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What is electromagnetism?

o The study of Maxwell’'s equations, devised in 1863 to represent
the relationships between electric and magnetic fields in the
presence of electric charges and currents, whether steady or
rapidly fluctuating, in a vacuum or in matter.

o The equations represent one of the most elegant and concise
way to describe the fundamentals of electricity and magnetism.
They pull together in a consistent way earlier results known
from the work of Gauss, Faraday, Ampere, Biot, Savart and
others.

0 Remarkably, Maxwell’'s equations are perfectly consistent with
the transformations of special relativity.
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Maxwell’s Equations

0 Relate Electric and Magnetic fields generated by charge
and current distributions.

E = electric field

D = electric displacement V- [j —

H = magnetic field _

B = magnetic flux density V-B=

p= charge density _ aé

j = current density VAE= —a—

1, (permeability of free space) = 4x 107 ¢ _
& (Permittivity of free space) = 8.854 10-12 V A [:’[ _ }’ 4 a_D
c (speed of light) = 2.99792458 108 m/s Ot

—

%)QTRMTY Invacuum D=¢g,E, B=uH, suc’=1 .
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Maxwell’s 15t Equation

Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to
the total electric charge Q enclosed within the surface.

A point charge g generates an electric field

) AL_M / dA - q _
\\ Y £ drer
—:: r !_’ = = dS
//\\\_ — ’Q‘ e 47[80 sphere r & 0
g/ T \

Area integral gives a measure of the ne arge
%& TRM”:_Y enclosed; divergence of the electric field gives the density s
of the sources.
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Maxwell’s 2" Equation

Force Vectors 8 Field Lines
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Gauss’ law for magnetism:

The net magnetic flux out of any
closed surface is zero. Surround a
magnetic dipole with a closed surface.
The magnetic flux directed inward
towards the south pole will equal the
flux outward from the north pole.

rfa‘llhk\w“‘"’”r’

If there were a magnetic monopole
source, this would give a non-zero
integral.

Gauss’ law for magnetism is then a statement that

o TRITY

There are no magnetic monopoles



Maxwell’s 3" Equation

Equivalent to Faraday’s Law of Induction:
HV/\E dS_—H— dS

7 d (s .a do
for a fixed circuitC) < ¢E-dl =——||B-dS=——
(for a fixed circuit C) i ” g -

The electromotive force round a
circuit e=§£-dl is proportional to
the rate of change of flux of magnetic
field, ®=[[345 through the circuit. ‘

o

Faraday’s Law is the basis for electric generators. It also forms the

6;1 TRL]TY basis for inductors and transformers. 3
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Maxwell’s 4t Equation VAB= )+ —

Originates from Ampere’s (Circuital) Law : '/ A E = /uoj

§B-dl = [V AB-dS=u,|[]-dS = ul
C S S

' Satisfied ?y the field for a steady line current (Biot-Savart Law,

~,dB B =

/JOI§ dl AV
in Ar

3
r

sl
27

For a straight line current B, =



Need for displacement current

O Faraday: vary B-field, generate E-field

o Maxwell: varying E-field should then produce a B-field, but not covered by Ampere’s

Law.

a

Surface 1 - . Surface 2

—
Current |

Closed loop

V/\E:ﬂo(}:"'jd) HoJ + HoEg—

Apply Ampeére to surface 1 (flat disk): line
integral of B = py/

Applied to surface 2, line integral is zero
since no current penetrates the deformed
surface.

0 dQ _  dE

In capacitor,F =——, S0 [ =—==g,A—
e,4 dt dt

OF

Displacement current density is Jj, = & —

ot

OE
Ot
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Consistency with charge conservation

0 Charge conservation: Total

current flowing out of a region equals
the rate of decrease of charge within

the volume.

{7045 =L ([ v

o [l[v-iar = [ La

a From Maxwell’s equations:

Take divergence of (modified)
Ampere’s equation

1
_2

E)

V-VAB=puV-j+ ﬁ
t

= 0=V j+é&opty— (Pj
0

:>OV]+

~ 0
< Veoj+ 9P _q Ot
ot
%}Q IR N]TY Charge conservation is implicit in Maxwell’s Equations 4,




Maxwell’s Equations In Vacuum

a In vacuum

—

D=50E, E:yofl, Eoly =

V-B=0
V/\EJra—B 0
ot

Q Source equations

O Source-free equations:

a Equivalent integral fo
(sometimes useful for
simple geometries)

'ms

5oL Fogl =— ([ B *__d;"
V-E—g—o dl = dt'”Bd —
vAB_Ci%_’f_ﬂOJ 3 jdeS+C dtj E-dS
%}QTRUTY b’




Example:

r <r,

B, sin ot
0 r>,

Also from V/\E’ — —8—3

Ot

Calculate E from B

—

$E-dl = j B-dS
r<r, 2xrE,=-rr’B,wCoswt
B,or
= E,=———COS®t
r>r, 2nrE, =—rr. B,wCoS wt
w1y B,
= E,=——2—coswt
2r

VAB= ,u0]+i5—E

¢t dt

then gives current density necessary
to sustain the fields

13



|_orentz force law

o Supplement to Maxwell’s equations, gives force on a charged
particle moving in an electromagnetic field:

]7 =q (E +V A E)
a For continuous distributions, have a force density fd — pE+ ] AB
0 Relativistic equation of motion

dpP v f - 1dE dp
= 4-vector form: = = 7/£V f,f]=7/( : pj

' j; — 14



Motion of charged particles in constant
electromagnetic fields
d

< (moy¥)=f =q(E+7 A B)

o Constant E-field gives uniform @ Constant magnetic field gives
acceleration in straight line uniform spiral about B with

) d,  _ q constant energy.
0 Solution of E(VV)Zm—E B
0 dv qg . = vV, = constant
» B 2 ] d — A% /\B
t v | —
x = ¢ \/1+[qu j 1 Moy X, | = constant
qE myC
u _ ‘s Path
Clarge'a Path | i
1gFE ,
~——1t° for gE <<myc
2 m,

QO Energy gain = gEx

9 TR
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Relativistic Transformations of E and B

o According to observer O in frame F, particle has velocity v, fields are £ and B

and Lorentz force is j? =g (E‘ VA 1§)
In Frame F', particle is at rest and force is G{ = ¢'E’
O Assume measurements give same char force, so
o

g=q and E+VAB

16
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Electromagnetic waves

o Maxwell’s equations predict the existence of electromagnetic waves, later discovered

by Hertz.
0 No charges, no currents: ~ N . R
ot ot
- B . N . =
VAV AE)= —VA%—t V-D=0  V-B=0
- ) ) w2
:_Q(VAB) V/\(V/\E)—VV_}E) V2E
Ot ) — _V2F
aZD O’E
Ot? ot 3D waveequation :
. aE O’E O°E O°E
V?E = + = ue
o gt a2 e

9 TRy
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Nature of electromagnetic waves

0 A general plane wave with angular frequency o travelling in the direction of
the wave vector £ has the form

E = E expli(wt —k -X)] B = Byexp[i(wt—k - ¥)]

o Phase wf —k - X =2r x number of waves and so is a Lorentz invariant.
a Apply Maxwell’s equations

Vo -ik V.E=0=V-B < k-E=0=k-B
0 . . - o . .
YR VAE=-B & kAE=wB

Waves are transverse to the direction of propagation, and £, B and

k are mutually perpendicular

COLLECE « DXFIW
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Plane electromagnetic wave

Electromagnetic waves transpor :
anargy through emply space, skred s
B 1he propageting ekecic and

maghei: fiekls, A

I‘{m/ *"
M A ; field wariation {
Megnelic feld i et
variation = i I
perpendiculas
tn electns feld. k
[

& single-frequency dectromagietic
/.«’ wave exhbils a sinvaoidal vanation

af electvic and magretc figkds n
‘,r"“{ Epace,

TRINITY

COLLEGE » DNFIRD

19



Plane Electromagnetic Waves

V/\B——z— > lg/\[}:——zE
c” ot C
Combined with &k A E = wB
E @ kc? ] ] 0]
deduce tha @ =—=— — speed of wavein vacuumis —=c
B ko i
) The factthat @f—k -X is an invariant tells

Wavelength A= il us that

—

A:(g,;:;j

Frequency v = o IS a Lorentz 4-vector, the 4-Frequency vector.
o Deduce frequency transforms as

sy oo i)-o

cC+V




Waves In a conducting medium

o For a medium of conductivity o, j = oE

0 Modified Maxwell: VA f = j+¢E = o E +¢E
o Put E=E,expli(wt—k-%)] B=B,expli(wt—k -¥)]

-k AH=0cF+iweFE
Dissipation factor / \

O conduction displacement

D — Current Current
&

Copper: o=58x10",e=¢, = D=10"
%QTRMITY Teflon: 0=3x10°,¢=21, = D=257x10"

|
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Attenuation 1n a Good Conductor
—iEAﬁzO‘E +ia)8E

Combinewith VAE=-B = kAE=wul

= %A(EAE): ok nH = —ou(-ic+we)E

= kK> =ou(-ic+ws)

. OUT [, .
Foragood conductor D>>1, o>>ws k°~—-iouc = k= ’g (1-1)

Wave form is exp i(a)t—ij exp(— ﬁ)
o o
where o0 = . IS the skin - depth
\/ y7e;

@ TmﬂI_TY copper.mov water.mov
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Maxwell’s Equations in a uniform perfectly
conducting guide

Hollow metallic cylinder with perfectly
' /Z' conducting boundary surfaces
' / Maxwell's equations with time dependence exp(jwt)are:

& 7 ) VE=V(V-E)-VA(VAE)

X1 VAE=-——=—-ouH
/ ?t = zia),uV/\Fl
< V/\ﬁzﬁ—D:ia)gE :—a)zg,uE
\ ot
2. 2 JE
Vo+oTuel =0
U { “la

Assume  E(x, y,z,1) = E(x, y)e' 7 Then [v2 2 1 E
[j](x,y,z,t):]j](x’y)e(iwt—yz) ¢ +(a) EU+Y ) ]:j

v IS the propagation constant

0

Can solve for the fields completely

' fE H
%}Q TRM]TY in terms of E, and H, -

COLLEGE » DNFIRD



Special cases

a Transverse magnetic (TM modes):
= H,=0 everywhere, E,=0 on cylindrical boundary

0 Transverse electric (TE modes):
OH .

on

= E_=0 everywhere, =0 on cylindrical boundary

0 Transverse electromagnetic (TEM modes):
= E_=H_=0 everywhere
= requires Y +ao’eu=0 or y=xiwsu

35 TR .



A simple mode: Parallel Plate Waveguide

)
%gE COLLEGE » DNFIRD

Transport between two infinite conducting plates (TE,, mode):

E =(0,10)E(x) €79 where E(x) satisfies

d’E
VtzE: dxz :_K2E1 K2:a)281u_|_72
. sin
l.e. EzA{ }Kx
CoS

To satisfy boundary conditions, E=0 on x=0 and x=a, SO

E = AsinKx, K:Kn:ﬂ, n integer
a

Propagation constantis y = \/K,f —w’su

2
S 1—(0)] where o, = s

P N

c
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Cut-off frequency, o,

2
7/:ﬂ 1—(”], E:Asin@ei‘""”, w =7

a o a © aneu

c

0 <o, gives real solution for y, so
attenuation only. No wave propagates:
cut-off modes.

O o>o, gives purely imaginary solution for =

= ?
y, and a wave propagates without %/’

W

attenuation. Y
C()2 2
y =ik, k= g,u(a)2 —a)f)y2 = 5,11(1— a)‘;j

o For a given frequency ® only a finite
number of modes can propagate.

nmw amw
a./eu 4 For given frequency,

m ,I,,.F ]N]TY convenient to choose a s.t.

T — only n=1 mode occurs.



Propagated electromagnetic fields

OB
Q From VAE———

(assuming A is real)

H_= —A—ksin(m[xj cos(wt — kz)
L a
H=—"VAE = H, =0
7
H_ = —iﬂcosﬁnmjsin(wt—kz)
ou a a
mn Wy B f S T r=bmn e G | P P
x+ =)\ N\ f 7=\ | 7
“s\Y {7 =YL ]/~
N BEEREE 11 e
= f A\ N = /) 1\ »
=/ f I ANNS=2sJ | AN
=l o J O N pyTmdmam s | S e
> 7
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Phase and group velocities

FANAA
1V V

A A
s RVARVARY

o e

sin (gt -kx)

at-kx

Plane wave exp j(at-kx) has

Time t

Time t+At

constant phase wt-kx at peaks

oAt — kAx =0

_ Ax 0,

& v, = B

P T At ko

T A(k)el[a)(k)t—kx]dk

Superposition of plane waves. While
shape is relatively undistorted,
pulse travels with the group velocity

L
¢ dk
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Wave packet structure

0 Phase velocities of individual plane waves making up
the wave packet are different,

a The wave packet will then disperse with time
39 TR .



Phase and group velocities in the simple
wave guide

0 Wave numberis k= g,u(a)z—a)f)% < @4/u

N 21 2
so wavelength in guide 2= Z >

, the free-space wavelength
W+ EUL

1 .
Phase velocity | _9s - larger than free-space velocit
0 ase velocity is v, 3 @ g P Y

a Group velocity is less than infinite space value

2 2 2 :da): k 1
k —g,u(a) a)c) = v, o a)glu<\/a

;Q TRINITY
j COLLEGE » DXFORD
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Calculation of wave properties

a If a=3 cm, cut-off frequency of lowest order mode Is

@ 1 ~5GHz

fc_27z_2a ElL

a At 7 GHz, only the n=1 mode propagates and

k= g,u(a)z —a)f)% ~103m™

l:Z—ﬂzGCm
k

v, = % ~4.3x10°ms™

k

v, =——= 2.1x10°ms™

WEL

28 TRINITY
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Waveguide animations

'E1 moco
'E1 moc
'E1 moc
'E1 moc
'E2 moc
'E2 Mmoo
'E2 Mmoo

'E2 Mmoo

COLLEGE » DNFIRD

"E1 mode above cut-off

e, smaller ®

e at cut-off

e below cut-off
e, variable o

e above cut-off
e, smaller

e at cut-off

e below cut-off

1-1.mov
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1-2.mov

PRWQ

1-3.mov
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1-4. mov
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1 vi.mov
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2-1.moVv
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2-4.moVv
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