Computational Methods in Accelerator Physics

An introduction

Werner Herr CERN, AB Department

(http://cern.ch/Werner.Herr/talks/zakopane_comp1.pdf)

Why do we need computations and simulations?

- To explore new fields
- To answer scientific or technical questions
- To make design choices

People did that in the past without computers, but:

Why do we need computations and simulations?

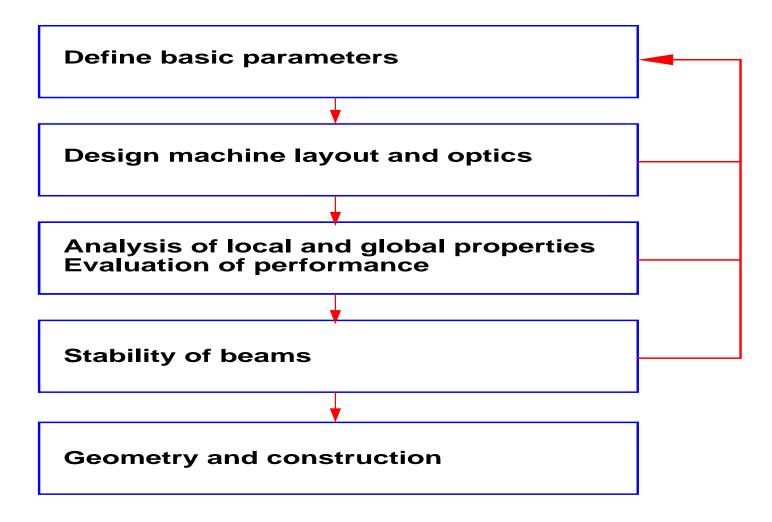
- Early days of accelerators:
 - Mainly for nuclear and particle physics
 - Design and operation by trial and error
- Nowadays:
 - Larger equipment, more people, more money
 - Many more applications
 - Safety issues
 - Complex control and operation

Where are computational methods needed?

- Studies of Beam Dynamics
 - Design and simulation of an accelerator
 - Control and operation
- Design of accelerator equipment

 - Magnets, RF cavities ...
 Vacuum components, cryogenics /

Steps of accelerator design



Accelerator physics program needed

- Initial parameter calculation
- Optics design program
- Single particle dynamics modelling
- Multi particle dynamics modelling
- Geometry
- Probably several programs needed
- → Have to understand what they are doing (algorithms and technicalities)

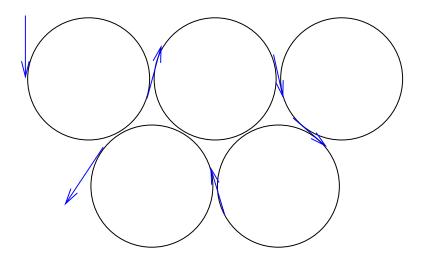
Accelerator design with an optics program

- It needs: Description of machine in standard format
- It does: Optics calculations
 - → Linear and non-linear optics computations
 - → Linear corrections
 - → Non-linear and chromatic corrections
- Parameter matching

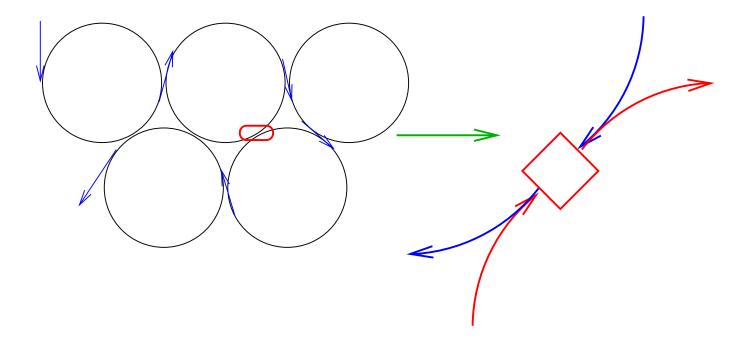
Not like:

$$\frac{d^2x}{ds^2} + K(s) x = 0$$

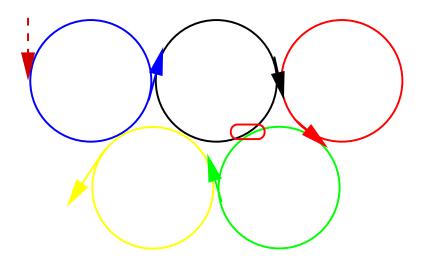
- The challenge:
 - Describe a machine with several thousand elements
 - → Describe a complicated structure



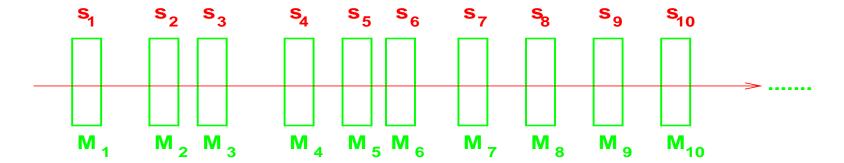
- Additional complications:
 - **Common elements**



- Additional complications:
 - Common elements
 - Changing energy

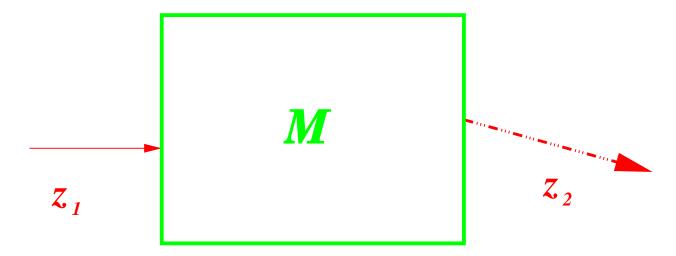


- → Bending and focusing is (in general) not a continuous function of s
- → A computer sees it like a particle sees it!
- \rightarrow A (finite) sequence of machine elements \mathcal{M} at longitudinal positions $s_1, s_2, s_3, ...$:



How does an element look like to a computer?

Each element \mathcal{M} acts on the beam locally in a deterministic way

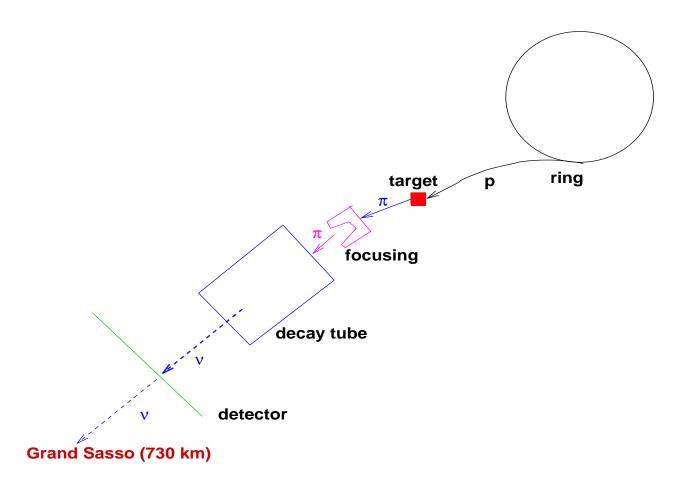


- In general: $\vec{z_2} \neq \vec{z_1}$
- → This sounds rather abstract, but:

What is \mathcal{M} ? It can represent:

- Single machine elements:
 - magnet: dipole, quadrupole
 - RF cavity
- Single machine elements (not only magnets):
 - collimators, targets, obstacles
 - vacuum chamber
 - **drift**
 - •••••
- Important to integrate in the design!

Example (CNGS)



Example (collimation systems)

- needed to control beam size and for protection
- may constrain the optics and layout
- when particles hit a collimator:
 - → what happens to them ?
 - → where do they go?
 - → can they damage the machine?

The map \mathcal{M} can also represent:

Several machine elements combined, (i.e. part of a ring made of m elements: \mathcal{M}_{part})

$$\mathcal{M}_{part} = \dots \circ \mathcal{M}_l \circ \dots \circ \mathcal{M}_{l+m}$$

The whole machine (e.g. complete turn in a ring with N elements, \mathcal{M}_{ring})

$$\mathcal{M}_{ring} = \mathcal{M}_1 \circ \mathcal{M}_2 \circ \dots \circ \mathcal{M}_N$$

Many turns in a ring $(M = \mathcal{M}_{ring}^n)$

How is an element described to a computer?

- Let $\vec{z_1}, \vec{z_2}$ describe a quantity (coordinates, beam sizes ...) before and after the element
- Take an machine element (e.g. magnet) and build a mathematical object \mathcal{M} for this quantity
 - \rightarrow \mathcal{M} describes the element in terms of this quantity
 - ightharpoonup In general: $\vec{z_2} = \mathcal{M} \circ \vec{z_1}$
 - $\rightarrow \mathcal{M}$ is a so-called MAP
- The complete sequence of MAPS connects the pieces together to make a ring (or beam line)

MAPS transform coordinates through an element

- 4 coordinates needed for 2 dimensions (off-momentum effects ignored)
- Coordinate vector: $\vec{z} = (x, x' = \frac{\delta x}{\delta s}, y, y' = \frac{\delta y}{\delta s})$
- \mathcal{M} transforms the coordinates $\vec{z_1}(s_1)$ at position s_1 to new coordinates $\vec{z_2}(s_2)$ at position s_2 :

$$\vec{z_2}(s_2) = \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_2} = \mathcal{M} \circ \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_1} = \mathcal{M} \circ \vec{z_1}(s_1)$$

... or OPTICAL functions

6 optical functions used for 2 dimensions:

$$\vec{\nu_2}(s_2) = \begin{pmatrix} \beta_x \\ \alpha_x \\ \gamma_x \\ \beta_y \\ \alpha_y \\ \gamma_y \end{pmatrix}_{s_2} = \mathcal{M} \quad \circ \quad \begin{pmatrix} \beta_x \\ \alpha_x \\ \gamma_x \\ \gamma_x \\ \beta_y \\ \alpha_y \\ \gamma_y \end{pmatrix}_{s_1} = \mathcal{M} \quad \circ \quad \vec{\nu_1}(s_1)$$

How does \mathcal{M} look like?

The map \mathcal{M} describes local properties of a machine element and can be:

- A simple linear matrix or transformation
- High order integration algorithm
- Derived from local Hamiltonian
- A computer program, subroutine etc.
- Any "description" to go from $\vec{z_1}$ to $\vec{z_2}$
- Can in principle be VERY abstract!

Simple examples (linear, one dimensional) (Matrix formulation for linear* elements)

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \circ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1}$$

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11}^2 & -2m_{11}m_{12} & m_{12}^2 \\ -m_{11}m_{21} & m_{11}m_{22} + m_{12}m_{21} & -m_{12}m_{22} \\ m_{21}^2 & -2m_{21}m_{22} & m_{22}^2 \end{pmatrix} \circ \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_1}$$

- → The maps become so-called transport matrices
- * The changes depend on x or x' only

(Interlude I: Σ -matrix)

The transformation of the optical functions can also be written using the Σ -matrix formalism:

$$\Sigma_{s_2} = \mathcal{M} \circ \Sigma_{s_1} \circ \mathcal{M}^{\mathcal{T}}$$

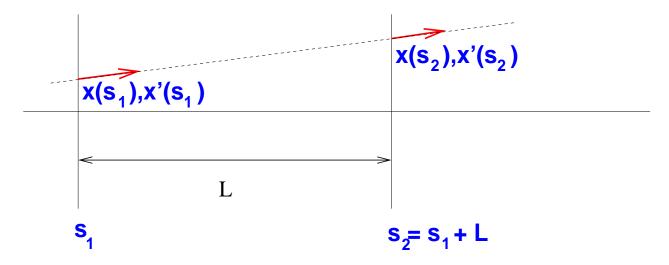
i.e. for example in the linear case:

$$\begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \circ \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}_{s_1} \circ \begin{pmatrix} m_{11} & m_{21} \\ m_{12} & m_{22} \end{pmatrix}$$

- → Allows formal extension to higher order effects (e.g. synchrotron radiation)
- Prove that it is equivalent to previous formula

Transformation of coordinates (one dimension)

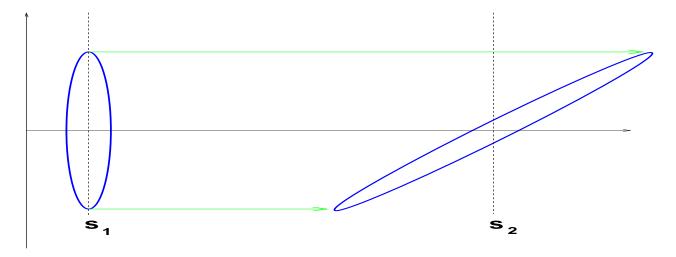
Drift space of length $L = s_2 - s_1$:



$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_2} = \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1} + \begin{pmatrix} x' \cdot L \\ 0 \end{pmatrix}_{s_1} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \circ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1}$$

Transformation of beam ellipse

Drift space of length $L = s_2 - s_1$:



$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_2} = \begin{pmatrix} 1 & -2L & L^2 \\ 0 & 1 & -L \\ 0 & 0 & 1 \end{pmatrix} \circ \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_1} = \begin{pmatrix} \beta_0 - 2L\alpha_0 + L^2\gamma_0 \\ \alpha_0 - L\gamma_0 \\ \gamma_0 \end{pmatrix}_{s_2}$$

Simple examples (one dimensional)

Focusing quadrupole of length L and strength K:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_2} = \begin{pmatrix} \cos(L \cdot K) & \frac{1}{K} \cdot \sin(L \cdot K) \\ K \cdot \sin(L \cdot K) & \cos(L \cdot K) \end{pmatrix} \circ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1}$$

Quadrupole with short length L (i.e.: $1 \gg L^2 \cdot K^2$)

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_2} = \begin{pmatrix} 1 & 0 \\ K^2 \cdot L(=-\frac{1}{f}) & 1 \end{pmatrix} \circ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1}$$

Initial steps for optics calculation

- The optics program reads the sequence of elements of a machine (their order, their positions ..)
- It reads properties of the elements, i.e. type (dipole, quadrupole, drift ...)
- It reads strength of the elements
- It sets up the maps (matrices)
- → A "standard" for the input language exists, plus converters (do not forget this issue!)

Simplest machine description (MADX format)

```
// description of elements and their strengths
// dipoles and quadrupoles only ...
  mb: dipole, 1=6.0, angle=0.03570;
  qf: quadrupole, 1=3.0, k1= 0.013426;
  qd: quadrupole, 1=3.0, k1=-0.013426;
// centre position of elements in the ring
  start:
            at=0:
  qf.1: qf, at=1.5000e+00;
  mb: mb, at=9.0000e+00;
  mb: mb, at=1.9000e+01;
  qd.1: qd, at=2.6500e+01;
  mb: mb, at=3.4000e+01;
  mb: mb, at=4.4000e+01;
  qf.2: qf, at=5.1500e+01;
            at=2.2000e+03;
  end:
```

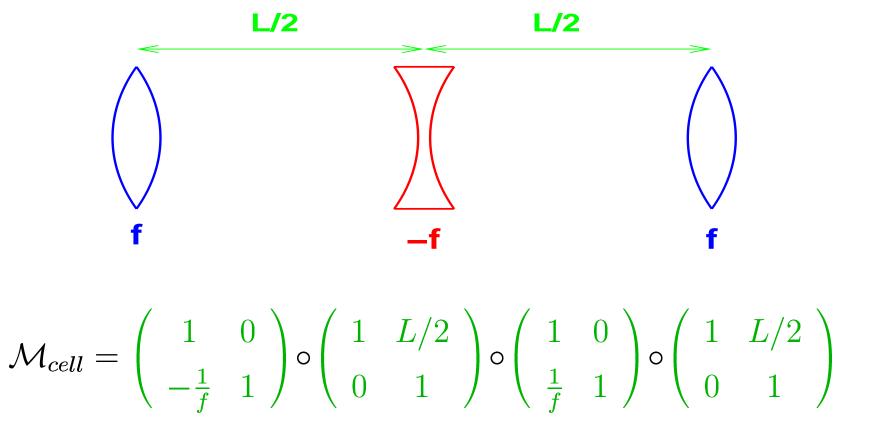
Putting the "pieces" together

Starting from a position s_0 and applying all maps (for N elements) in sequence around a ring with circumference C to get the One-Turn-Map (OTM) for the position s_0 (for one dimension only):

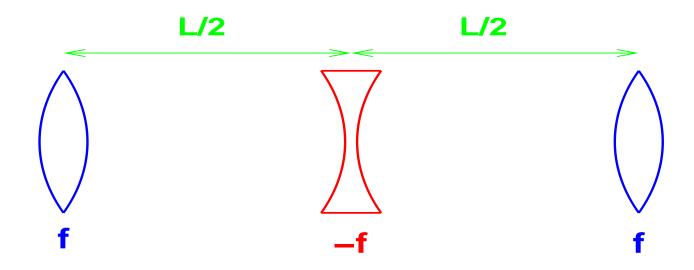
$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_0 + C} = \mathcal{M}_1 \circ \mathcal{M}_2 \circ \dots \circ \mathcal{M}_N \circ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

$$\Longrightarrow \left(\begin{array}{c} x \\ x' \end{array}\right)_{s_0 + C} = \mathcal{M}_{ring}(s_0) \quad \circ \quad \left(\begin{array}{c} x \\ x' \end{array}\right)_{s_0}$$

Composition of elements (FODO cell) (here: simple matrix multiplications)



Composition of elements (FODO cell) (here: simple matrix multiplications)



$$\mathcal{M}_{cell} = \begin{pmatrix} 1 + \frac{L}{2f} & L + \frac{L^2}{4f} \\ -\frac{L}{2f^2} & 1 - \frac{L}{2f} - \frac{L^2}{4f^2} \end{pmatrix}$$

What can we do with \mathcal{M}_{ring} ?

- The map \mathcal{M}_{ring} is extremely important:
 - It describes the global behaviour
 - A computer does not know Hill's equation
 - Courant-Snyder ansatz (formalism) assumes motion is linearly stable, periodic, confined, and has a closed orbit.
 - The OTM \mathcal{M}_{ring} contains all information about global behaviour in the ring, i.e. stability, tune, β , closed orbit etc.
- No need for assumptions

What else can we do with \mathcal{M}_{ring} ?

- \mathcal{M}_{ring} or \mathcal{M}_{part} allow the analysis of imperfections (and their correction !)
- "Straightforward" to formally extend it to complicated (e.g. non-linear) problems additional tools and concepts needed (invariants, fixpoints, normal forms etc.)

(Interlude II: Fixed Points)

Certain points in phase space $\vec{z_1}$ repeat itself after n completed turns

$$\mathcal{M}_{ring}^{\mathbf{n}} \circ \vec{z_1} = \vec{z_2} \equiv \vec{z_1}$$

- Defines a Fixed Point of order n
- → Fixed Point of order 1 is the closed orbit
- → Stability requires existence of such a fixed point
- Closed orbit is found (or not!) in optics programs by searching for the first order fixed point

Analysis of the results

- If all maps are matrices (i.e. only linear elements)
- Usually the case for initial design
- → The One-Turn-Map is a MATRIX:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_0 + C} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \circ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

After all multiplications we get the One-Turn-Matrix which depends on the starting point s_0 .

Find the tune Q

We can find the tune Q from the One-Turn-Matrix $\mathcal{M}_{ring}(s_0)$ by computing the eigenvalues of $\mathcal{M}_{ring}(s_0)$:

$$\det(\mathcal{M}_{ring}(s_0) - \lambda) = 0$$

gives

$$\lambda = \cos(2\pi Q) \pm i \cdot \sin(2\pi Q)$$

(verify with the One-Turn-Matrix you know from previous lecture!)

The analysis of the results

What else can we do with the One-Turn-Matrix?

We can express the One-Turn-Matrix $\mathcal{M}_{ring}(s_0)$ in terms of Courant-Snyder parameters:

We know that $\mathcal{M}_{ring}(s_0)$ for one dimension must be:

$$\mathcal{M}_{ring}(s_0) \equiv \begin{pmatrix} \cos \mu + \alpha(s_0) \sin \mu & \beta(s_0) \sin \mu \\ -\gamma(s_0) \sin \mu & \cos \mu - \alpha(s_0) \sin \mu \end{pmatrix}$$

and we also know that (for a ring):

$$\alpha(s_0+C) \equiv \alpha(s_0), \quad \beta(s_0+C) \equiv \beta(s_0), \quad \gamma(s_0+C) \equiv \gamma(s_0)$$

The analysis of the results

Comparison of:

$$\left(egin{array}{ccc} m_{11} & m_{12} \ m_{21} & m_{22} \end{array}
ight) = \mathcal{M}_1 \quad \circ \quad \mathcal{M}_2 \quad \circ \quad ... \quad \circ \quad \mathcal{M}_N$$

and:

$$\mathcal{M}_{ring}(s_0) = \begin{pmatrix} \cos \mu + \alpha(s_0) \sin \mu & \beta(s_0) \sin \mu \\ -\gamma(s_0) \sin \mu & \cos \mu - \alpha(s_0) \sin \mu \end{pmatrix}$$

gives optical functions at position s_0 :

- \rightarrow $\beta(s_0), \quad \alpha(s_0), \quad \gamma(s_0)$ (depend on position s_0)
- \rightarrow μ is independent of s_0 : $(2\pi Q)$

We have now:

- **Values for** β_x , β_y , α_x , ... etc. at the position s_0
- Tunes for both planes, closed orbit

The next step:

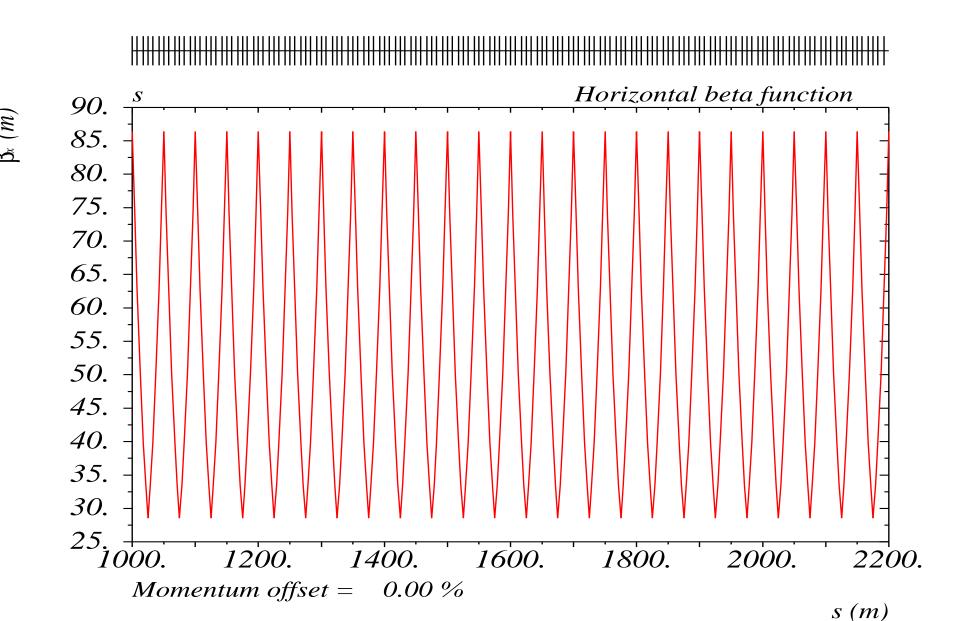
- Starting from initial optical (Twiss) functions at s_0 , transforming β_x , β_y , α_x , ... through the lattice gives functions at all positions s.
- Question: what are the β -functions etc. of a linear accelerator or a beam line ???

Computation of optical functions around the ring

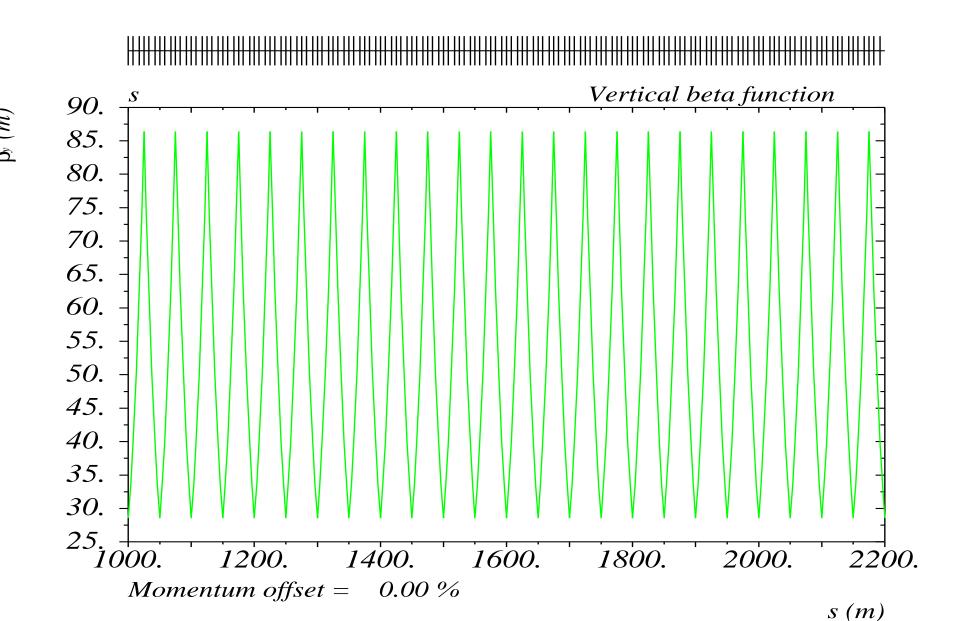
$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s} = \begin{pmatrix} m_{11}^{2} & -2m_{11}m_{12} & m_{12}^{2} \\ -m_{11}m_{21} & m_{11}m_{22} + m_{12}m_{21} & -m_{12}m_{22} \\ m_{21}^{2} & -2m_{21}m_{22} & m_{22}^{2} \end{pmatrix} \circ \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_{0}}$$

Successive application of matrices give Twiss functions at each element around the ring and at each position $s \rightarrow$

Optical functions (horizontal β):



Optical functions (vertical β):



Extension to two dimensions

- Can be written as separate equations, or:
- Extend vectors for coordinates or optical parameters
- Extend transfer maps/matrices

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11} & m_{12} & 0 & 0 \\ m_{21} & m_{22} & 0 & 0 \\ 0 & 0 & m_{33} & m_{34} \\ 0 & 0 & m_{43} & m_{44} \end{pmatrix} \circ \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_1}$$

Extension to two dimensions (coupling)

- The horizontal and vertical motion can be coupled:
- → Additional elements in matrix

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} \circ \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_1}$$

Off momentum effects

Introduces longitudinal motion and off momentum trajectories

Strength k of element modified by non-zero $\frac{\Delta p}{p}$:

$$k \Longrightarrow k/(1 + \frac{\Delta p}{p})$$

- Closed orbit and tune are usually different for non-zero $\frac{\Delta p}{p}$
- Dispersion
- Chromatic effects

Going to three dimensions

- Formally extended by adding two new variables:
 - $\Delta s = c\Delta t$: longitudinal displacement with respect to reference particle
 - $ightharpoonup^{\frac{\Delta p}{p}}$: relative momentum difference with respect to reference particle

$$\begin{pmatrix} x \\ x' \\ y \\ y' \\ c\Delta t \\ \frac{\Delta p}{p} \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} \\ m_{32} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} \\ m_{42} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} \\ m_{32} & m_{32} & m_{33} & m_{34} & m_{55} & m_{56} \\ m_{62} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \\ c\Delta t \\ \frac{\Delta p}{p} \end{pmatrix}_{s_1}$$

(Interlude III: Symplecticity)

- Not all possible maps are allowed!
- Requires for a matrix $\mathcal{M} \longrightarrow \mathcal{M}^T \cdot S \cdot \mathcal{M} = \mathcal{S}$ with:

$$S = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 \ \end{array}
ight)$$

 \blacksquare It basically means: \mathcal{M} is area preserving and

$$\lim_{n\to\infty} \mathcal{M}^n = \text{finite}$$

Introducing non-linear elements

Effect of a (short) quadrupole depends linearly on amplitude (re-written from the matrix form):

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_2} = \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_1} + \begin{pmatrix} 0 \\ k_1 \cdot x_{s_1} \\ 0 \\ k_1 \cdot y_{s_1} \end{pmatrix}$$

- $\rightarrow \vec{z}(s_2) = \mathbf{M} \cdot \vec{z}(s_1)$
- → M is a matrix

Non-linear elements (e.g. sextupole)

Effect of a (thin) sextupole with strength k_2 is:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_2} = \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{s_1} + \begin{pmatrix} 0 \\ k_2 \cdot (x_{s_1} \cdot y_{s_1}) \\ 0 \\ \frac{1}{2}k_2 \cdot (x_{s_1}^2 - y_{s_1}^2) \end{pmatrix}$$

- \rightarrow $\vec{z}(s_2) = \mathcal{M} \circ \vec{z}(s_1)$
- $\rightarrow \mathcal{M}$ is not a matrix, i.e. cannot be expressed by matrix multiplication

Non-linear elements

Cannot be written in linear matrix form! We need something like:

$$x = R_{11} \cdot x + R_{12} \cdot x' + R_{13} \cdot y + \dots$$

$$+ T_{111} \cdot x^{2} + T_{112} \cdot xx' + T_{122} \cdot x'^{2} +$$

$$+ T_{113} \cdot xy + T_{114} \cdot xy' + \dots$$

$$+ U_{1111} \cdot x^{3} + U_{1112} \cdot x^{2}x' + \dots$$

and the equivalent for all other variables ...

Higher order MAPS:

Definition of a second order map A_2 (Taylor expansion):

Let's call it:
$$A_2 = [R, T]$$
, defined as (for: j = 1...4):

$$z_j(s_2) = \sum_{k=1}^4 R_{jk} z_k(s_1) + \sum_{k=1}^4 \sum_{l=1}^4 T_{jkl} z_k(s_1) z_l(s_1)$$

Higher orders can be defined as needed ...

$$\mathcal{A}_3 = [R, T, U] \implies + \sum_{k=1}^{4} \sum_{l=1}^{4} \sum_{m=1}^{4} U_{jklm} z_k(s_1) z_l(s_1) z_m(s_1)$$

Second order MAPS composition:

Assume now 2 maps of second order:

$$\mathcal{A}_2 = [R^A, T^A]$$
 and $\mathcal{B}_2 = [R^B, T^B]$

the combined second order map

$$\mathcal{C}_2 = \mathcal{A}_2 \circ \mathcal{B}_2$$
 is $\mathcal{C}_2 = [R^C, T^C]$ with: $R^C = R^A \cdot R^B$

and (after truncation of higher order terms !!):

$$T_{ijk}^{C} = \sum_{l=1}^{4} R_{il}^{B} T_{ljk}^{A} + \sum_{l=1}^{4} \sum_{m=1}^{4} T_{ilm}^{B} R_{lj}^{A} R_{mk}^{A}$$

Symplecticity for higher order MAPS

- Truncated Taylor expansions are not matrices !!
- It is the associated Jacobian matrix \mathcal{J} which must fulfil the symplecticity condition:

$$\mathcal{J}_{ik} = \frac{\delta z_2^i}{\delta z_1^k}$$

 \mathcal{J} must fulfil: $\mathcal{J}^t \cdot S \cdot \mathcal{J} = \mathcal{S}$

In general: $\mathcal{J}_{ik} \neq \text{const} \longrightarrow \text{for truncated}$ Taylor map can be difficult to fulfil for all z

(Interlude IV: Other higher order MAPS)

There are other types of higher order maps:

- Lie transformations (always symplectic for any order, ideal for tracking, easy to analyse)
- Symplectic or canonical integration algorithms
- whatever ...
- →Intermediate level school ...!

Matching optical functions

- Modify machine optics to get desired properties around the machine or in specific places
- For example you may want special conditions
 - for equipment: RF, collimators, diagnostics
 - for experiments: in colliding beam machines
- Algorithms to adjust parameters and layout
- → This process is called MATCHING!
- → Available in most optics programs (for lines and circular machines)

Matching optical functions

In general: $\vec{\nu}(\beta_x(s), \alpha_x(s)...) = f(\mathcal{M}_1, \mathcal{M}_2, ... \mathcal{M}_n)$ optical functions depend on all maps, i.e. strengths and layout.

- Matching can change all parameters (strengths, positions ...)
- Additional constraints may be:
 - Tunes, chromaticities
 - Hardware parameters
 - \bullet $\hat{\beta_x}$, etc.

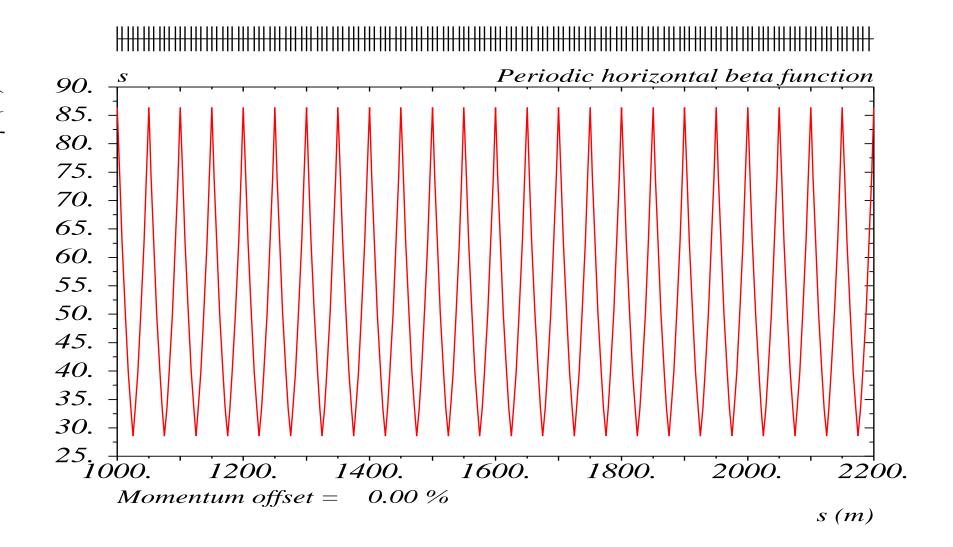
Example: matching of tunes Q (MAD language)

```
match;
  vary,name=kqf, step=0.00001;
  vary,name=kqd, step=0.00001;
  global,QX=7.420;
  global,QY=7.380;
endmatch;
```

- The strengths of main quadrupoles are varied
- Computes the new strengths

Local adjustment of optical functions

Small β_x needed for an experiment



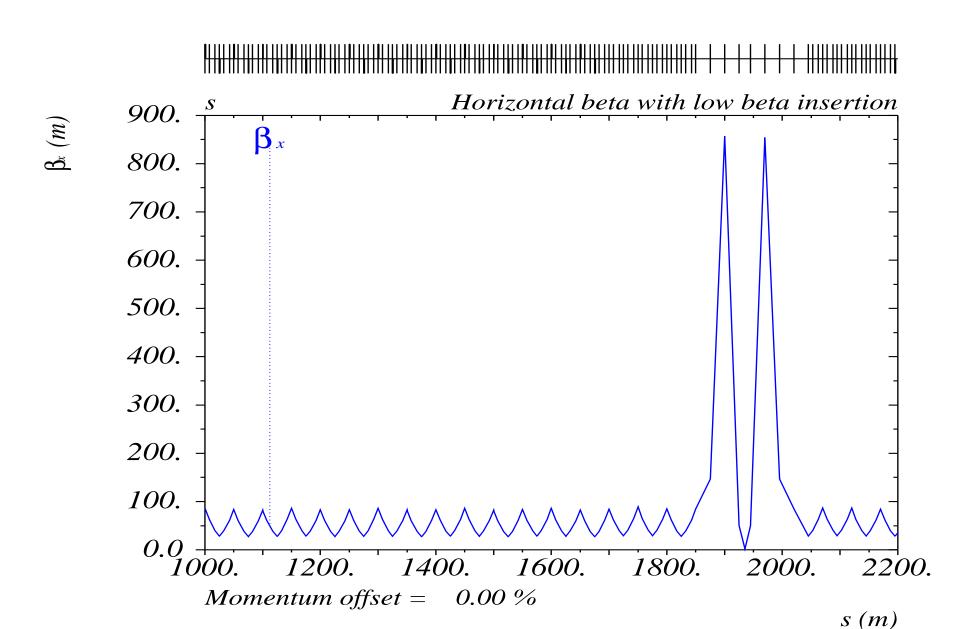
Example: matching of β -functions (MAD language - simplified !)

Allow a few quadrupoles to be changed

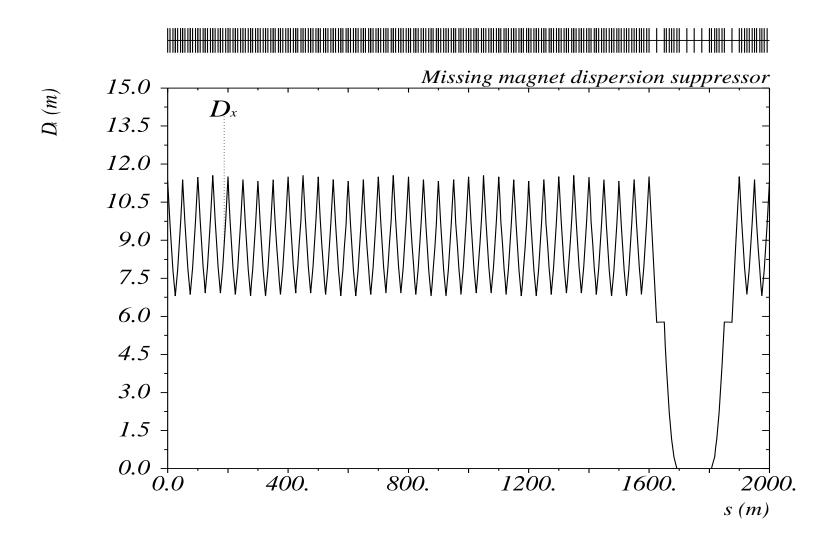
```
match;
  vary,name=kq1.l, step=0.00001;
  vary,name=kq2.l, step=0.00001;
  vary,name=kq3.l, step=0.00001;
  vary,name=kq4.l, step=0.00001;
  constraint,place=IP,betx= 2.0, alfx=0.0;
endmatch;
```

The strengths of a small number of additional quadrupoles are varied

Optical functions (reduced β -function)



Optical functions (reduced dispersion)



General purpose optics programs

- Always allow to:
 - Compute optical parameters (Twiss functions)
 - Match the required properties
- **But also:**
 - Simulate machine imperfections
 - Correct imperfections

Popular Optics Programs

- BeamOptics (based on Mathematica)
- TURTLE (Beam lines)
- WINAGILE (WINDOWS, interactive, originally for teaching)
- TRANSPORT (General purpose, third-order matrix)
- **DIMAD** (Second-order matrix, tracking)
- TEAPOT (General purpose, thin element approximation)

Popular Optics Programs (cont.)

- COSY (Multi purpose, high order maps, differential algebra)
- SYNCH (General purpose)
- MAD (versions: 8,9,X) (Multi purpose optics and tracking)
- SAD (Multi purpose optics and tracking)
- MARYLIE (Lie algebra, tracking)
- PTC (MAP based, object oriented, exact!)
- MADX-PTC (combined MADX-PTC)

Which Optics Program should I use?

Very application dependent, you have:

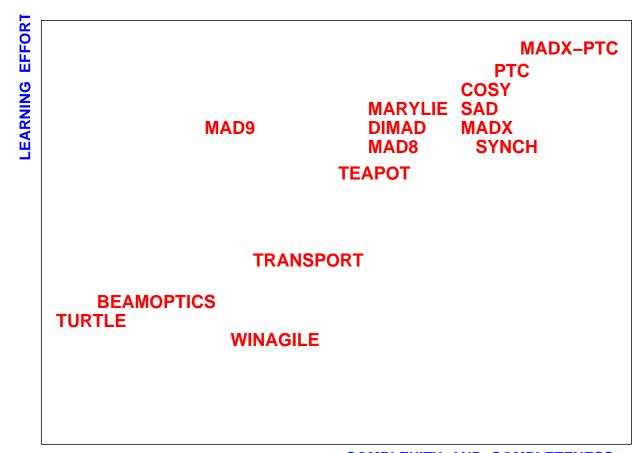
- Beam line
- → Large ring
- → Small ring
- Large momentum offset or changing momentum (e.g. FFAG, acceleration)
- Linear accelerator
- Unconventional geometry
- Collider (one or more rings/lines)

Which Optics Program should I use?

Very application dependent, you want to do:

- Design linear optics
- Linear optical matching
- → Introduce and correct imperfections
- Non-linear optical matching
- Particle tracking
- Evaluate the dynamic aperture
- Study collective effects

"Comparison" of some programs



COMPLEXITY AND COMPLETENESS

→ Very difficult to quantify, Strongly biased

(Interlude V: Course on optics design)

- → Intermediate level CAS 2005 (and 2007) offers a course on optics design
 - Purpose is to develop a realistic accelerator optics
 - Includes correction elements, optical matching, dispersion suppressors ...
 - MAD is used for practical implementation
- → The course is available on CD-ROM (on request) or from the web

Simulation of an accelerator

- Purpose is to imitate the behaviour of a particle or a beam in an accelerator
- Use local properties of the machine element to describe its interaction with a particle
- The aim is to derive the global behaviour
 - Stability
 - Lifetime
 - ••••

Evaluation by simulation (1)

- Single particle behaviour
- Usually concerns long term behaviour such as beam loss
- The effect of the accelerator components on a single particle
 - → Non-linear elements
 - → Machine imperfections (e.g. field errors)
 - → External distortions (e.g. scattering)

Evaluation by simulation (2)

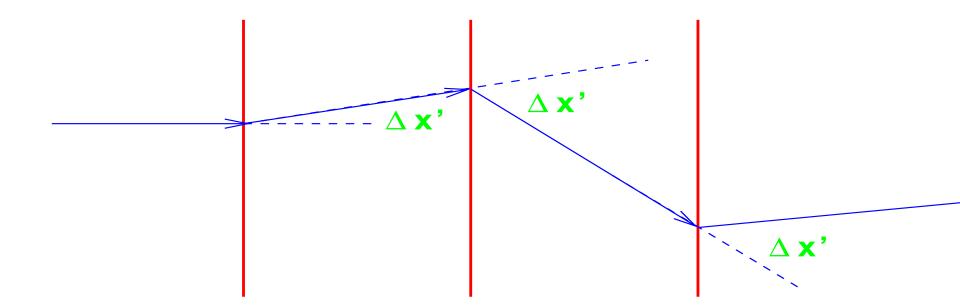
- Multi particle behaviour
- Usually concerns collective behaviour: coherent motion, emittance increase, damping etc.
 - The effect of the accelerator components on an ensemble of particles (e.g. impedances)
 - → Interactions of particles between each other. These are usually dictated by the properties of the accelerator (e.g. space charge, beam-beam effects ...)

Single particle tracking

- → The motion of a test particle through the elements of a machine is simulated for a defined number of turns → "tracking"
- Use appropriate coordinates, start with $\vec{z_0}$.
- In each element (or part of the machine), the coordinates are transformed by $\vec{z_{n+1}} = \mathcal{M} \circ \vec{z_n}$
- \mathcal{M} must be symplectic
- We must distinguish thick and thin elements

Tracking through thin elements

- Thin "magnet": let the length go to zero, but keep field integral finite (constant)
- No change of amplitudes x and y
- $\rightarrow x \rightarrow x \text{ and } y \rightarrow y$
- The momenta x' and y' receive an amplitude dependent deflection (kick)
- \rightarrow $x' \rightarrow x' + \Delta x'$ and $y' \rightarrow y' + \Delta y'$



- No change of amplitudes x and y
- The momenta x' and y' receive an amplitude dependent deflection (kick)
- \rightarrow $x' \rightarrow x' + \Delta x'$ and $y' \rightarrow y' + \Delta y'$

Tracking through thin elements

- So-called kick-codes (thin lens tracking)
- Always symplectic! (homework)
- Kick can be non-linear
- Usually rather fast on computers
- → A "thick" element can be sliced into several thin elements

Analysis tools

- Fourier analysis, diffusion coefficients, chaos detection ...
- Phase space plots (simple example):
 - Start with a "particle" with initial coordinates x and x' at a position s_0
 - Pass through the One-Turn-Map (for position s_0 !)
 - Plot the new x and x' coordinates at position s_0 after every turn

A simple example

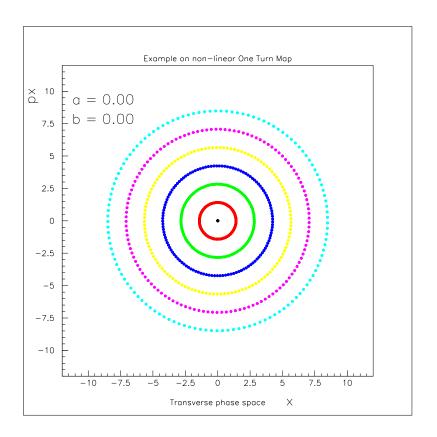
Linear transformation plus a constant deflection (i.e. orbit kick from displaced quadrupole)

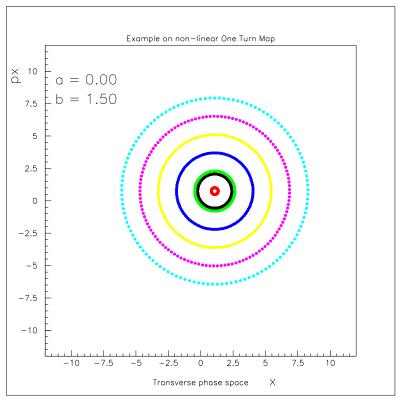
$$\begin{pmatrix} x \\ x' \end{pmatrix}_{n+1} = \begin{pmatrix} \cos(\mu) & \sin(\mu) \\ -\sin(\mu) & \cos(\mu) \end{pmatrix}_{s_0} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_n + \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$\mu = 2\pi \mathbf{Q}_x = 2\pi \cdot \mathbf{0.19},$$
 constant b is a free parameter

→ Find the fixed point(s) (closed orbit)

A simple example ..





Start at different amplitudes and "observe" x and x' at position s_0

A (still) simple example

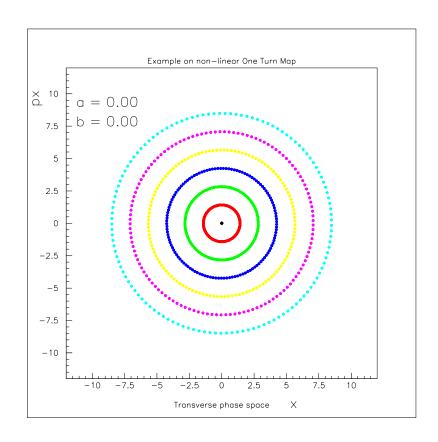
Linear transformation plus a quadratic non-linearity (e.g. (thin) sextupole) plus a constant deflection

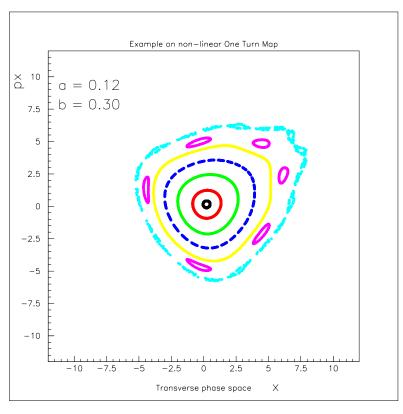
$$\begin{pmatrix} x \\ x' \end{pmatrix}_{n+1} = \begin{pmatrix} \cos(\mu) & \sin(\mu) \\ -\sin(\mu) & \cos(\mu) \end{pmatrix}_{s_0} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_n + \begin{pmatrix} 0 \\ ax^2 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix}$$

 $\mu = 2\pi \mathbf{Q}_x = 2\pi \cdot \mathbf{0.19},$ constants a and b are free parameters

→ Find the fixed points (how many do you see ?)

A (still) simple example ..





- Motion at different amplitudes distorted
- Stability region reduced by non-linear effect

Tracking through thick elements

- Real magnets are NOT thin!
- Consequence: they are not always linear elements (also not dipoles, quadrupoles ..)
- Especially important for "small" machines (e.g. large deflections, fringe fields etc.)
- Constructing a MAP for a thick element is more involved

MAPS for thick elements

- Non-linear, i.e. not matrices (even for quadrupoles)
- Need integration of equation of motion
- Special techniques have been developped, some keywords:
 - Lie transforms
 - Symplectic integration
 - Differential Algebra ...
- In the end: we get again a One-Turn-Map

Single particle dynamics in a nutshell

- Try to compute a (one turn) MAP
- It contains everything
- Its analysis will tell you what you need to know
- It doesn't matter how you got it!
- Use the Lorentz force (or equivalent) for the construction of maps (no need to "apply" accelerator physics concepts!)

You can derive:

- Tunes (we already did)
- Betatron functions (we already did)
- Stability borders, dynamic aperture
- Detuning with amplitudes
- Fixpoints, closed orbit, resonance strength
- ... and much more!

You do not get:

- Rules of thumb for simple calculations
- "Handy" formulae
- Scaling laws for estimates (indirectly)

Complications: light particles

- Light particles (e⁻, e⁺ etc.) emit synchrotron radiation and motion is damped
 - → Stochastic component
 - → No symplecticity, no invariants (but equilibrium parameters, e.g. emittance)
- Synchrotron motion must be simulated
- Computation of damping properties

Single particle tracking codes

- Most optics programs can perform single particle tracking
- Some specialized programs exist (e.g. SIXTRACK)
- Some codes have analysis tools (normal forms, chaos detection etc.)

Simulation of multi particle effects

- Often requires the simulation of a beam: simulate many (up to 10⁸) particles simultaneously and study their behaviour:
 - Beam shape (density distribution)
 - Centre of mass motion of all particles
- Must be self-consistent: changes of the beams must be taken into account
- Fields generated by the beam need to be computed

Complications: many particles

- Particles have different amplitudes
- Particles have different tunes
- Particles have different momenta !
- Definition of emittance becomes more complicated

Strategy for multi-particle simulations (1)

- Generate and simulate many particles $(10^4 10^8 \text{ per beam})$ simultaneously
- Every particle interacts with the machine elements individually
- The whole ensemble interacts with the machine elements
- Every particle interacts with other particles!
- Feed back into motion of individual particles

Strategy for multi-particle simulations (2)

- All particles must be treated in parallel
- → For realistic LHC: 10^7 to 10^8 particles to simulate
- \rightarrow Already for storage requires ≈ 10 Gb memory
- → Parallel processing needed for reasonable computing time
- Often requires (intelligent) simplifications

Simulation of interactions with environment

This means: interaction of the individual particles and the whole beam with:

- Machine elements (e.g. magnets, RF, ...)
- Wake fields
- Impedances
- Electron cloud
- Intercepting elements (e.g. collimators, ...)
- → Strategies have changed with fast computers ...

Simulation of interactions with itself

Particles inside a beam interact with other particles from the same beam:

- Space charge effects
- Intra-beam scattering
- Multi-bunch effects

Simulation of interactions with other beams

So-called beam-beam effects

- Other beam acts like a (very) non-linear lens
- Incoherent beam-beam effects (on each individual particle)
- Coherent beam-beam effects (on ensemble of particles)
- → Requires the knowledge of fields generated by the other beam

Matrix formulation (linear models)

- One-Turn-Maps can be written for two bunches or two beams (e.g. 1 and 2)
- → Here only 1 dimension for illustration

$$\begin{pmatrix} x_1 \\ x'_1 \\ x_2 \\ x'_2 \end{pmatrix}_{n+1} = \begin{pmatrix} m_{11} & m_{12} & 0 & 0 \\ m_{21} & m_{22} & 0 & 0 \\ 0 & 0 & m_{33} & m_{34} \\ 0 & 0 & m_{43} & m_{44} \end{pmatrix} \circ \begin{pmatrix} x_1 \\ x'_1 \\ x_2 \\ x'_2 \end{pmatrix}_n$$

Matrix formulation (linear models)

- One-Turn-Maps can be written for two bunches or two beams (e.g. 1 and 2)
- → Additional elements couple two beams

$$\left(egin{array}{c} x_1 \ x_1' \ x_2 \ x_2' \ \end{array}
ight)_{n+1} = \left(egin{array}{ccccc} m_{11} & m_{12} & m_{13} & m_{14} \ m_{21} & m_{22} & m_{23} & m_{24} \ m_{31} & m_{32} & m_{33} & m_{34} \ m_{41} & m_{42} & m_{43} & m_{44} \end{array}
ight) \quad \circ \quad \left(egin{array}{c} x_1 \ x_1' \ x_2 \ x_2' \ \end{array}
ight)_n$$

→ Allows computation of eigenmodes, eigenfrequencies of multi bunch systems

Field computation

Some simulations require the computation of fields (or forces) produced by a beam from Poisson equation (here 2-dimensional):

$$\Delta V = -4\pi \cdot \rho(x, y)$$

- \rightarrow The density of the beam is $\rho(x,y)$
- → For simple distributions (Gaussian, uniform ...) can be solved analytically
- → In general (i.e. in the interesting cases!) it is done numerically

Some basic methods

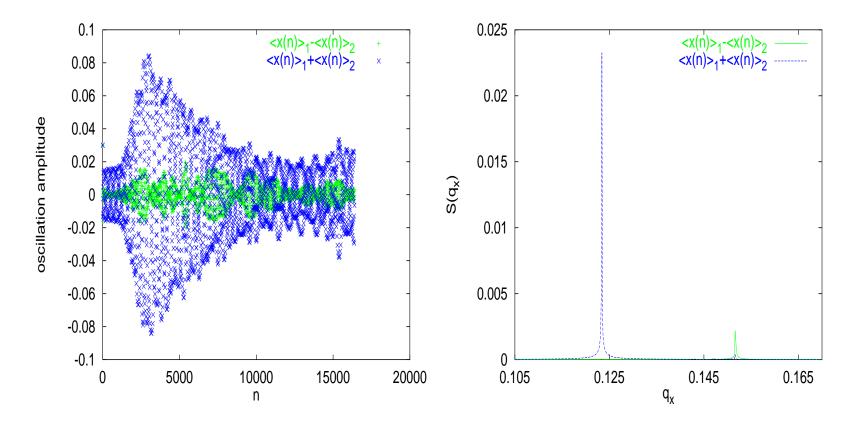
Particle - particle methods: compute field between each particle pair and add up (not practical for large number of particles, sometimes used in celestial mechanics)

Particle - mesh methods: distribute particles on a mesh (grid) and solve the Poisson equation for discrete points

Multipole methods: develope potentials/fields as multipole expansion

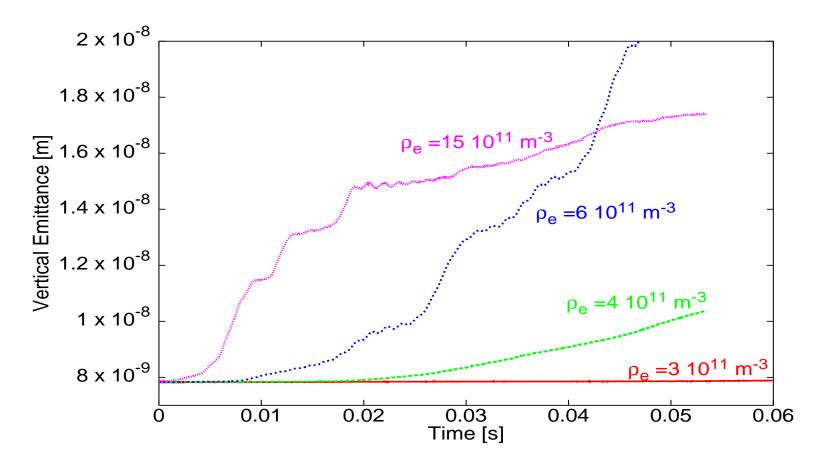
→ Choice depends on application and parameters

Example: Centre of mass motion as function of tim



→ From beam-beam simulations: Bunch oscillations and frequency spectrum

Example: Beam size as function of time

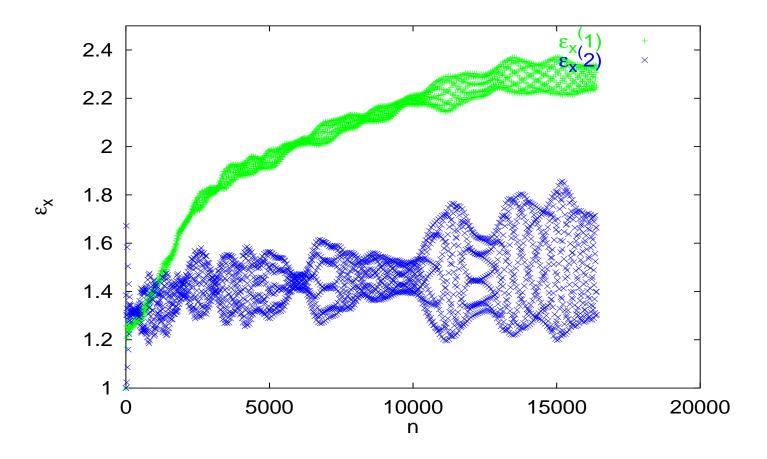


From electron-cloud simulation (courtesy: E. Benedetto)

Alternatives

- Sometimes multi-particle simulations are too time consuming
- Numerical solution of the Vlasov-equation
- → E.g. finite difference methods
- → Intermediate level school

Example: Beam size as function of time



→ Beam-beam simulation: numerical solution of Vlasov equation gives evolution of beam sizes

Multi particle simulation codes

- Many codes exist, always specialized:
 - Collective instabilities
 - → Beam-beam effects
 - Electron cloud effects
 - → etc. ...
- Often compact and linked to optics codes

(Personal) Comments on simulations:

- Here I gave only a selective overview of what can be done
- Techniques and tools in dedicated schools and courses (some in Intermediate CAS Course)
- What can be done has changed a lot in the last decade
- It is easy to write a program !
- Analysis and interpretation is usually the difficult part

What can go wrong?

- Wrong or missing physics in the program
- Numerical problems
- Different results on different computers
- Programming bugs ...
- Biased analysis
- → Be aware of the limitations of the program
- → Make sure it is reproducible

Control and operation

Basic aim: optimize performance

As operator or accelerator physicist:

- Provide and improve model of machine
- Measure and interprete beam parameters
- Correct and control beam parameters
- Conduct machine experiments

Control and operation of an accelerator

Basic problem: measure and control beam parameters

- Control (orbit, chromaticities ..) depend on machine model which may be incomplete
- Feedback from measurements improves the model and simulations
- Should use the same strategies and methods as during design (Remember: matching!)
- → May be an iterative process

Control and operation of an accelerator

- Very similar to simulation or design of a machine except:
 - → Interface to hardware and control (e.g. power converters)
 - → Beam instrumentation!
 - → Communication (networks, etc.)
 - → Issues such as: timing, alarms, interlocks,
- Treated in dedicated workshops and schools