fast current transformer
 - DC current transformer
- Beam Loss detectors

7th European Workshop on Beam Diagnostics and Instrumentation For Particle Accelerators

2005

Powerful Instruments: yes, but...

Mare Info: http://dipac2005.web.com.ch/dipac200

U. Raich CERN Accelerator School Zakopane 2006 4

Program Committee

ster Concerns (BNL)

on Wittenhore (DESV)

Mari Periania (EELETTRA Eli Kikotani (KEK)

many Schmiekler (Chair), CERN

...this time only for particle beams

Local Committee and Secretariat

Hermann Schmidder (Chais Madeleine Catin (CERN)

Volker Schus (CISI)

Introduction

An accelerator can never be better than the instruments measuring its performance!

U. Raich CERN Accelerator School Zakopane 2006 5

Different uses of beam diagnostics

- Regular crude checks of accelerator performance
 - Beam Intensity
 - Radiation levels

Standard regular measurements

- Emittance measurement
- Trajectories
- Tune

Sophisticated measurements e.g. during machine development sessions

- May require offline evaluation
- May be less comfortable

U. Raich CERN Accelerator School Zakopane 2006

Diagnostic devices and quantity measured

Instrument	Physical Effect	Measured Quantity	Effect on beam
Faraday Cup	Charge collection	Intensity	Destructive
Current Transformer	Magnetic field	Intensity	Non destructive
Wall current monitor	Image Current	Intensity Longitudinal beam shape	Non destructive
Pick-up	Electric/magnetic field	Position	Non destructive
Secondary emission monitor	Secondary electron emission	Transverse size/shape, emittance	Disturbing, can be destructive at low energies
Wire Scanner	Secondary particle creation	Transverse size/shape	Slightly disturbing
Scintillator screen	Atomic excitation with light emission	Transverse size/shape (position)	Destructive
Residual Gas monitor	Ionization	Transverse size/shape	Non destructive

Required Competence in a beam diagnostics group

- Some beam physics in order to understand the beam parameters to be measured and to distinguish beam effects from sensor effects
- Detector physics to understand the interaction of the beam with the sensor
- Mechanics
- Analogue signal treatment
 - Low noise amplifiers
 - High frequency analogue electronics
- Digital signal processing
- Digital electronics for data readout
- Front-end and Application Software

Layout of a Faraday Cup

- Electrode: 1 mm stainless steel
- Only low energy particles can be measured
- Very low intensities (down to 1 pA) can be measured
- Creation of secondary electrons of low energy (below 20 eV)
- Repelling electrode with some 100 V polarisation voltage pushes secondary electrons back onto the electrode

Faraday Cup

U. Raich CERN Accelerator School Zakopane 2006 11

THE CERN ACCELERATOR SCHOOL

Bride Tournante DN150CF

Electro-static Field in Faraday Cup

In order to keep secondary electrons within the cup a repelling voltage is applied to the polarization electrode

Since the electrons have energies of less than 20 eV some 100V repelling voltage is sufficient

Energy of secondary emission electrons

- With increasing repelling voltage the electrons do not escape the Faraday Cup any more and the current measured stays stable.
- At 40V and above no decrease in the Cup current is observed any more

U. Raich CERN Accelerator School Zakopane 2006

Faraday Cup with water cooling

U. Raich CERN Accelerator School Zakopane 2006

Current Transformers

Fields are very low

Capture magnetic field lines with cores of high relative permeability

(CoFe based amorphous alloy Vitrovac: μ_r = 10⁵)

Beam current

$$I_{\text{beam}} = \frac{\text{qeN}}{t} = \frac{\text{qeN}\beta c}{l}$$

U. Raich CERN Accelerator School Zakopane 2006

Current Transformers

Fields are very low

Capture magnetic field lines with cores of high relative permeability

(CoFe based amorphous alloy Vitrovac: μ_r = 10⁵)

Beam current

$$I_{\text{beam}} = \frac{\text{qeN}}{\text{t}} = \frac{\text{qeN}\beta c}{1} \qquad L = \frac{\mu_0 \mu_r}{2\pi} lN^2 \ln \frac{r_0}{r_i}$$

C AS

U. Raich CERN Accelerator School Zakopane 2006 16

The ideal transformer

The AC transformer

The active transformer

Principle of a fast current transformer

Fast current transformers for the LHC

U. Raich CERN Accelerator School Zakopane 2006 21

The transformer installed in the machine

Needs Magnetic Shielding

U. Raich CERN Accelerator School Zakopane 2006 22

Magnetic shielding

- Shield should extend along the vacuum chamber length > diameter of opening
- Shield should be symmetrical to the beam axis
- Air gaps must be avoided especially along the beam axis
- Shield should have highest µ possible but should not saturate

Calibration of AC current transformers

- The transformer is calibrated with a very precise current source
- The calibration signal is injected into a separate calibration winding
- A calibration procedure executed before the running period
- A calibration pulse before the beam pulse measured with the beam signal

U. Raich CERN Accelerator School Zakopane 2006 24

Current transformer and its electronics

U. Raich CERN Accelerator School Zakopane 2006 25

Display of transformer readings

- Transformers in a transfer line
- Calculated losses trigger a *watchdog*
- Display distributed via video signal

The DC current transformer

- AC current transformer can be extended to very long droop times but not to DC
- Measuring DC currents is needed in storage rings
- Must provide a modulation frequency
- Takes advantage of non/linear magnetisation curve

U. Raich CERN Accelerator School Zakopane 2006

Modulation of a DCCT without beam

B=f(t)

the signal is symmetric

U. Raich CERN Accelerator School Zakopane 2006

29

Modulation current difference signal with beam

- Difference signal has 2ω_m
- ω_m typically 200 Hz 10 kHz
- Use low pass filter with $\omega_c << \omega_m$
- Provide a 3rd core, normal AC transformer to extend to higher frequencies

U. Raich CERN Accelerator School Zakopane 2006 31

Photo of DCCT internals

U. Raich CERN Accelerator School Zakopane 2006 32

Stored Beam Energies

Quench Levels Units Tevatron RHIC **HERA** LHC 1.8 10-02 2.1 10⁻⁰³ - 6.6 10⁻⁰³ 8.7 10-04 Instant loss (0.01 - 10 ms) [J/cm³] 4.5 10-03 7.5 10-02 7.5 10-02 5.3 10-03 Steady loss (> 100 s) [W/cm³]

U. Raich CERN Accelerator School Zakopane 2006

What does this mean?

The power of the beam corresponds to this boat cruising at 30 nods passing a beam pipe of the size of spain on the 1 Euro coin

U. Raich CERN Accelerator School Zakopane 2006 34

Beam Loss Monitor Types

- Design criteria: Signal speed and robustness
- Dynamic range (> 10⁹) limited by leakage current through insulator ceramics (lower) and saturation due to space charge (upper limit).

Secondary Emission Monitor

- (SEM):
- Length 10 cm
- − P < 10⁻⁷ bar
- ~ 30000 times smaller gain

U. Raich CERN Accelerator School Zakopane 2006

Ionization chamber: – N₂ gas filling at 100 mbar

- over-pressure
- Length 50 cm
- Sensitive volume 1.5 l
- Ion collection time 85 μs
- Both monitors:
 - Parallel electrodes (AI, SEM: Ti) separated by 0.5 cm
 - Low pass filter at the HV input
 - Voltage 1.5 kV

