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1) INTRODUCTION

The single particle motion is given by external
guide fields (dipoles, quadrupoles, RF-system),
initial conditions and synchrotron radiation.

A beam of many particles represents a charge and
current and creates electromagnetic self fields.
They act back on the particles directly as space-
charge effect, repel them and counteract the fo-
cusing. In most cases they induce charges and
currents in the surroundings (vacuum chamber)
which represent an impedance. They are a
source of fields which act back on the beam. This
can cause: a frequency shift (change of the be-
tatron or synchrotron frequency), an increase of
an initial disturbance, instability or a change of
the particle distribution, (bunch lengthening)
all due to a collective action by many particles.
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Examples: Space-charge field repels
particles, reduces focusing

E

A circulating bunch induces fields in a
passive cavity which oscillate and act
back on the next turn, Depending on
the phase the initial perturbation is in-
creased or decreased.
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2) SPACE CHARGE EFFECT
Introduction

The many charged particles in an intensive
beam present a space-charge and produce
electromagnetic self fields which affects
dynamics being otherwise determined by
the guide fields of the magnetic lattice and
RF-system.  Assuming weak self fields we
treat their effects as a perturbation. In
the transverse case this shifts the betatron
frequencies (tunes).

For the direct space charge effect
the conducting vacuum chamber is ne-
glected, E' and B-fields are obtained directly.
The first is repelling and defocuses while
the Lorentz force of the second focuses.
The balance between them becomes more
perfect as the particle velocity v approaches c.
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Conducting boundaries modify the field giving
an indirect space charge field calculated
with help of image charges. Here the balance
between E' and B-effects is perturbed and the
effect is important also for v — ¢

For a rigid (coherent) oscillation of the beam
as a whole the direct space charge represents
an internal force which does not influence this
motion, however the indirect wall effect does.




Direct space charge effect
Fields and forces .
A uniform (unbunched) beam of circular cross section, The force on a particle in the beam
radius a, unifc_>rm charge and c;lrrent densit.ies n and J, FeFpt Fp=c¢ (E + 7 ED
charge per unit length A = ma“n, moves with v, = (¢,

I = (BcA. It creates cylindrically symmetric fields £ = :ﬂ(l — 2)/5: el 5 p2.
E,, 0, 0] and B =0, Ey, 0] determined by: 2€0 2meociy”a
- — — We have F o resulting in a lin-
div E=1/€ curl B = poJ ear defocusing effect. It is propor-

[[[divEdV = [[ EdS §B-ds=[[curl B-dS| tional to 1/~% and vanishes as 3 — 1.
On cylinder, radius p < a, int. elements, volume
dV = 2mpdzdp, area dS, = 2mpdz, dS, = 2wpdp,ds =
0, 1, 0]pd¢, have fields inside and outside beam
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Uniform focusing
Simple case:

tunes (), and (), and constant beta functions

Bem (Bo) ® RIQu , By =~ (By) = R/Qy.

Without space charge equation of motion is

d*y/dt* + wiy = § + Qwiy = 0,

Space charge gives additional acceleration

. F; enx eny
:CSC — o , o
mey  2e07 Moy 2€07° Moy
. 2 2 €n . 2 2
Yy =+ (QyOwO o 260771073) y=1y =+ Qywoy — Oa

same for x. We express new tune (), as

2 A 2
2 (1 + Q) = (1 — l )
40 @yo QGOQyoWOWOV

cas06-05, Hofmann

uniform density 7, circular cross
section radius a, machine radius R, revolution
frequency wy = B¢/ R, uniform focusing with

We assume small effect, AQ,/Q,0 < 1

€]
AQ, ~ —
@ 4eoQyowgmoy?

We introduce the classical electron radius

e ~1.54 - 10" m for protons
— 2.82- 10" mfor electrons

Tciron

rocl
AQ, = — —
/ ngy0€73 GWOQyOCﬂﬁV

Using beta function (3,, emittance &, and wy

By ~ R/QyOa gy %CLQ/ﬂy, CU():@C/R.

gives tune shift in practical parameters

AQy:— ToR[ 7AQ$:_ TQRI

ec&, 333 ecE, 333
The space charge force for uniform 7 is linear
giving the same tune shift to all particles. The
betatron frequency of the internal (incoherent)
particle motion is changed.

Ty =
47T€()m062




Non-uniform focusing

A realistic focusing lattice has F- and D-quads
and beta-functions which depend on path s.
We still approximate for a circular beam but
with radius a(s). We use the local focusing
parameter K, derivative of curvature 1/py,
to describe space-charge strength

o Cd(l/p)  1dy 1 dy
o dy —  yds? y32c2 dt?
B 1 en 2rol
C B222egmoy® eca3343
The tune shift by a local weak lens of length
ds
Kyﬁy ’I“()[
HAQy) = 4t ds = _27rcec‘fyﬁ3*y3d8°

Interesting: partial tune shift by local space-
charge depends on emittance £, = a*/(3,. but
not on 3, and a separately. Small 3, gives
small a and strong force but reduced focusing.
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With emittance £, = a*/3, being invariant with
s around the ring the total tune shift is

K,B3, rol R
AQQ T ?{d(AQy) _ j{ At ds = _cegyﬂg,yg'
It decreases with the third power of the Lorentz
factor v. The cancelation between the magnetic
and electric forces contributes a power of two
and the stiffness of the beam a power of one
to this dependence. For given current [ the
tune shift increases with machine radius R, but
expressing [ with particles number NV, gives

_eNywy  eNybe

[ = —
27T 2R
70Ny
A r — )
@ 2 E 323

with the charge eV, of the whole beam.



Elliptic beam cross section

Uniform 7 and elliptic cross section with half-
axes a, b gives fields and forces inside (L. Teng)

. . I x Y
b = E.%’) E ; EZ — BERE 0
| v B2l meo(a + b)Bc [a b ]
= : fol y x
B = B.%’a B ; BZ — R 0
| T w(a+b) [ b’ a ]

which satisfies divE = n/ey, curl B = u.J.
I(z/a), (y/b), 0.
mepBey?(a + b)

This linear space-charge force gives tune shifts

ﬁzelﬁ+[ﬁxé]]:

rol a
AQ, = — d
@ wecﬂ373&v%a+b ’
?“0] b
AQ, = — d
@ Wecﬁ373éfyfa+b ’

Since a /b depends on s the local tune shift con-

tribution depends also weakly on s.
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Bunched beams

In bunched beams the current I(s) depends on
longitudinal distance s from the bunch center.
The space-charge force is more complicated,
however, since electric field of a relativistic par-
ticle is mainly transverse with opening angle
~ 1/v and x I(s) as long it changes little
over a distance a /7y

roRI(s) roRI(s)
AQy = — 3,3 - 33’

ecE, 3> ecE, 37y
Tune shift depends now on longitudinal par-
ticle position in bunch. This leads to a tune

spread and, since particles execute synchrotron
oscillations, to a tune modulation.
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Non-uniform distribution

Back to a continuous (unbunched) beam. An
uniform charge density gives a linear defocus-
ing force F), o< x and same tune shift for each
particle. A general transverse charge distrib-
ution can give a non-linear force, making the
tune shift dependent on the betatron oscilla-
tion amplitude and resulting in a tune spread.
Example: circular, Gaussian beam with

I _2

— 202
27rﬁ0026 ’

Gauss Theorem ///divEdV =/ EdS gives
field components and a radial force

I
2megBeo

nip)

1 _ 0P
2mpE, = — [ pndp = ;| pe 27dp
€0
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In this non-linear force the oscillation is not har-
monic but more complicated. We develop F,
in powers of p
el 2
AN S ——
2megBey? 202 402

The lowest order gives the small amplitude tune

shift
TQ[R ﬁ:c
e3Py 202
in a Gaussian beam which is the same as the
one of an uniform beam with radius a = v/20.
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Indirect space-charge effect — influence of the chamber wall

Conducting boundary

The conducting vacuum chamber imposes a perpendic-
ular electric field as boundary condition, Ej =0, on
surface. This E | -field induces surface charges. For a
continuous beam they are static and don't represent a
current. As chamber wall we use conducting horizontal
plate at distance h from the beam line charge \. To
calculate the field we introduce an image charge —\ at
distance h behind wall which cancels £ on the wall. In-
side the vacuum chamber the field has the beam as its
source and satisfies the wall boundary condition.

conducting wall conducting wall

beam "
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Field: direct Ed, image EZ total £
inside vacuum chamber:
E = Ed -+ E@
dvE; = L divE =0, divE =1

€0 €0
on the chamber wall:

L= =Ly, £ =0.



Conducting vacuum chamber

The vacuum chamber represents two conducting bound-
aries at distances 4=/ from the beam. To satisfy £ = 0
on them we need not only an image charge of the beam
behind the upper and lower boundaries but also sec-
ondary image charges of the primary images with al-
ternating polarities. The fields due to each image line
charge \;, are calculated only close to the beam to first
order of x and y (quadrupole field). Starting with the
vertical field of the nth image pair at distance +2nh and
summing over n

Emy — <_1>n2)\ 9 hl - 1_
weg \2nh+y  2nh —vy
_ (_1>n A _2y _ )‘y (_Dn
2meg (2nh)? dmegh?  n?
oo _ Ay OZO(_1>n Ny e
Y Amegh? T n? dregh? 12’
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We got the field of all charges
Ay x (=D Ay o
Amegh? n2  4dwegh?12’

The horizontal field is obtained from

~  OF; OF.
divE; = i Y=
v ox + dy

0EZ - 8Ezy_ A 7'('2
Oxr Oy  A4meyh?12’

E;, = >

or

\y

dregh?12

The boundary condition of the conducting
plates does not affect the magnetic field
and there is no relativistic compensation for
the forces due to image charges. The total
forces and tune shifts are, using I = A\(c.

E; =
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The first term, direct space-charge effect, de-
creases as 1/+* due to the cancelation between
electric and magnetic forces and depends on the
beam size. The second term, indirect effect of
the wall, has no cancelation and does in our ap-
proximation not depend on beam size but on
the distance hof the plate. Both decrease in
addition as 1/ due to rigidity at higher energy.



Ferromagnetic boundar/es

e B Q_.__.________

ferromagnet|c waII i
L LT 110000110011 LU

Flat ferromagnetic magnet poles at distance
g from beam I impose perpendicular mag-
netic fields, BH = ( as boundary condition.
A fictive parallel image current I, = I at
distance g behind ads a field which can-
cels B on boundary and close to the beam,
x,y < g afield B=pugl;/(2nr)

B o_ pol ol - y)
Y 27T(2g—y) dg 2¢
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Upper and lower walls give two primary and many
secondary image currents with field

I 1 1
B., = Hot Z
2T 2ng — vy 2ng + vy

uofyozo L polym?
4rg? T n? 4#92 6
2el 1 232
Jop—— + mp
2mefe \ 2a°~? 48h2 2492
2rol R 1 2 2
AQ, = — () T
ec33y  \2a°4?  48h? 2442
Vertical field and horizontal tune shift are
. = 0B, 0B, ,LL0]£C7T2
divB =0 — B, = —
vB = ot e, =0 B =
AQ, — 2rol R{(3;) 1 2 723
v ec3y  \2a%y%2  48h%  244%)
A() has 3 terms: direct effects, indirect by electric

boundary at distance A and magnetic boundary at
distance g.




Incoherent and coherent motion

Direct space-charge effect

Individual particles move
center-of-mass not:
incoherent motion

Center of mass moves
coherent motion

For an incoherent motion particles
have a space-charge tune shift

AC2inc. - TO[QRg)ﬁyg

cea® 3>y
For a coherent motion space-
charge force is intern, moves with
beam and does not affect center-
of-mass motion AQ o =0
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Indirect space-charge effect

Space-charge field with a conducting wall
at distance h was obtained by image line
A coherent
beam motion by ¢y moves first images to

charge at h behind wall.

+2h — 1 with a field at the beam

— A 1 1
Ecly — (

2T€

Oh+2y 2h—2j

)

Equidistant 2nd images cancel, general
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Review and conclusions

Summary Direct and indirect, incoherent and coherent AQ:

ferromagnetic pole

conducting wall T 2T01R<6x > 1 T 1 T
il vac\ um clamber ‘ , Aan/g - = 66637 /y 201272 + el/yﬁ + 62/y
g h
s 2o R(B, ) |
w AQuy = — e3Py : 0 +& yﬁ + &
direct elec. magn.

Laslett coefficients €, £ for a conducting and a ferromagnetic plate ad distances h and g:

2 2 2 2 2
& =& =0.

T . 78 7
; Gzz—ﬂa 51252:

@ )
Direct space-charge fields:

16

e =

Reduce transverse focusing and tune () of in-
dividual particles. For an unbunched, circular
beam of radius a and uniform density

rol R((, roR1
AQ:zc/y:_o 3<3/g>:_ 3~3"

ec3°y2a ecE, 1y 5%y
Cancelation between E and B forces gives
1/~*-factor and reduces AQ at high energy.
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High intensity also changes (-function and
beam size, leading to "space-charge dom-
inated beams”. A() depends in bunched
beam on longitudinal particle position and for
non-uniform density on oscillation amplitude
giving a tune spread.

Related: Neutralization, beam-beam effect.

1
g

1
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Indirect space-charge effect

Conducting or ferromagnetic materials of the vacuum
chamber modify the fields £ and B making their forces
different and perturbing their cancelation resulting in im-
portant tune shifts also at high beam energies.
Coherent effects

A betatron oscillation of the beam as a whole represents
a coherent, or center-of-mass motion. This does not
affect the direct space-charge effects based on internal
forces. However, image charges and currents move and
alter the force on the beam resulting in different shifts
AQine # AQcon, This can affect beam stability to be
discussed later.

Problems caused by space-charge tune shifts

Optical imperfections can make the motion of a particle
unstable if its tune is on a resonance, i.e. is a simple
rational number N/M . With a space-charge tune spread
and different coherent and incoherent tune shifts it may
be difficult to avoid this for all particles
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3) MECHANISMS OF INSTABILITIES
Many particles in a beam represent a charge and
current and create electromagnetic fields (self
fields) which induce charges in the beam sur-
roundings. While for indirect space-charge effects
a quasi-static approach could be used for contin-
uous beams or long bunches in most cases high
frequencies are involved and the electrical prop-
erties of the wall is described by an impedance.
Beam induced currents create fields in it which
act back on the beam leading to:

frequency shift (change of the betatron or syn-
chrotron tunes), change of the particle dis-
tribution, (bunch lengthening) or an increase of
an initial disturbance, instability, all due to a
collective action by many particles.
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Example: a circulating bunch induces
electromagnetic fields in a passive cav-
ity which oscillate and slowly decay
away. Next turn they affect the bunch
and, depending on their phase, increase
or decrease its initial perturbation.

‘/;:avity (t>




Types of multi-particle effects
Performance reduction or beam loss
Multi-particle effects can modify beam parame-
ters, e.g. betatron or synchrotron frequency,
particle distributions or lead to an energy loss
which is compensated by the RF-system. These
do not prevent machine operation but may re-
duce performance. However, others lead to a
growing oscillation resulting in a beam loss, i.e.
an instability.

Longitudinal and transverse effects
Longitudinal effects involve synchrotron (en-
ergy, phase) oscillations and longitudinal im-
pedances. They lead to a shift of synchrotron
frequencies, bunch lengthening and longitudinal
instabilities,
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Veunity (£) Stationary bL:nch

Oscillating bunch
‘/cavity(t) :\\

_____

Transverse effects involve betatron oscillations
and transverse impedances. They shift betatron
frequency and make transverse instabilities.

For both the longitudinal distribution (bunch
length) is "resolved” by impedance and impor-
tant while transverse distribution rarely matters.



Single traversal effects

Strong self-fields from broad-band impedances
change the stationary distribution and modify
oscillation modes which are no longer indepen-
dent. A self consistent solution is difficult to ob-
tain. The most common such effect is bunch
lengthening. Small vacuum chamber aperture
changes represent at low frequencies an induc-
tive impedance wL in which the bunch current
I(t) induces a voltage

dl

Vi(t) = —L—.

(2) o

It is added to the external RF-voltage, reduces
its slope and increases the bunch length, called

potential well bunch lengthening.
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Multi-bunch effects

With many circulating bunches, their individ-
ual oscillations can be coupled by an im-
pedance with a shorter memory bridging just
the bunch spacing instead of the revolu-
tion time. Multi-turn and multi-bunch in-
stabilities have the same qualitative prop-
erties and are called multi-traversal effects.
Cures: damp cavity modes, feed-back system.
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Calculation methods

For self fields small compared to guide fields
we use a perturbation in 3 steps.

a) We determine the stationary particle dis-
tribution given by the guide field, initial con-
dition and synchrotron radiation.

b) We consider small disturbances and cal-
culate the fields they create including the
boundary conditions (impedance).

c) We calculate the effect of these fields
to see if the initial disturbance is increased
(instability) or decreased (damping) or
the oscillation mode changed (frequency
shift).

Strong self-fields change the stationary dis-
tribution and modify oscillation modes which
are no longer independent. A self consistent
solution is difficult to obtain. The most com-
mon such effect is bunch lengthening.



4) IMPEDANCE, WAKE FUNCTION

Resonator
| e
Beam induces wall current I, = — (I, — (I;))
" L
(L Gk
U
(D) R, — L |V
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Cavities have narrow band oscillation modes
which can drive coupled bunch instabilities.
Each resembles an RCL - circuit and can,
in good approximation, be treated as such.
This circuit has a shunt impedance R, an in-
ductance L and a capacity C. In a real cavity
these parameters cannot easily be separated
and we use others which can be measured di-
rectly: The resonance frequency w,, the
quality factor () and the damping rate a:

1 C R
WT—\/T—Ca Q_RS\I:—LWT—RSCWT

Wy R, Q
Y- -
“ 20Q) 7 Qu;  © wr R




Driving this circuit with a current I gives the

voltages and currents across the elements
1

—

el 1o} 1L Ve = QRRS
e Ve = 5/10dt
(1) R —— L |v 0
vV, = L—*
L dt
—— Y

Ve=Vo=V =V
In+1c+1=1
Differentiating with respect to t gives

T V4 LV
I =1 I, Ir = — —.
r+1c+ 1 RS+CV+L
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Using L = R;/(w,Q)and C' = Q/(w,Ry)

gives the differential equation

Wy erSI-
Q Q

The solution of the homogeneous equation
represents a damped oscillation

V+ 2V + WV =

V(t) = Ve cos (wrll — @t +
—at A 1
V(t) = e cos |wy |1 — 4—Q2t

, 1
+ B sin (er1 — Wt))



Wake function — Green function

Response of RCL circuit to a delta pulse

i

I

V +

V+wfV:

v

Wy

Q

(87

wy R -
Q

q-
Q

C
R,
&
20

Charge ¢ brings the capacity to a voltage

V(0")

general solution V(t) = e (A COS (wr
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q _ weli

q using C' =

Q
wr R

pulse response V() = 2qk,e ™ (cos

Energy stored in C' = energy lost by ¢

2 +
q wrRs o V(07)
°C 20 q 5 q pmd
with the parasitic mode loss factor
kpm = wrRs/(2Q), given usually in [V /pC].

Capacitor discharges first through resistor
- q I 1V(07)

2

U:

VO =—c="¢c~ "k
B _wERS B _Qwrkpm
Q! Q

Initial conditions V (07), V(0%) give from

\

1 : t
4Q)?

+ Bsin (er1 — Z@t))
wrll B} 113) B sin (wm/l — ﬁt)
4Q)2 20),/1 — ﬁz




sin (wy /1 —
G(t) = @ = 2kpme” at (COS (er1 — 4(1¥ ) Q(QFJQJ IC
1Q2

G(t) is called Green or wake function. (G(t) is related to longitudinal field F. by an
G(t) ~ 2kyme " cos (wpt) for Q > 1 integration following the particle with v ~ ¢
This voltage induced by charge ¢ at ¢t = 0 and taking momentary field value

changes energy of a second charge ¢’ travers- V= Gge — (2B t)dz = —f, [* B.(2)d
ing cavity at t by U = —¢'V (t) = —qq'G(t). 9= / (2,t)dz = ft/ zZ.

i(ﬂ with "transit time factor’ f;. We use
A wake function G(t) > 0 where energy is lost.
A WANAN t A particle inside a bunch of charge ¢ and

q
q v \4./ N4 current I(t) going through a cavity at time
(B (1) t sees the wake function created by all the

particles passing at earlier times t' < ¢

A /l\ /N resulting in a voltage

longitudinal field

V(t) = [ G(t)dg = [ I(E)G(t)dt' = qW (2) y
W(t) = V(t)/q wake potential . T t—t
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Impedance

AVAVARGRR:? — L |V

I(t) = I cos(wt)

———_\y

A harmonic excitation of circuit with current
I = I cos(wt) gives differential equation

VA V4wV = 2] = -7~
Q Q Q

Homogeneous solution damps leaving particular

one V(t) = Acos(wt) + Bsin(wt). Put into
diff-equation, separating cosine and sine
Wyl
w”— wiA+ B =0
—(w? — w;) 0 ’
5 Wyw wrwR -
w? — w?)B + A= I.
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Twsin(wt).

Induced voltage by the harmonic excitation
. cos(wt) + Q“ﬂ—_w% sin(wt)
— [RS 2 D)
! ™ Q2 ( Wrw >

has a cosine term in phase with exciting
current. |t absorbs energy, is resistive.
The sine term is out of phase, does not
absorb energy, reactive. Ratio between
voltage and current is impedance as func-
tion of frequency w

V(t)

1
Zr(w> — R wi—w? 2_ 2 2
1+Q2< Wrw >
w2—w2
Zw) = Ry

1+Q2( — )2°

Resistive part Z,(w) > 0, reactive part
Zi(w) positive below, negative above w;.



Complex notation
We used a harmonic excitation of the form

AGJWt—l—e Jwt

I(t) = I cos(wt) = 1 5

with 0 < w < 0.
It is convenient to use a complex notation
I(t) = I/ with —o0o <w < 0

giving compact expressions. Using the differ-
ential equation

V+ 2V 4wV ="]
Q Q

with I(t) = I exp(jwt) and seeking a solu-

tion V (t) = Vyexp(jwt), where Vjis in gen-
eral complex, one gets
wrw R
—w? +]7+w Vyeltt = j= 2 et

Q Q

cas06-25, Hofmann

The impedance, defined as the ratio V/I be-
comes

Z(w) = E Uz

[o1+je(z-+)
R
T ()

For () > 1 the impedance is only large for
W R Wy of lw— w|/w, = |Aw|/w, < 1and
can be simplified

= Ry

— Zr+jZi

1 - j2Q%
1 4 4Q? (f}—f)Q'

Z(w) ~ Ry

Caution: sometimes I(t) = Ie ™" instead of

I(t) = Ie’“! is used, this reverses the sign
Zz(w)



Resonator and general Green function and impedances

Green function

Green function

NA A A

/iV?VB\/ZL%w

Impedance

Z(w)

Impedance
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The resonator impedance has some

specific properties:

atw =w, — Z.(w,) max., Zj(w,) =0

0 <w<w, — Zj(w) >0 (inductive)
w > w, — Zi(w) <0 (capacitive)

and any impedance or wake potential
has the general properties

Zr(w)=Z(—w) , Zijw)=—-Zi(—w)
Z(w) = [72 G(t)e *dt
Z(w) o Fourier transform of G(t)
fort <0 — G(t) =0,

no fields before particle arrives, 5 ~ 1.



Typical impedance of a ring

Aperture changes form cavity-like objects
with w,, Ry and () and impedance Z(w) de-
veloped for w < w,, where it is inductive

1 @7,
$ 2, ,2\2

L+ Q)
Sum impedance at w < w,. divided by mode
number n = w/wy is with inductance L

Z(w)=R

Z

n
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RskWO 60
o pm— L — L—.
0 Zk: kark -0 R

_________________

It depends on impedance per length, ~ 15

(2 in older, 1 €2 in newer rings. The shunt
impedances R, increase with w up to cut-
off frequency where wave propagation starts
and become wider and smaller. A broad band
resonator fit helps to characterize impedance
giving Z,., Z;, G(t) useful for single traversal
effects. However, for multi-traversal instabil-
ities narrow resonances at w,; must be used.



5) LONGITUDINAL DYNAMICS

A particle with momentum deviation Ap has

different orbit length L, revolution time 7, and
frequency wy

AL Ap o AFE

L%, e

AT S [, L)a o

= = _ nc
T W v¢) p p

with momentum compaction a,. = 1/, slip

factor 1. At transition energy moc*yr the wy-
dependence on Ap changes sign

1 A
E>ET—>—<040_>776>17 0

— <0

y? AE

1 Awo
E<ET—>?>@C—>UC<1,E>O-

Forvy>1 — Ap/p~AE/E =¢€, n. =~ ..
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Usfer —— —fp = — = = — = — = — — — — — — —

bunch "
; N
RF-cavity of voltage v, frequency wg =
hwgy, SR energy loss U the energy gain or
loss of a particle in one turn de = E/FE is

0F = eV sin(hwy(ts + 7)) — U

ts= synchronous arrival time at the cav-
ity, 7= deviation from it, synchronous phase
0s = hwyts. For hwyt < 1 we develop

SF = eV sin(¢,) + hwoeV cos g — U.



For 0FE/E < 1 use smooth approximation Combining these into a second order equation

E~O0E/Ty, T=AT/Ty =nAE/E  w U . won.dU
i 7 = AT/~ O )
woeV sin @ N wiheV cos s wy 7 2mOE 2l Ot
T — —U.

27 27 2T ,  —wihn.eV cos ¢, - lwyoU

T =0,
E =

Use Ty = 27 /wy, relative energy e = AE/E Wso = onE , Qg = 99 OF

~ weeV sin Os N wghev COS Qs wo U ng _ wgo _ o@ B ;Uo?g%(t]

€ = s _ 0=

2m kR 2m kB 2m B . , , T
T+ 20,7 +wiyT = 0
Energy loss U may depend on € and 7
oU oU T =7 " cos(wgit) , € = e st sin(ws1t)
U(€7 7_> ~ U() + a—EAE -+ ET From 7' — 7766 we get é\ — ("')807/;/776-

To get real wy,y we need cos @, < 0 above

transition where 1. > 0 and vice versa.

_
: wyheV cos CbsT B ﬂa_UE . ﬂa_UT To get a stable (decaying) solution we need

2mE 2roFE 2w Ot an energy loss which increases with E
_ w0l _ w U
41 OF  47E Oe

giving for the derivative of the energy loss

T = 1€
> ().

where we used that for synchronous particle Qs

e =0, 7 =0 we have Uy = eV sin ¢
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6) POTENTIAL WELL BUNCH LENGTHENING

dL/ds
— === === === mf\ufmﬂ—

+++

Vil

Ry !
b, = _d—LdL de[b
V= —/Bde =L

[ Budz= L%
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We take a parabolic bunch form

A T 3l T
Lr) = I{1-" -
i7) ( %2> 2w0%( %2)
dly 3mlyT
¢ _ To— (]
dr word T Y ).
~ 3mlyL
V = V{(sin ¢s + hwycos ¢s7) + i 0A37'
woT
. 3m|Z/n|ol
V = V |siné + cos ¢shwg (1+ 3miZ/mlo v
hV cos ¢s(wyT)3
5 w% hncef/ COS @y
Wgo = —
2k
3|4 I
wg = wgo{lJr ~ T2/l OA
hVgr cos ¢s(woT)?
Aws  Ws—ws 3m|Z /nloly

Ws0

-~ QhVRF cos Ps(woTp)?

)"



w? 3m|Z /nloly

w2, " hWVrr cos ds(woT)3

31| Z/n|ody

ws 2RV cos ¢s(woTp)?
Only incoherent frequency of single particles
is changed (reduced for v > ~7, increased for

v < ~r), but not the coherent dipole (rigid

bunch) mode. This separates the two.

V(1)
74 R

WS - (.(.)30 AWS

Ws0
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Reduction of w, reduces longitudinal focusing
and increases the bunch length

Me/Ws

rel. energy spread €, long. emitt. & = 7¢
Protons: &= constant, 7 x 1/, /wj

AT Aws 37T|Z/n’0]()
small: — ~ N ——— —
4hV cos ¢s(woTp)?

70 2WSO
371 Z [ T
’ /n|0 0 ( ) 1 O

F=enws, T = TN ws =

AN

24
or: (A) +
70

WV cos ¢ (woTn)? \Fo
Electrons: é= const. by syn. rad. 7 o< 1/wy
AT Aws 37T|Z/n’0[0
smal: — ~ — N ——— —
T0 Ws0 2hV cos ¢8(w070)3

AN

(7’)3 ’7A' 37r]Z/n|0[0
or: (| ———+ = -
7o hV cos ¢s(woTp)?

- =0
70



The parabolic bunch current is the projection of We calculated the potential  well
an elliptic phase space distribution. In this case bunch lengthening in time domain
the bunch form is not changed just its length in- using actually the wake function G(%).
creased. This is more complicated for other dis- I(t)
tribution like for the Gaussian shown in the figure.

0.4-

t+ / N dl
V(t) = [ IWGH)dt =L

G(t) = Li(t).

The wake function is the inductance times
the derivative of the d-function.

0.3
0.2-

0.1-

vV 27Th2[Q|Z/n|Q

~ Vecos d(hwoyoro)?
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7) ROBINSON INSTABILITY
Stationary bunch

Spectrum
time domain
To
Te(®) N g ;
I (t+ T) L I(t) I(t—Ty)
| n n
: Ot :
| | |
| 1 1
| ] |
—Th 0 1o t
[p(w) . frequency domain
| wO
|||||HH 111 =

w

‘ ‘ I i [

0
A symmetric bunch, circulating with turns k
of duration Iy represents a periodic current
and is expressed by a Fourier series
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S, (t — kTp) = z [/

k=—00

= Ih+2y I, cos(pwyt)
p:

T T() /—T /2
L 7y/2 “o 7
= T —%0/2 I(t) cos(pwot) = ﬁ[(l)w())-

Assume symmetry I(t) = I(—t), real I, co-
sine terms, at low frequencies I, ~ I
Gaussian bunch:

¢ q o5 1
[ t — e 20t2 , [ = —¢€ 20(,% ) o, = —
( ) \/%O't b T() < Ot



Voltage induced by a stationary bunch
In impedance Z(w) = Z,(w) + jZ;(w)  Combining positive and negative frequencies,
the stationary bunch induces voltage using Z,(—w) = Z,(w) , Zi(—w) =—Z;(w)

Vel))= & Zpapersr, 9 A0 =0 we g

Vi(t) = 2;2201 L, [ Z(pwo) cos(pwot) — Zi(pwy) sin(pwot)] .

Energy loss of a stationary bunch

Energy lost by the whole bunch with /V, T , Lo forp =p
particles per turn in impedance Z(w) is Jo" cos(p'wat) cos(puwpt)dt = (2) for p # p
_ Ty 00 o0
Wy = " Ik (t) Vi (t)dt. Wi=T) % I3 Z(pwo) = 210 3. [ 2, (pu)
This contains expre::|ons and mtegrals has only Z,. Loss U = W,/N, per particle is
Ix()Vk(t) = X Z(pwo)I,e™ . 2T} %€ x
p=—00 - [2ZT, = — ]2ZT :
U N, % o Zr(pwo) I, T 7 (pwo)

1,12, I,

T .U A

0 w

/oTO cos(p'wot) sin(pwot)dt = 0.
T
|
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Robinson instability
Qualitative treatment

Wy hu)() w

Important longitudinal instability of a bunch
interacting with an narrow impedance, called
Robinson instability. In a qualitative ap-
proach we take single bunch and a narrow-
band cavity of resonance frequency w, and
impedance Z(w) taking only its resistive part
Z,. The revolution frequency wy depends on
energy deviation AE

Aw() AFE

o g
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While the bunch is executing a coherent di-
pole mode oscillation €(t) = €cos(wst) its
energy and revolution frequency are modu-
lated. Above transition wgis small when
the energy is high and wyis large when
the energy is small. If the cavity is tuned
to a resonant frequency slightly smaller than
the RF-frequency w, < pwy the bunch sees
a higher impedance and loses more energy
when it has an energy excess and it loses
less energy when it has a lack of energy.
This leads to a damping of the oscillation. If
w, > pwy this is reversed and leads to an in-
stability. Below transition energy the depen-
dence of the revolution frequency is reversed
which changes the stability criterion.



Oscillating bunch

time domain Bunch executing synchrotron oscillation with
Lt T Ty Ty ws = wols and amplitude 7 modulates pas-
" A - NC T sage time ;. at cavity in successive turns k
| | | 00
m | ™ ]K(t): > [(t—]{?TO—Tk)
: i : k=—00
0 To 21 with 7, = 7 cos(2mQsk) = T cos(wst)
_ frequency domain, w > 0 giving current without DC-part
fw) o
Ig(t) =2 X I,cos(pwy(t — 7 cos(wst))).
w>0
‘IIH]] HHHMM'I'MMI!.I We develop for pwy7 < 1
0 o <5~ W

Ig(t) = 2 ¥ I, |cos(pwot) + pwoT sin(pwot) cos(wst)]

w>0

— 2y I,

w>0

AN

s (sin((p + Qs)wot) + sin((p — Qs)wot))| -

The modulation by the synchrotron oscillation results in sidebands in the spectrum.
They are out of phase with respect to carriers and increase first with frequency pwy.

cos(pwot) + P
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Voltage induced by oscillating bunch
Abbreviate: w = (p + Qs)wo , w, = (p — Qs)wy
Ik(t) =2 % I, |cos(pwot) + el

w>0

(sin(w, t) + sin(w, t))| .

We restrict on resistive impedance Z, and get voltage

Vier(t) = 2 EO Iy | Z,(pwo) cos(pwot)
pwoT

2
Vier(t) =2 éo L, [ Z,(pwy) cos(pwit)

_|_

(Z(wy)) sin(w, t) + Z(w, ) sin(w, 1))

p

pwoT

T

Zp(w,) ) (sin(pwot) cos(wst) 4 cos(pwot ) sin(wt))

+Z,(w, ) (sin(pwot) cos(wst) — cos(pwot) sin(w,t))||

Synchr. motion: 7, = 7 cos(2nrQsk) — T = T cos(wst)

Vie(t) = 2 % L, [ Z,(pwy) cos(pwt)

»,
T }% {Zr(w; ) (sm(pwot)T — COS<pWOt>

S
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Tf(w) 1]
bwo
),
bwo
T f/[(w) bwo

| ) + Zr(w,) (sin(pwot)T + Cos(pwot):sm



Energy exchange

The energy per particle and turn exchanged be-
tween bunch and impedance

. 1 2l
U7 =5 b ItV (t)dt, Ny = 500

Express factors differently, use 7 = n.€

I (t)=2 > L, [cos(p'wot) + p'wo sin(p'wot ) 7]
w>

Vir(t)=2 X I, | Z(pwo) cos(pwot)

+ ER((Z0(w)) + Zo(w, ) sin(pwt)7
~(Z:(w) = Zlwy ) cos(pmnt)

Neglect higher terms in 7, 7, use integrals
Lifp' =p
0

T
Iy * cos(p'wot) cos(pwot)dt = £ £ p

10 cos(plwot) sin(puwgt)dt =0.

_2600

We discussed stability of a phase oscillation

FA4 20,7 +wir =0, T="Te

_ Wi spli(Z(w)) — Zr(w))))

p

S

2IohV cos D
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= =3 I’Z,
U [() wz>:() b (pw())
€ oo 9 _\\ e
_ [—0ng pwo(Ze(w)) — Zp(w, ))w—s
oU € o0 N
— =—— % Dpwo(Z(w))—Zr(w,)—
e = IS opeolZelwy ) = 2wy ))
dU
L eos(wsit) , ag = ;—OEE
D > (0 stable
< 0 unstable




Narrow impedance, only one harmonic p Qualitative understanding

I turn k T, turn k+1
LN\ | Nati i
E l ; ~ !
i W \ I(t) : Stationary bunch I(t) :
E /%\ + 7
. O ) @ t .
Damping if a, > 0, instability if oy < 0 AON Perturbation ) |
e = e~ sin(wt) — . '
wsopfg(zr (w; — Zr (w};)) 0 Cavity field induced by the two sidebands
Qs = ~ > E. wr = (24 Qs)w
8 21V cos g, e
Above transition: cos ¢, < 0, stability if: E. | wr = (2 — Q4w |
Zr(w,) > Z;(w, ) Damping rate proportional N -
tOd dblffe;enlce " tZrtbetweenblovx(/je_r andd Hpper ¢ Phase motion of the bunch center
sideband. Important:narrow-band impedances.
P P % }—T V> AT @l

The RF-cavity:p = h, I, = I.

o G2 = Zw) ¢ PR -t

2V cos O
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8) TRANSVERSE INSTABILITIES
Transverse impedance

A transverse impedance is excited by longitudi-
nal bunch motion and produces deflection field.
Cavity oscillating with w in dipole-mode with
longitudinal F£.-field having transverse gradi-
ent OF./0Ox. E. vanishes on axis and is ex-
cited by bunch with dipole moment [,Ax. Af-
ter 1/4 oscillation E. becomes B,-field which
deflects beam in z-direction. Maxwell's equa-

tion B = —curlE, integral form fédc? =
— § Ed§, Byrdz = —(0E,/0x)vdz

OF 1 0F
E. = 57 cos(wt) — B, = o sin(wt)
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For general case we use transverse im-
pedance, Zp or Z | in analogy to longitudinal

/(E(w) + [T % E(w)])Tds

Zrw) = J Ix(w)
o wf (E(w) + [U X E(w)])Tds
I3 (w)
using ¢/“*. If deflecting field is in phase with

exciting dipole moment there is no energy
transfer to transverse motion, factor ';' on
top. If it is in phase with transverse velocity
there is energy transfer, real on bottom.



= - E .
- '——Maz—%—— - = — _
————— P ---- LTt T OO0
~ — ONONO.
longitudinal transverse transverse

Relation between Z; and Zr of same mode:

A dipole moment Iz induces in longitudinal

impedance Z;, a gradient OF,/0x = [ x
oL, _dE,
ox - dx

= klxy, E.(x) r = klxyx

E.(zy) = klIx, gives long. impedance
Zi(zo) = —[E.(x0)dz/I = —kajl
d*Zy/dxs = —2kl, (¢ = cavity length)

Maxwell's equation | Bda = — f Eds gives
the relation in complex notation I(t) = [e/*

B, = Byjwe!*' = —dFE, /dze™
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laEZ B ]]{TIIIZ'()

B, =
Y w Ox LW
[V x Blrds — .c¢Byl ckl
Ix(w) I xg w
c d*Zp(w)
Z = :
rw) 2w dx?

This gives the w-symmetry relation for Zp

Zi(—w) = Zp (W), Zui(—w) = —Zpi(w)
Zri(—w) = —Zr(w) , Zri(—w) = Zri(w)
Relation Z; to Zr of different modes:

In ring of global and vacuum chamber radii R

and b the impedances, averaged for differ-
ent modes and objects, have semi-empirical

_2RZp(w)

TR w/w)

From the area available for the wall current we
expect Z;, o< 1/b and therefore Zp oc 1/b°.

ZT<W>

ratio:



Transverse dynamics

Due to transverse focusing particle executes a
betatron motion around the orbit with a be-
tatron tune (), having a fractional part ¢ and
the revolution frequency wy. It is locally har-
monic but has a complicated phase advance
around the ring. A stationary observer, or im-
pedance, samples particle position ;. at one
location each turn k& without information for
the rest of the ring

AN

X

A / .
r = xcos(2mqk) , x, = ——sin(2wqk).
B
Tk
/\ / s \ / r
LN ) ! \\ i ! LN : . \\\
1 T 7 1 T
\\ // \\/ ‘v / \\ J/ \\ // \\ / ) / !
[ I I I I [ I I I I
0 1 2 3 4 5 6 7 8 9 10 tumk
Tspectrum
| L L
0 1 2 w/wy
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We observe this motion as a function of turn
k and make a harmonic fit, i.e. Fourier analy-
sis. For a single bunch we find at a revolu-
tion harmonic pwy an upper and lower side-
band at distance £qwy. Only the fractional
part ¢ matters since the integer cannot be
observed. For a very short bunch these side-
bands will extend to very high frequencies, for
longer bunches they level off. A transverse
impedance (or a position monitor) is sensi-
tive to the dipole moment [x of the current
and does not see the revolution harmonics.



Multi-traversal instability of a single bunch

A bunch P traverses a cavity with off-set ,
excites a field E which turns after T, /4 into

a field B then into —E and after into B.

A
t=1T./4

A) Cavity is tuned to upper sideband. Next
turn the bunch traverses it in the situation
‘A", t = T.(k + 1/4) with a velocity in
—a-direction and gets by B, a force in
+2-direction which damps the oscillation.
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~ x ~
~ ~
~ \\
\\ (T 3 \\
e e \\/\//
-~ B > )

Fractional tune ¢ = 1/4, use w = wy(p + q).

OF 10F
E, = 5% cos(wt) : B, = o sin(wt)
t="T,/2 t = 3T, /4

B) Cavity is tuned to lower sideband. The
bunch traverses it next turn in situation 'B’,

= T.(k'+3/4) = T.(K'+ 1 — 1/4) with
negatlve velocity and a force in same direc-
tion increasing its velocity, giving instability.



Transverse instability for () = 0

The resistive impedance at the upper side-
band damps, the one at the lower sideband
excites the oscillation. |f we have a more gen-
eral impedance extending over several side-
bands wy(p+¢q) and wy(p— q) we expect that
the growth or damping rate of the oscillation
is given by an expression of the form

g = 72 o L (Zr(wps) — L Zry(wy-))
with w,1 = wy (p £ q) where I, is the Fourier
component of the beam current at pwy. It
appears here as the square Ig since the insta-
bility is driven by the energy transfer from the
longitudinal to the transverse motion.

We have again Robinson-type instability

which has been generalized by F. Sacherer.

cas06-44, Hofmann

The transverse instability is more complicated
for finite chromaticity Q' ## 0. A particle ex-
ecutes a betatron and a synchrotron (energy)
oscillation. In going from head to tail it has
an energy deviation which changes the beta-
tron phase due to the chromaticity. This can
give a so-called head-tail instability.




9) ILLUSTRATION OF COHERENT AND INCOHERENT MOTION
This difference is difficult to imagine but can
be illustrated by a simple set of swings hav-
ing different length and therefore different fre-
quencies. If the frame is stiff any coherent os-
cillation will decay quickly. However, a flexi-
ble frame can create a difference between co-
herent and incoherent frequency and couple
the individual swings together. This can dis-
turb a stabilization, called Landau damping,
where a coherent (center-of-mass) motion de-
cays due to a spread of frequencies.
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