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I.) Magnetic Fields and Particle Trajectories

TheThe Ideal World Ideal World 



HERA Storage Ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about v ≈ c
L = 1010-1011 km 

... several times Sun - Pluto and back

LuminosityLuminosity Run of a Run of a typicaltypical storagestorage ring:ring:

guide the particles on a well defined orbit („design orbit“)
focus the particles to keep each single particle trajectory
within the vacuum chamber of the storage ring, i.e. close to the design orbit.  



Lorentz force * ( )= + ×
r r rrF q E v B

„ ... in the end and after all it should be a kind of circular machine“
need transverse deflecting force

typical velocity in high energy machines: 83*10≈ ≈ m
sv c

old greek dictum of wisdom:
if you are clever,  you use magnetic fields in an accelerator wherever
it is possible.

But remember:  magn. fields act allways perpendicular to the velocity of the particle
only bending forces,   no „beam acceleration“

TransverseTransverse BeamBeam DynamicsDynamics::

0.) Introduction and Basic Ideas



circular coordinate system
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1.) 1.) TheThe MagneticMagnetic Guide Guide FieldField
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Normalise magnetic field to momentum:

p
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Dipole Magnets:

define the ideal orbit
homogeneous field created
by two flat pole shoes

convenient units: 
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field map of a storage ring dipole magnet
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Magnetic field of a dipole magnet:

„radius of curvature, 
bending strength“

[ ]
[ ]cGeVp

TB
/

*3.01
≈

ρ

ρ = Bending radius of a dipole magnet

1/ ρ= „bending strength“ 

rule of thumb:

m
1

7000
3.8*333.01

=
ρ



required: focusing forces to keep trajectories in vicinity of the ideal orbit

linear increasing Lorentz force

linear increasing magnetic field

Quadrupole Magnets:

normalised quadrupole field:
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2.) 2.) TheThe equationequation of of motionmotion::

Linear approximation:

* ideal particle design orbit

* any other particle coordinates x, z small quantities
x,z << ρ

magnetic guide field: only linear terms in x & z of B 
have to be taken into account

Taylor Expansion of the B field:

normalise to momentum
p/e = Bρ
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Example:
heavy ion storage ring TSR

Separate Function Machines:

Split the magnets and optimise
them according to their job: 

bending, focusing etc 
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TheThe EquationEquation of Motion:of Motion:

only terms linear in x, z taken into account dipole fields
quadrupole fields

* man sieht nur 

dipole und quads linear



Equation of Motion:
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●Consider local segment of a particle trajectory
... and remember the old days:
(Goldstein page 27)

radial acceleration:
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guide field in linear approx.
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normalize to momentum of particle

Equation for the vertical motion:
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no dipoles … in general … 

quadrupole field changes sign



Remarks:

2
1( ) 0′′ + − ⋅ =x k x
ρ

… there seems to be a focusing even without
a quadrupole gradient

„weak focusing of dipole magnets“

Mass spectrometer: particles are separated
according to their energy
and focused due to the 1/ρ
effect of the dipole

*

xxk *10 2ρ
−=′′⇒= even without quadrupoles there is a retriving force 

(i.e. focusing) in the bending plane of the dipole magnets

… in large machines it is weak.    (!)
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… this equation is not correct !!!

Hard Edge Model:*
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bending and focusing fields … are functions
of the independent variable  „s“
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magnetic field of a storage ring dipole
k = const within a magnet

Inside a magnet the focusing
properties are constant !
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Differential Equation of harmonic oscillator …  with spring  constant K

Ansatz:

general solution:  linear combination of two independent solutions

3.) Solution of Trajectory Equations

Define …  hor. plane:

… vert. Plane:
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Hor. Focusing Quadrupole K > 0:

0 0
1( ) cos( ) sin ( )′= ⋅ + ⋅x s x K s x K s
K

0 0( ) s in ( ) c o s ( )′ ′= − ⋅ ⋅ + ⋅x s x K K s x K s

For convenience expressed in matrix formalism:
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determine a1 , a2 by boundary conditions:



1cosh sinh

sinh cosh
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hor. defocusing quadrupole: 

drift space:  
K = 0 
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!     with the assumptions made, the motion in the horizontal and vertical planes are
independent  „ ... the particle motion in x & z is uncoupled“  

s = s1s = 0
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Thin Lens Approximation:
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matrix of a quadrupole lens

in many practical cases we have the situation:
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... useful for fast (and in large machines still quite accurate)  „back on the envelope
calculations“ ... and for the guided studies !



focusing lens

dipole magnet

defocusing lens

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

*.....* * * *= etotal QF D QD B nd DM M M M M M

x(s)

s

court. K. Wille

2 1
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x x
M

x x

0

typical values
in a strong
foc. machine:
x ≈ mm, x´ ≤ mrad



Tune: number of oscillations per turn

31.292
32.297

Relevant for beam stability:
non integer part

0.292*47.3 13.81kHz kHz=

4.) Orbit & Tune:4.) Orbit & Tune:

HERA revolution frequency:  47.3 kHz



Question: what will happen, if the particle performs a second turn ? 

x

... or a third one or ... 1010 turns

0

s



Astronomer Hill:
differential equation for motions with periodic focusing properties
„Hill‘s equation“

Example: particle motion with
periodic coefficient

equation of motion: ( ) ( ) ( ) 0′′ − =x s k s x s

restoring force  ≠ const,                                        we expect a kind of quasi harmonic
k(s) = depending on the position s                oscillation:  amplitude & phase will depend
k(s+L) = k(s),   periodic function on the position s in the ring.



5.) 5.) TheThe Beta Beta FunctionFunction

General solution of Hill´s equation:

( ) ( ) cos( ( ) )= ⋅ +x s s sε β ψ φ

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles

ε, Φ = integration constants determined by initial conditions

Inserting (i) into the equation of motion … 

0
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s
ψ

β

Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice.
For one complete revolution: number of oscillations per turn „Tune“
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6.) Beam Emittance and Phase Space Ellipse

(1) ( ) * ( ) *cos( ( ) )= +x s s sε β ψ φ

{ }(2) ( ) * ( )*cos( ( ) ) sin( ( ) )
( )

′ = − + + +x s s s s
s
ε α ψ φ ψ φ

β
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ε β

general solution of
Hill equation

from (1) we get

Insert into (2) and solve for ε

2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

* ε is a constant of the motion … it is independent of „s“
* parametric representation of an ellipse in the x x‘ space
* shape and orientation of ellipse are given by α, β, γ
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2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

Beam Emittance and Phase Space Ellipse
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xεβ

εα β−εγ

εα γ−

●
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●

●
x(s)

s

Liouville: in reasonable storage rings 
area in phase space is constant.

A = π*ε=const

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, 
cannot be changed by the foc. properties. 

Scientifiquely spoken: area covered in transverse x, x´ phase space … and it is constant !!! 



note for each turn x, x´ at a given position
„s1“ and plot in the phase space diagram

… and you will get an ellipse: ●

Particle Tracking in a Storage Ring
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7.) Résumé:

beam rigidity: ⋅ = pB qρ

bending strength of a dipole: 1 00.2998 ( )1
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II.) Emittance &  Betafunction



1.) 1.) TheThe BeamBeam EmittanceEmittance

General solution of Hill´s equation:

β(s) = periodic function given by focusing properties of the lattice

ε = constant, determined by initial 
conditions of the particle ensemble.

( ) ( )s L sβ β+ =

{ }( ) ( ) cos ( )= +x s s sε β ψ φ

{ } { }( ) ( ) cos ( ) sin ( )
( )

−′ ⎡ ⎤= + + +⎣ ⎦x s s s s
s
ε α ψ φ ψ φ

β

2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

x´

x

●
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●

Liouville: in reasonable storage rings 
area in phase space is constant.

A = π*ε=const

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, 
cannot be changed by the foc. properties. 

Scientifiquely spoken: area covered in transverse x, x´ phase space … and it is constant !!! 

x(s)

s



2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

Phase Phase SpaceSpace EllipseEllipse

{ }( ) ( ) cos ( )= +x s s sε β ψ φparticel trajectory:

max. Amplitude: εβ=)(ˆ sx x´ at that position …?

… put into and solve for x´)(ˆ sx

22 xx ′+′⋅+⋅= βεβαεβγε

βεα /⋅−=′x

In the middle of a quadrupole β is maximum, 
α = zero 0=′x

… and the ellipse is flat

*

* A high β-function means a large beam size and a small beam divergence.
… et vice versa !!!

!



2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

Phase Phase SpaceSpace EllipseEllipse
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EmittanceEmittance of of thethe ParticleParticle Ensemble:Ensemble:

single particle trajectories, N ≈ 10 11  per bunch

))(cos()()( φβε +Ψ⋅= sssx

Gauß 
Particle Distribution:
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particle at distance  1 σ from centre:
surrounding 68.3 % of all beam particles

HERA beam size

Z X, Y,( )
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EmittanceEmittance of of thethe ParticleParticle Ensemble:Ensemble:

Example: HERA
beam parameters in the arc
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0.150.15− xn 1, xn 2,, xn 3,, xn 4,,



2.) Transfer Matrix M2.) Transfer Matrix M … yes we had the topic already

{ }( ) ( ) cos ( )= +x s s sε β ψ φ

{ } { }( ) ( ) cos ( ) sin ( )
( )

−′ ⎡ ⎤= + + +⎣ ⎦x s s s s
s
ε α ψ φ ψ φ

β

general solution
of Hill´s equation

remember the trigonometrical gymnastics:  sin(a + b) = … etc

( )( ) cos cos sin sin= −s s sx s ε β ψ φ ψ φ

[ ]( ) cos cos sin sin sin cos cos sin−′ = − + +s s s s s s
s

x s ε α ψ φ α ψ φ ψ φ ψ φ
β

starting at point s(0) = s0 , where we put Ψ(0) = 0

0

0

cos ,=
xφ
εβ

0 0
0 0

0

1sin ( )′= − +
xx αφ β

ε β

inserting above …



{ } { }0 0 0 0
0

( ) cos sin sin ′= + +s
s s s sx s x xβ ψ α ψ β β ψ

β

( ){ } { }0
0 0 0 0

0

1( ) cos (1 )sin cos sin′ ′= − − + + −s s s s s s s
ss

x s x xβα α ψ α α ψ ψ α ψ
ββ β

which can be expressed ... for convenience ... in matrix form
0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠s

x x
M

x x

( )
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0 0
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cos sin sin

( ) cos (1 )sin cos sin

⎛ ⎞
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⎜ ⎟= ⎜ ⎟− − +⎜ ⎟−⎜ ⎟
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s
s s s s

s s s s
s s s

s

M

s

β ψ α ψ β β ψ
β

α α ψ α α ψ β ψ α ψ
ββ β

* we can calculate the single particle trajectories between two locations in the ring, 
if we know the α β γ at these positions. 

* and nothing but the α β γ at these positions. 

*     …  ! * Äquivalenz der Matrizen



ψ turn = phase advance 
per period

3.) 3.) PeriodicPeriodic LatticesLattices

„This rather formidable looking
matrix simplifies considerably if
we consider one complete turn …“
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⎜⎜
⎝

⎛
−−

+
=

turnsturnturns

turnsturnsturnsM
ψαψψγ

ψβψαψ
sincossin

sinsincos
)(

( )

( )

0 0
0

0 0 0

0

cos sin sin

( )cos (1 )sin cos sin

⎛ ⎞
+⎜ ⎟

⎜ ⎟=⎜ ⎟− − +⎜ ⎟−⎜ ⎟
⎝ ⎠

s
s s s s

s s s s
s s s

s

M

s

β
ψ α ψ β β ψ

β

α α ψ α α ψ β ψ α ψ
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Tune: Phase advance per turn in units of 2π ∫=
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Delta Electron Storage Ring



Stability Criterion:

Question: what will happen, if we do not make too
many mistakes and your particle performs
one complete turn ?

Matrix for 1 turn:

cos sin sin
sin cos sin
+⎛ ⎞

=⎜ ⎟− −⎝ ⎠
turn s turn s turn

s turn turn s turn
M

ψ α ψ β ψ
γ ψ ψ α ψ

1 0
cos sin

0 1
α β

ψ ψ
γ α

⎛ ⎞ ⎛ ⎞
= ⋅ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

1 J
Matrix for N turns:

( )1 cos sin 1 cos sin= ⋅ + ⋅ = ⋅ + ⋅NNM J N J Nψ ψ ψ ψ

The motion for N turns remains bounded, if the elements of MN remain bounded

cos 1↔ ≤ψ ( ) 2↔ ≤Tr M=realψ



4.) Transformation of 4.) Transformation of αα, , ββ, , γγ

consider two positions in the storage ring: s0  , s

0

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠s s

x x
M

x x

since ε = const (Liouville): 2 2

2 2
0 0 0 0 0 0 0

2

2

x xx x

x x x x

ε β α γ

ε β α γ

′ ′= + +

′ ′= + +

⎟⎟
⎠

⎞
⎜⎜
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⎛
′′

=
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M
Betafunction in a storage ring

1

0

−⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠s

x x
M

x x

... remember W = CS´-SC´ = 1

0

0

′ ′= −
′ ′ ′= − +

x S x Sx
x C x Cx

1− ′ −⎛ ⎞
= ⎜ ⎟′−⎝ ⎠

S S
M

C C

2 2
0 0 0( ) 2 ( )( ) ( )′ ′ ′ ′ ′ ′ ′ ′= − + − − + −Cx C x S x Sx Cx C x S x Sxε β α γ

•
•

… inserting into ε

sort via x, x´and compare the coefficients to get ....



2 2
0 0 0( ) 2s C SC Sβ β α γ= − +

0 0 0( ) ( )′ ′ ′ ′= − + + −s CC SC S C SSα β α γ
2 2

0 0 0( ) 2′ ′ ′ ′= − +s C S C Sγ β α γ

in matrix notation:

2 2
0

0
2 2

0

2

2

⎛ ⎞− ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′ ′ ′= − + − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′−⎝ ⎠ ⎝ ⎠⎝ ⎠s

C SC S
CC SC CS SS

C S C S

ββ
α α
γ γ

!

1.)  this expression is important

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and 
calculate their values at any other point in the ring.

3.) the transfer matrix is given by the focusing properties of the lattice elements, 
the elements of M are just those that we used to calculate single particle trajectories.

4.) go back to point  1.) 



Circular Orbit: dipole magnets to define
the geometry

The angle run out in one revolution
must be 2π, so

field map of a storage ring dipole magnet

ρ

α

ds

… for a full circle

Nota bene: 410B
B

−Δ
≈ is usually required !!

… defines the integrated
dipole field around
the machine.

ρρρ
α

B
Bdldlds

=≈=

qpB /* =ρ

5.) 5.) LatticeLattice Design:Design:
„… „… howhow to to buildbuild a a storagestorage ring“ring“

q
pBdl

B

Bdl
*22

*
ππ

ρ
α =→== ∫∫



920 GeV Proton storage ring
dipole magnets N = 416

l = 8.8m
q = +1 e Tesla.

e*m.*
s
m**

eV**B

q/pB*l*NBdl

155
88103416

109202

2

8

9

≈≈

∫ =≈

π

π

Example HERA:



TheThe FoDoFoDo--LatticeLattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in 
alternating order with nothing in between.
(Nothing = elements that can be neglected on first sight: drift, bending magnets, 
RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell μ = 45°, 

calculate the twiss parameters for a periodic solution

L

QF QFQD



Can we understand, what the optics code is doing?

1cos( * ) sin( * )
,

sin( * ) cos( * )

q q

QF

q q

K l K l
KM

K K l K l

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

1
0 1Drift

d

l
M

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

strength and length of the FoDo elements K  = +/- 0.54102 m-2

lq = 0.5 m
ld = 2.5 m

* * * *FoDo qfh ld qd ld qfhM M M M M M=

0.707 8.206
0.061 0.707FoDoM

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

Putting the numbers in and multiplying out ...

The matrix for the complete cell is obtained by multiplication of the element matrices

matrices



The transfer matrix for one period gives us all the information that we need !

1.) is the motion stable? ( ) 1.415FoDotrace M = → <  2

2.) Phase advance per cell

3.) hor β-function 4.) hor α-function

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+
=

ψαψψγ
ψβψαψ
sincossin

sinsincos
)(sM

707.0)(
2
1)cos( == MTraceψ

°== 45))(
2
1cos( MTracearcψ

m
M

611.11
sin

2,1 ==
ψ

β 0
sin

cos1,1 =
−

=
ψ

ψ
α

M



TheThe „ „ notnot so ideal so ideal worldworld ““

III.) III.) AccelerationAcceleration and and MomentumMomentum SpreadSpread



1.) 1.) LiouvilleLiouville duringduring AccelerationAcceleration

x´

x
εβ

εα β−εγ

εα γ−

●

●

●●

Beam Emittance corresponds to the area covered in the
x, x´ Phase Space Ellipse

2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )′ ′= + +s x s s x s x s s x sε γ α β

Liouville: Area in phase space is constant.

But: ε ≠ const !

●

Classical Mechanics: 

phase space = diagram of the two canonical variables 
position &  momentum

x                         px

EnergypotEnergykinVTL
q
Lp

j
j ..; −=−=

∂
∂

=
&



According to Hamiltonian mechanics: 
phase space diagram relates the variables q and p

Liouvilles Theorem: p dq const=∫

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

xdx dx dtx
ds dt ds

β
β

′ = = = where βx= vx / c

1x dxε
βγ

′⇒ = ∝∫
the beam emittance
shrinks during
acceleration ε ~ 1 / γ

q = position = x
p = momentum = mcγβx

2

2

1

1

c
v

−

=γ
c
x

x
&

=β;

∫∫ = dxmcpdq xγβ

∫∫ ′= dxxmcpdq γβ

ε



Nota bene:Nota bene:

1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!!
as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes.

2.) At lowest energy the machine will have the major aperture problems, 
here we have to minimise

3.) we need different beam
optics adopted to the energy: 
A Mini Beta concept will only
be adequate at flat top. 

εβσ =

β̂

β ≈ 1,8km

β ≈ 300 m

HERA proton optics at 920 GeV

HERA proton optics at 40 GeV



Example: HERA proton ring

injection energy: 40 GeV γ = 43
flat top energy: 920 GeV γ = 980

emittance ε (40GeV)   = 1.2 * 10 -7
ε (920GeV) = 5.1 * 10 -9

7 σ beam envelope at E = 40 GeV

… and at E = 920 GeV



2.) 2.) TheThe „ „ ∆∆p / p ≠ 0“ Problem p / p ≠ 0“ Problem 

ideal accelerator: all particles will see the same accelerating voltage.
ΔΔp / p = 0p / p = 0

„nearly ideal“ accelerator: Cockroft Walton or van de Graaf

ΔΔp / p p / p ≈≈ 10 10 --55

MP Tandem van de Graaf Accelerator 
at MPI for Nucl. Phys. Heidelberg

Vivitron, Straßbourg, inner 
structure of the acc. section

TheThe „ „ notnot so ideal so ideal worldworld ““



Linear Accelerator 1928, Wideroe schematic Layout:

+ + + +-̶ -̶-̶

* RF Acceleration: multiple application of 
the same acceleration voltage;
brillant idea to gain higher energies

Energy Gain per „Gap“:

tUqW RFωsin** 0=

500 MHz cavities in an electron storage ring

drift tube structure at a proton linac



Problem: panta rhei !!!
(Heraklit: 540-480 v. Chr.)

Z X, Y,( )

Bunch length of Electrons ≈ 1cmExample:  HERA RF:

U0

t νλ
ν

*
500

=
=

c
MHz cm60=λ

cm60=λ

994.0)84sin(
1)90sin(

=

=
o

o
310*6 −=

Δ
U
U

typical momentum spread of an electron bunch: 
310*1 −≈

Δ
p
p



Question: do you remember last session, page 11 ? … sure you do

3.) Dispersion:    3.) Dispersion:    trajectoriestrajectories forfor ΔΔp / p ≠ 0 p / p ≠ 0 

vBe
x
mvx

dt
dmF z=

+
−+=

ρ
ρ

2

2

2

)( z
ρ

s

ẑ

● x

remember: x ≈ mm , ρ ≈ m … develop for small x

veBxmv
dt

xdm z=−− )1(
2

2

2

ρρ

0
∂

= +
∂

z
z

BB B x
x

consider only linear fields,  and change independent variable: t → s 

mv
gxe

mv
Bexx +=−−′′ 0)1(1

ρρ

●

p=p0+Δp

Force acting on the particle

… but now take a small momentum error into account !!!



Dispersion:Dispersion:

develop for small momentum error 2
000

0
11

p
p

ppp
pp Δ

−≈
Δ+

⇒<<Δ

ρ
1

− 0≈xk ∗

2
00

02
00

0
2

1
p

pxeg
p

xegeB
p

p
p
Bexx Δ

−+
Δ

−≈+−′′
ρρ

ρρ
1

0
2 ∗

Δ
=−+′′

p
pkxxx ρρ

1)1(
0

2 ∗
Δ

=−+′′
p

pkxx

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion.
inhomogeneous differential equation.

xk
p

pxk
p
eB

p
pxx *1**)(*

00

0

0
2 +

Δ
=+

−Δ
≈+′′

ρρ

ρ
1



2
1 1( ) px x k

p ρρ
Δ′′ + − = ⋅

general solution:

( ) ( ) ( )h ix s x s x s= +
( ) ( ) ( ) 0h hx s K s x s′′ + ⋅ =

1( ) ( ) ( )i i
px s K s x s
pρ
Δ′′ + ⋅ = ⋅

Normalise with respect to Δp/p:

( )( ) i
p

p

x sD s Δ=

Dispersion function D(s) 

* is that special orbit, an ideal particle would have for Δp/p = 1

* the orbit of any particle is the sum of the well known xβ and the dispersion

* as D(s) is just another orbit it will be subject to the focusing properties of the lattice

Dispersion:Dispersion:



. ρ

xβ

Closed orbit for Δp/p > 0

( ) ( )i
px s D s
p
Δ

= ⋅

Matrix formalism:

( ) ( ) ( ) px s x s D s
pβ
Δ

= + ⋅

0 0( ) ( ) ( ) ( ) px s C s x S s x D s
p
Δ′= ⋅ + ⋅ + ⋅ 0s

x C S x Dp
x C S x Dp

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Δ
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Dispersion
Example: homogeneous dipole field

xβ



ResumeResume´:´:

1ε
βγ

∝beam emittance

2
0 0 0( ) 2s s sβ β α γ= − +

2

0
0

( ) ssβ β
β

= +

beta function in a drift

… and for α = 0 

ρρ
1)1(

0
2 ∗

Δ
=−+′′

p
pkxx

particle trajectory for Δp/p ≠ 0
inhomogenious equation

( ) ( ) ( ) px s x s D s
pβ
Δ

= + ⋅… and its solution



IntroductionIntroduction to to TransverseTransverse BeamBeam OpticsOptics
TheThe „ „ notnot so ideal so ideal worldworld “  “  

Bernhard Holzer, DESY-HERA



2
1 1( ) px x k

p ρρ
Δ′′ + − = ⋅

general solution: ( ) ( ) ( )h ix s x s x s= +
( ) ( ) ( ) 0h hx s K s x s′′ + ⋅ =

1( ) ( ) ( )i i
px s K s x s
pρ
Δ′′ + ⋅ = ⋅

Normalise with respect to Δp/p:

( )( ) i
p

p

x sD s Δ=

Dispersion function D(s) 

* is that special orbit, an ideal particle would have for Δp/p = 1

* the orbit of any particle is the sum of the well known xβ and the dispersion

* as D(s) is just another orbit it will be subject to the focusing properties of the lattice

1.) Dispersion:1.) Dispersion:

IV.) Errors in Fields and Gradient   IV.) Errors in Fields and Gradient   



0
0 0 1p p

p ps

x C S D x
x C S D x
Δ Δ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ′= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Example HERA 

3

1...2

( ) 1...2

1 10

x mm

D s m
p

p

β

−

=

≈
Δ ≈ ⋅

Amplitude of Orbit oscillation
contribution due to Dispersion ≈ beam size

Calculate D, D´
1 1

0 0

1 1( ) ( ) ( ) ( ) ( )
s s

s s

D s S s C s ds C s S s ds
ρ ρ

= −∫ ∫% % % %

or expressed as 3x3 matrix

* see appendix:
solution of inh. dgl



Example: Drift

1
0 1Drift

l
M

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1 0
0 1 0
0 0 1

Drift

l
M

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1

0 0

1 1( ) ( ) ( ) ( ) ( )
s s

s s

D s S s C s ds C s S s ds
ρ ρ

= −∫ ∫% % % %

0= 0=

Example: Dipole

cos sin

1 sin cos
Dipole

l l

M
l l

ρ
ρ ρ

ρ ρ ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟= →
⎜ ⎟−⎜ ⎟
⎝ ⎠

( ) (1 cos )

( ) sin

lD s

lD s

ρ
ρ

ρ

= ⋅ −

′ =



Example: Dispersion, calculated by an optics code for a real machine

p
p*)s(DxD

Δ
=

*  D(s) is created by the dipole magnets
… and afterwards focused by the quadrupole fields

D(s) ≈ 1 … 2 m
s

Mini Beta Section, 
no dipoles !!!



ρ

dsx
dl

design orbit

particle trajectoryparticle with a displacement x to the design orbit
path length dl ... 

1
( )
xdl ds
sρ

⎛ ⎞
→ = +⎜ ⎟

⎝ ⎠

dl x
ds

ρ
ρ
+

=

1
( )

E
E

xl dl ds
sρ

Δ
Δ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∫ ∫

circumference of an off-energy closed orbit

remember:

( ) ( )E
px s D s

pΔ
Δ

=

( )
( )E

p D sl ds
p s

δ
ρΔ

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
∫o

* The lengthening of the orbit for off-momentum
particles is given by the dispersion function

and the bending radius.

o o

2.) 2.) MomentumMomentum CompactionCompaction FactorFactor: : ααcpcp



cp
l p
L p
εδ α Δ
=

1 ( )
( )cp

D s ds
L s

α
ρ

⎛ ⎞
→ = ⎜ ⎟

⎝ ⎠
∫

For first estimates assume: 
1 const
ρ
=

( ) dipoles dipole
dipoles

D s ds l D= ⋅∫

1 1 1 12cp dipolesl D D
L L

α πρ
ρ ρ

= = → 2
cp

D
D

L R
πα ≈ ≈

Assume: v c≈

cp
lT p

T L p
εδδ α Δ

→ = =

Definition:

αcp combines via the dispersion function 
the momentum spread with the longitudinal
motion of the particle.

o



⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

)*cos()*sin(

)*sin(1)*cos(

lklkk

lk
k

lk
MQF

12

* ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′ x

x
M

x
x

QF

Solution of equation of motion

)*sin(1*)*cos(* 00 lk
k

xlkxx ′+=

go back to Lecture I, page 1

single particle trajectory

3.) Quadrupole Errors

Definition: phase advance
of the particle oscillation
per revolution in units of 2π
is called  tune

x(s)

s

...**** 21 QFDQDDQFturn MMMMMM =

π
ψ
2

turnQ =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= 11

01
,

f
M lensthin



Transfer Matrix from point „0“ in the
lattice to point „s“: 

For one complete turn the Twiss parameters
have to obey periodic bundary conditions: 

)()(
)()(
)()(

sLs
sLs
sLs

γγ
αα
ββ

=+
=+
=+

( )
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
+−−

+
=

)sin(cos(sin)1(cos(

sin)sin(cos
)(

0
0

0

00

00
0

ss
ss

ssss

ssss
s

sM
ψαψ

β
β

ββ
ψααψαα

ψββψαψ
β
β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+
=

turnsturnss

turnsturnsturnsM
ψαψψγ

ψβψαψ
sincossin

sinsincos
)(

Matrix in Twiss Form



Quadrupole Error in the Lattice
optic perturbation described by thin lens quadrupole

rule for getting the tune

ideal storage ringquad error

z
ρ

s

ẑ

● x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

=⋅= Δ
turnturnturn

turnturnturn
kdist kds

MMM
ψαψψγ

ψβψαψ
sincossin

sinsincos
1
01

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+Δ−+Δ

+
=

000000

000

sincossinsin)sin(cos
sinsincos

ψαψψβψγψαψ
ψβψαψ

kdskds
Mdist

00 sincos2cos2)( ψβψψ kdsMTrace Δ+==



remember the old fashioned trigonometric stuff and assume that the error is small !!!

1≈ ψ≈Δ

and referring to Q instead of ψ:

Qπψ 2=

∫
+ Δ

=Δ
ls

s

dssskQ
0

0 4
)()(

π
β

! the tune shift is proportional to the β-function
at the quadrupole

!!  field quality, power supply tolerances etc are 
much tighter at places where β is large

!!!    mini beta quads: β ≈ 1900 m 
arc quads: β ≈ 80 m 

!!!! β is a measure for the sensitivity of the beam

2
βψ kds

=Δ

2
sincossin*sincos*cos 0

000
ψβψψψψψ kds

+=Δ−Δ

2
sincos)cos( 0

00
ψβψψψ kdsΔ

+=Δ+

Quadrupole error Tune Shift

ψψψ Δ+= 0



0

0

( )
4 4

s l
quad

s

klk sQ ds
ββ

π π

+ ΔΔ
Δ = ≈∫

a quadrupol error leads to a shift of the tune:

Example: measurement of β in a storage ring:
tune spectrum

GI06 NR

y = -6.7863x + 0.3883

y = -3E-12x + 0.2814
0.2800

0.2850

0.2900

0.2950

0.3000

0.3050

0.01250 0.01300 0.01350 0.01400 0.01450

k*L
Q

x,
Q

y

( )dsQks
Q

s ss

ls

s

πψψβ
π

ββ 2)(2cos)(
2sin2

)( 01

1

1
1

0
0 −−Δ

−
=Δ ∫

+

)(
)(

0

1

s
s

k

β
ββ ∝Δ
Δ

Error in the β function:
Nota bene:



4.) 4.) ChromaticityChromaticity: : 
A A QuadrupoleQuadrupole Error Error forfor ΔΔp/p p/p ≠≠ 00

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p

*B dl
p

e
α = ∫dipole magnet

focusing lens gk p
e

=

particle having ...  
to high energy
to low energy
ideal energy

( )*D
px D s
p
Δ

=



definition of chromaticity:

gk p
e

=

ChromaticityChromaticity: : ξξ

in case of a  momentum spread:

… which acts like a quadrupole error in the machine and leads to a tune spread:

0

pQ
p

ξ Δ
Δ = ⋅

0p p p= + Δ

kkg
p
p

p
e

pp
egk Δ+=

Δ
−≈

Δ+
= 0

000

*)1(

0
0

k
p
pk Δ

−=Δ

dssk
p
pdQ )(

4
1

0
0

β
π
Δ

−=



Where is the Problem ?



Tunes and Resonances

avoid resonance conditions:

m*Qx+n*Qy+l*Qs = integer

… for example: 1*Qx=1



Problem: chromaticity is generated by the lattice itself !!

ξ is a number indicating the size of the tune spot in the working diagram, 
ξ is always created if the beam is focussed

it is determined by the focusing strength k of all quadrupoles

k = quadrupole strength
β = betafunction indicates the beam size … and even more the sensitivity of  

the beam to external fields

Example: HERA

HERA-p:      ξ = -70 … -80
Δ p/p = 0.5 *10-3

Δ Q = 0.257 … 0.337

Some particles get very close to 
resonances and are lost 

in other words: the tune is not a point
it is a cow pat.

∫−= dsssk )()(*
4
1 β
π

ξ

… and now again about Chromaticity:



Tune and Resonances

m*Qx+n*Qy+l*Qs = integer

Qx =1.0 Qx =1.3

Qy =1.0

Qy =1.3

Qx =1.5

Qy =1.5 HERA e Tune diagram up to 3rd order

… and  up to 7th order

Homework for the operateurs: 
find a nice place for the tune 
where against all probability
the beam will survive



CorrectionCorrection of of ξξ::

Need: additional quadrupole strength for each momentum deviation Δp/p

1.) sort the particles acording to their momentum ( ) ( )D
px s D s

p
Δ

=

… using the dispersion function



Sextupole Magnet: 

CorrectionCorrection of of ξξ::

2.) apply a magnetic field that rises quadratically with x (sextupole field)

xB gxz= %

2 21 ( )
2zB g x z= −%

linear rising
„gradient“: 

x zB B gx
z x

∂ ∂
= =

∂ ∂
%

corrected chromaticity:

{ }1 ( ) ( ) ( )
4

k s mD s s dsξ β
π
−

= −∫

normalised quadrupole strength:

./sext sext
gxk m x

p e
= =

%

.sext sext
pk m D

p
Δ

=

o



sextupole magnet in a storage ring
… placed close to the quadrupole lens

S

S

N

N

quadrupole magnet sextupole magnet

● ● ● ● ●● ● ● ● ●



5.) 5.) InsertionsInsertions

... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters
α, β, γ if we sstop focusing for a while …?

2 2

2 2
0

2
' ' ' ' *

' 2 ' ' '
S

C SC S
CC SC S C SS
C S C S

β β
α α
γ γ

⎛ ⎞−⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

transfer matrix for a drift:

1
' ' 0 1

C S s
M

C S
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
0 0 0

0 0

0

( ) 2
( )
( )

s s s
s s
s

β β α γ
α α γ
γ γ

= − +

= −

=

TheThe „ „ notnot so ideal so ideal worldworld “  “  



ββ--Function in a Drift:Function in a Drift:

let‘s assume we are at a symmetry point in the center of a drift.

2
0 0 0( ) 2s s sβ β α γ= − +

as
2

0
0 0

0 0

1 10, αα γ
β β
+

= → = =

and we get for the β function in the neighborhood of the symmetry point

Nota bene: 
1.) this is very bad !!!
2.) this is a direct consequence of the

conservation of phase space density
(... in our words: ε = const) … and 
there is no way out.

3.) Thank you, Mr. Liouville !!!

! ! !! ! !

Joseph Liouville,
1809-1882
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Optimisation of the beam dimension:

2

0
0

( )β β
β

= +
l

l

Find the β at the center of the drift that leads to the lowest maximum β at the end:

If we cannot fight against Liouville theorem ... at least we can optimise

2

2
0 0

ˆ
1 0d

d
β
β β

= − =
l ! 0β→ = l

0
ˆ 2β β→ =

If we choose β0 = ℓ we get the smallest β at the end of the drift and the 
maximum β is just twice the distance ℓ

**

l l

β0

ββ--Function in a Drift:Function in a Drift:



... ... clearlyclearly therethere isis anotheranother problemproblem !!!!!!

Example: Luminosity optics at HERA: β* = 18 cm
for smallest βmax we have to limit the overall length 
of the drift to L = 2*ℓ
L = 36 cm

But: ... unfortunately ... in general
high energy detectors that are
installed in that drift spaces
are a little bit bigger ...
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question: main contribution to ξ in a lattice … ?

… and now back to the Chromaticity

interaction region

o



ResumeResume´:´:
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quadrupole error: tune shift

beta beat

chromaticity
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momentum compaction
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Appendix:
Dispersion: 
Solution of the inhomogenious equation of motion

1 1

0 0

1 1( ) ( ) ( ) ( ) ( )
s s

s s

D s S s C s ds C s S s ds
ρ ρ

= −∫ ∫% % % %Ansatz:

SCdtSCCSdtCSsD
ρρρρ
11*11*)( −′−+′=′ ∫∫

∫∫ ′−′=′ dtSCdtCSsD
ρρ

**)(

ρρρρ
SCsdSCCSsdCSsD ′−′′−′+′′=′′ ∫∫ ~*~*)(

( )CSSCsdSCsdCS ′−′+′′−′′= ∫∫ ρρρ
1~*~*

= det M = 1

remember: for Cs) and S(s) to be independent
solutions the Wronski determinant
has to meet the condition

0≠
′′

=
SC
SC

W



remember: S & C are solutions of the homog. equation of motion:
0*
0*

=+′′
=+′′

CKC
SKS

ρρρ
1~**~** ++−=′′ ∫∫ sdSCKsdCSKD

ρρρ
1~~* +

⎭
⎬
⎫

⎩
⎨
⎧

+−=′′ ∫∫ sdSCsdCSKD

=D(s)

ρ
1* +−=′′ DKD … or

ρ
1* =+′′ DKD

qed

ρρρ
1~*~* +′′−′′=′′ ∫∫ sdSCsdCSD

and as it is independent 
of the variable „s“ 

0)()( =−−=′′−′′=′−′= SCCSKCSSCCSSC
ds
d

ds
dW

we get for the initital
conditions that we had chosen … 1,0

0,1
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00

=′=
=′=
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