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Overview

a The principle of special relativity
0 Lorentz transformation and its consequences

Q 4-vectors: position, velocity, momentum,
invariants. Derivation of E=mc?

0 Examples of the use of 4-vectors

Q Inter-relation between  and y, momentum and
energy

0 An accelerator problem in relativity
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Reading
a W. Rindler: Introduction to Special Relativity
(OUP 1991)

a D. Lawden: An Introduction to Tensor Calculus
and Relativity

o N.M.J. Woodhouse: Special Relativity (Springer
2002)

a A.P. French: Special Relativity, MIT
Introductory Physics Series (Nelson Thomes)
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Historical background

a Groundwork by Lorentz in studies of _
electrodynamics, with crucial concepts contributed
by Einstein to place the theory on a consistent
basis.

0 Maxwell’s equations (1863) attempted to explain

electromagnetism and optics through wave theory

" light propagates with speed ¢ = 3x108 m/s in “ether” but with different
speeds in other frames

" the ether exists solely for the transport of e/m waves

" Maxwell’s equations not invariant under Galilean transformations

" To avoid setting e/m apart from classical mechanics, assume light has speed
c only in frames where source is at rest

® And the ether has a small interaction with matter and is carried along with
astronomical objects
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Nonsense! Contradicted by:

0 Aberration of star light (small shift in apparent
positions of distant stars)

0 Fizeau’s 1859 experiments on velocity of light in
liquids

a Michelson-Morley 1907 experiment to detect motion
of the earth through ether

0 Suggestion: perhaps material objects contract in the
direction of their motion )2
L(v)=Ly|1-—

This was the last gasp of ether advocates and the germ of
Special Relativity led by Lorentz, Minkowski and Einstein.
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The Principle of Special Relativity

a A frame in which particles under no forces move with
constant velocity Is “inertial”

a Consider relations between inertial frames where
measuring apparatus (rulers, clocks) can be transferred
from one to another.

a Behaviour of apparatus transferred from F to F' is
Independent of mode of transfer

0 Apparatus transferred from F to F', then from F' to F",
agrees with apparatus transferred directly from F to F".

0 The Principle of Special Relativity states that all physical
laws take equivalent forms in related inertial frames, so
that we cannot distinguish between the frames.
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Simultaneity

a Two clocks A and B are synchronised if light rays
emitted at the same time from A and B meet at the
mid-point of AB

A c B
Frame F’

A” C” B”

a Frame F' moving with respect to F. Events
simultaneous In F cannot be simultaneous in F'.

a Simultaneity Is not absolute but frame dependent.
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The Lorentz Transformation
%

Must be linear to agree with
standard Galilean
transformation in low
velocity limit

Preserves wave fronts of i.e. P=x+y°+z°-ct’

pulses of light,

Solution is the Lorentz o y(t _ ﬁj

transformation from frame c’

F (t,x,y,z) to frame X'= y(x—vt)

F'(t',x",y',z") moving with y'=y

velocity v along the x-axis: ~ _._
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Outline of Derivation

Set t'=at+ BXx

X'=yXx+ ot

y'=¢ey

2'=¢1
Then P=kQ

o A2 xioy? g2 k(C2t2 _xPoy?o 22)

= c?(at+ B - (yx+ot) —£2y? — 227 =k(c’t> - 2 — y? - 2°)
Equate coefficients of X,y,z,t.

Isotropy of space = k = k(V) = k(|v|) = £1

Apply some commonsense (e.g.&,¢,k =+1and not -1)
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Conseqguences: length contraction

Frame F Frame F’

A Rod B
X X’

Rod AB of length L' fixed in F' at x',, X'g. What is its length measured in F?

Must measure positions of ends in F at the same time, so events in F are (t,X,)

and (t,xg). From Lorentz:
/ /

XA :7/(XA_Vt) Xg :7/(XB _Vt)
L' = x5 =X, = y(Xg =X)=yL> L

Moving objects appear contracted in the direction of the motion
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Conseqguences: time dilatation

a Clock in frame F at point with coordinates (x,y,z)
at different times t, and t;

a In frame F' moving with speed v, Lorentz
transformation gives

AP

/ VX [/ VX g
tAzy(tA__zj tB=)/('[B——2j @
C C “J W

7— A

a So: At' =t —t) = y(ty —t, )= yAt > At

Moving clocks appear to run slow
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Schematic Representation of the Lorentz
Transformation

Frame F’
tl

Frame F

Length contraction L<L'’

Rod at rest in F'. Measurement in F at

fixed time t, along a line parallel to x-axis
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Frame F’
tr

Frame F

...............................................................

Time dilatation: At<At’

Clock at rest in F. Time difference in F'
from line parallel to x’-axis
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Example: High Speed Train

— g —

a All clocks synchronised.

0 Observers A and B at exit and entrance of tunnel say the train is moving, has
contracted and has length

2\/2 Y

19 _100x|1-¥ =100x(1—§j = 50m

4 C 4

0 But the tunnel is moving relative to the driver and guard on the train and they
say the train is 100 m in length but the tunnel has contracted to 50 m
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Questions

a If A’s clock reads zero as the
driver exits tunnel, what does
B’s clock read when the
guard goes in?

0 What does the guard’s clock
read as he goes in?

a Where Is the guard when his
clock reads 0?

¥ TRINITY
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Moving train length 50m, so driver has still
50m to travel before his clock reads O.

Hence clock reading is

s

v J3c

To the guard, tunnel is only 50m long, so

driver is 50m past the exit as guard goes in.

Hence clock reading is

50 @ ~+200ns

i

Guard’s clock reads 0 when driver’s clock
reads O, which is as driver exits the tunnel.
To guard and driver, tunnel is 50m, so
guard is 50m from the entrance in the
train’s frame, or 100m in tunnel frame.
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Example: m-mesons

O Mesons are created in the upper
. . b Mesons atmosphere, 90km from earth. Their half
&F g life is t=2 us, so they can travel at most
2 x10-%c=600m before decaying. So how
do more than 50% reach the earth’s
surface undecayed?

O Mesons see distance contracted by v, so

VT ~ (%ka
4

o Earthlings say mesons’ clocks run slow
so their half-life is yt and

V(y7)~90km
Half life = 2 x 10" sec
so required velocity =90/2x 108 =4.5x 107 km/sec 0o Both give
=150¢c
v 90 km
A =150, v=~c, y~150
C Ct
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Invariants

An Invariant Is a quantity that has the same value in all inertial frames.

Lorentz transformation is based on invariance of
ct’ — (X +y°+2z°)=(ct)* =X
Write in terms of the 4-position vector X = (ct,X) as XeX
If X =(X,,X),Y=(Y,,Y), definetheinvariantproduct
X oY =Xy, —X-§

Fundamental invariant (preservation of speed of light):
A+ AY + A7
C°At?

2 2
=02At2[1—v—2j = c{ﬁj
C Y

T is the invariant proper time where At=At/y
T IS time in the rest frame

C°At* — AX® —Ay* —Az° = CZAtz[l
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4-\/ectors

a The Lorentz transformation can be written In

matrix form
( A
rV
, ( vxj (ct") y  —— 0 0jct)
=Y t _C_2 , C
X yV X
X' = y(x—vt) —> Y =17 7 00 y
y'=y L 0 0 1 0 ,
2'=1 J L0 0 0 1)\ J
An object made up of 4 elements which
transforms like X Is called a 4-vector
(analogous to the 3-vector of classical Position 4-vector X = (Ct, )_(’)

mechanics)
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4-\/ectors In S.R. Mechanics

O Velocity: V —d—Xzyd—Xzy dt (ct,X) =y (c,V)

Cde T dt Tt
0 Note invariant VeV =y*(c*—V?) =¢C”
a Momentum P=my\V =m,y(c,V)=(mc, p)

m=m,y IS relativistic mass
Pp=m,yV=mv Isthe3-momentum
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Example of Transformation: Addition of
Velocities

0 A particle moves with velocity U = (u,,u,,u,) inframe F, so
has 4-velocity V/ =y, (C, U)

a Add velocity V = (v,0,0) by transforming to frame F’ to get
new velocity w .

0 Lorentz transformation gives (t Sy, X y/U)

u, +Vv
. Vy Uy W, = X
Yw =V Vo T3 Vu,
C 1+
C2
Yus = 7, (Pl +V7,) = | ;
— y z z
7/WWy:7/uuy Wy_ L
1+ 1+
YwW, =7,U; My C2 7y C2
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Einstein’s relation

O Momentum invariant PeP=m (V e¢V)=m?c?

: : dP dP
a Differentiate Pe— =0 = Ve—=0

dr dr

o From Newton’s 2" Law expect 4-Force given by

dP dP dm dp dm -
F=——7——7—( C,p) = 7( — —pj=7(6—,f
dr dt

Q But v oﬁ —0 = V eF =0 || Rate of doing work, v - f= rate of change
dz of kinetic energy
d N\ . = Therefore kinetic energy
Q So E(mc J-v-f=0 T =mc” + constant = m,c?(y —1)

E=mc? is total energy

I%i;j r.'L-‘.II.-I:N:*_U!}-".:I:)/ CERN ACC6| 'L'_-";'_i'_‘_';'?

Zakopane



Basic quantities used In Accelerator
calculations

Relative velocity [ = %
Velocity V=/C
Momentum p=mv=m,y/[C

Kineticenergy T =(m-m,)c? = m,c?(y —1)

)

2V2 2 1

2 _7
= (Br) = o2 =7 -1 = ,52:(:_2:1_7

|
N |-
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Velocity as a function of energy

T =my(y -1)c?

)/1+V
P\ )

p=m,Cly

% )

1v
For small 1—— ~1+——
/ ( j 2 2

so T = mocz(y—l)zimov2

2
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Relationships between small variations in
parameters AE, AT, Ap, A3, Ay

(By) =r"-1 Ap _ A(myyfe) _ ABy)
m C
= PyABr)=rAy p 1 °A7 P , AﬁEy
= pABr)=2r O _ L Ar_
1 : gy p°E
—=1-p , AS
7/ — ]/ -
1 b
= —Ay=pAp (2) _y AT |
- exercise
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Af Ap AT AE Ay
ﬁ D T L i
14p LAY
AS A 72 p 1 AT | (%2 v
g § AP AT I q(y+1) T 21 Ay
p gl 7 —-17
Ap »AB Ap v AT 1 Ay
2pr _ 422F — =27
AT 1\ A AT A
X DA [ AT R
ik B V) P T =11
AE Ap Ap
— =] GN*— | B
E B p (1 1)&’_1" A~
Ay _ (42 — 1)2P A | Ap Ap ~] T ¥
¥ 5 p B
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4-Momentum Conservation

a Equivalent expression for

4-momentum P= moy(C, \7) = (mC, ﬁ) — (I% ’ ﬁ)

. 2 2 E2 — 2 E2 2 2 =2
Q Invariant mgc°=PeP=—-p szmOC + P

C
a Classical momentum
conservation laws — Z P, = constant
conservation of 4- particles, i

momentum. Total 3- —
= E. and - constant
momentum and total Z | Z P

energy are conserved.
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Example of use of invariants

a Two particles have equal rest mass m,,.

" Frame 1: one particle at rest, total energy is E;.

" Frame 2: centre of mass frame where velocities
are equal and opposite, total energy is E,.

Problem: Relate E, to E,

| Ea
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Total energy E,

‘ > "9*’ (Fixed target experiment)
2
P = (El [NoC | pj P, = (moC’O)
C

Total energy E,

¥ (Colliding beams expt)

E, _ E
P =| =%,p P, = =2,-p'
' (2C j ‘ (20’ pj

Invariant: P, e(P, +P,)
mOCXE—Ox p= 5, X = +p'x0
C 2C C
= 2m.c°E, = E?
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Accelerator Problem

a In an accelerator, a proton p, with rest mass m,
collides with an anti-proton p, (with the same rest
mass), producing two particles W, and W, with

equal mass M,=100m,
" Expt 1: p, and p, have equal and opposite velocities in the
lab frame. Find the minimum energy of p, in order for
W, and W, to be produced.
" Expt 2: In the rest frame of p,, find the minimum energy
E' of p, In order for W, and W, to be produced
%)g TRM]TY CERN Accelerator School, 29
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Total 3-momentum is zero before
collision and so is zero after impact

W ..
L 4-momenta before collision:

o D, a:(l%,f)) PZZ(I%’_F))
4-momenta after collision:
W, A= (E% ) Ci) P, = (E% ’_q)

Energy conservation = E=E "> rest energy = M,c? = 100 m,c?

| q Y
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Before collision:

_ oy
Pl — (mOC,O) P2 = (E%’ p) \ 2,
Total energy is / &

/ 2
E,=E +myC W,

Use previous result 2m,c? E,=E,? to relate E, to total energy E, in
C.0.M frame
2m,c°E, = E;

= 2mOCZ(E’+mOCZ): (2E)? > (ZOOmOcz)2
—  E'>(2x10*-1)m,c? ~ 20,000m,c?
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