Injection, extraction and transfer

- An accelerator has limited dynamic range.
- Chain of stages needed to reach high energy
- Periodic re-filling of storage rings, like LHC
- External experiments, like CNGS

Transfer lines transport the beam between accelerators, and onto targets, dumps, instruments etc.

LHC: SPS: AD: ISOLDE: PSB: PS: LINAC: LEIR: CNGS:	Large Hadron Collider Super Proton Synchrotron Antiproton Decelerator Isotope Separator Online Device Proton Synchrotron Booster Proton Synchrotron LINear Accelerator Low Energy Ring CERN Neutrino to Gran Sasso
CNGS:	CERN Neutrino to Gran Sasso

Beam Transfer lines

- Distinctions between transfer lines and circular machines
- Linking circular machines
- Trajectory correction
- Emittance and mismatch measurement
- Delivery precision and errors
- Blow-up from betatron mismatch
- Thin screens: blow-up and charge stripping

Normalised phase space

Distinction between Transfer Lines and Circular Machines

Circular Machine

• Periodicity condition for one turn (closed ring) imposes $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$

• This condition *uniquely* determines $\alpha(s)$, $\beta(s)$ and $\mu(s)$ around the whole ring

Circular Machine

- Map the coordinates of a particle on each turn.
 - Periodicity of the structure leads to regular motion
 - At any location in the ring, particle motion over many turns describe an ellipse in phase space, defined by one set of α and β values \Rightarrow Matched Ellipse

Circular Machine

 A beam injected with emittance ε, characterised by a different ellipse (α^{*}, β^{*}) generates (via filamentation) a large ellipse with the original α, β, but larger ε

- No periodic condition exists
- Twiss parameters are propagated from beginning to the end of the line
- At any point in the line, $\alpha(s) \beta(s)$ are functions of $\alpha_1 \beta_1$

Transfer line

- Map single particle coordinates at entrance and exit.
- Infinite number of possible starting ellipses...

...transported to *infinite number* of final ellipses!

Transfer Line

• Initial α , β are defined for a transfer line by the beam shape at the entrance

- Propagation of this beam ellipse depends on the line
- Line optics is different for different input beams!

The Twiss parameters can be propagated when the transfer matrix ${\bf M}$ is known

$$\begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = \mathbf{M}_{1 \to 2} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\beta}_2 \\ \boldsymbol{\alpha}_2 \\ \boldsymbol{\gamma}_2 \end{bmatrix} = \begin{bmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + SC' & -SS'' \\ C'^2 & -2C'S' & S''^2 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\alpha}_1 \\ \boldsymbol{\gamma}_1 \end{bmatrix}$$

- Constraints include
 - Matching the trajectories
 - Minimum bend radius
 - Magnet aperture
 - Cost
 - Geology

- Matching the optics is a non-trivial process
 - Parameters at start of line have to be propagated to matched parameters at the end of the line
 - Need in theory to match 8 variables ($\alpha_x \beta_x D_x D'_x$ and $\alpha_y \beta_y D_y D'_y$)
 - Maximum β and D values are imposed by magnet apertures
 - Other constraints can exist
 - phase conditions for collimators,
 - · insertions for special equipment like stripping foils
- Need to use a number of independently powered quadrupoles

- For long transfer lines we can simplify the problem by designing the line in 3 separate sections
 - Regular central section e.g. FODO with F and D quads at regular spacing, (+ bending dipoles)
 - Initial and final matching sections independently powered quadrupoles, with sometimes irregular spacing.

SPS to LHC transfer line TI 8 – beta functions

Initial matching section

Final matching section

• SPS to LHC transfer line TI 8 – dispersion functions

Initial matching section

Aperture

- Available aperture for the beam depends on:
 - optics (β, D), trajectory O, mechanical and alignment tolerance
 M, magnet aperture A, energy spread Δp/p and emittance ε.
- Can use a general expression to evaluate number of beam σ which can be accommodated (k = factor to allow for optical errors, typically 1.1)

Aperture

- Aperture can be evaluated with optics and physical line description
- Critical areas can be fitted with extra instruments or correctors.

SPS to LHC transfer line TI8

Aperture measurement

- Deflect beam with corrector magnets
- Measure transmission as function of kick

- Magnet misalignments, field and powering errors cause the trajectory to deviate from the design
- Use small independently powered dipole magnets (correctors) to steer the beam.
- Measure the response using monitors (pick-ups) downstream of the corrector ($\pi/2$, $3\pi/2$, ...).
- Separate horizontal and vertical elements.
- H-correctors and pick-ups located at F-quadrupoles (large β_x).
- V-correctors and pick-ups located at D-quadrupoles (large β_y).
- In long lines, not all quadrupoles are equipped...

- Global correction can be used which attempts to minimise the RMS offsets at the BPMs, using all or some of the available corrector magnets.
- Steering in matching sections, extraction and injection region requires particular care
 - D and β functions can be large \rightarrow bigger beam size
 - Often very limited in aperture
 - Injection offsets can be detrimental for performance

- Precise delivery of the beam is important.
 - To avoid injection oscillations and emittance growth in rings
 - For stability on secondary particle production targets
- Express injection error in $\boldsymbol{\sigma}$

- Static effects (e.g. from errors in alignment, field, calibration, ...) are dealt with by trajectory correction (steering).
- But there are also dynamic effects, from:
 - Power supply ripples
 - Temperature variations
 - Non-trapezoidal kicker waveforms
- These dynamic effect produce a variable injection offset which can vary from batch to batch, or even within a batch.
- Important for performance and for transverse damper specification

Measurement with beam of extraction kicker waveform - this example would lead to ±0.5 σ offset for some bunches

- The errors in a line superimpose:
 - for uncorrelated errors the effects can be added quadratically
 - for correlated errors the effects must be added linearly
- Typical patterns of errors can be generated with a Monte-Carlo simulation
- Worst-case errors in families of magnets can be calculated analytically by introducing field errors into the Accelerator design code and calculating the resulting $\Delta a/\sigma$

• Example – power supply ripples in SPS to LHC line TI 8.

Family / element	rms	x	х'	У	у'	Δa _x /σ	Δa _y / _σ
	±∆l/lmax	mm	mrad	mm	mrad		-
Quadrupole MQF	5.0E-05	0.0006	0.0000	0.0001	0.0000	0.004	0.002
Quadrupole MQD	5.0E-05	0.0006	0.0000	0.0001	0.0000	0.004	0.002
Bumper MPLH	2.8E-04	0.0043	-0.0005	0.0000	0.0000	0.022	0.000
Septum MSE	1.3E-04	0.0282	0.0015	0.0000	0.0000	0.130	0.000
Dipole BH1	5.0E-05	0.0096	-0.0010	0.0000	0.0000	0.055	0.000
Dipole BH2	5.0E-05	0.0501	-0.0015	0.0000	0.0000	0.083	0.000
Dipole BH3	5.0E-05	-0.0008	0.0002	0.0000	0.0000	0.014	0.000
Dipole BH4	5.0E-05	-0.0030	-0.0010	0.0000	0.0000	0.088	0.000
Dipole MBI	2.5E-05	-0.0509	0.0013	0.0088	0.0005	0.091	0.035
Dipole BV1	5.0E-05	0.0000	0.0000	-0.0001	0.0002	0.000	0.021
Dipole BV2	5.0E-05	0.0000	0.0000	0.0187	-0.0005	0.000	0.084
Septum BH5A	5.0E-05	-0.0059	-0.0002	0.0000	0.0000	0.033	0.000
Septum BH5B	5.0E-05	-0.0140	-0.0002	0.0000	0.0000	0.058	0.000
Kicker MKE	2.5E-04	0.0035	-0.0003	0.0000	0.0000	0.012	0.000
Kicker MKI	2.5E-04	0.0000	0.0000	-0.0023	-0.0002	0.000	0.018

rms 0.220 0.095 linear sum 0.594 0.162

Blow-up from injection error

- Consider a collection of particles with amplitudes A
- The beam can be injected with a error in angle and position.
- For an injection error Δa_y (in units of sigma = $\sqrt{\beta \epsilon}$) the misinjected beam is offset by D, where $|D| = \Delta a_y \sqrt{\epsilon}$

Blow-up from injection error

• The new particles coordinates in normalised phase space are

 $\overline{\mathbf{Y}}_{new} = \overline{\mathbf{Y}}_{\mathbf{0}} + \mathbf{D}cos\theta$

 $\overline{\mathbf{Y}}_{new}^{\dagger} = \overline{\mathbf{Y}}_{\mathbf{0}}^{\dagger} + \mathbf{D}sin\theta$

 For a general particle distribution, where A denotes amplitude in normalised phase space

$$\mathbf{A^2} = \overline{\mathbf{Y}}^2 + \overline{\mathbf{Y}}^{\mathbf{'2}}$$

$$\varepsilon = \langle \mathbf{A^2} \rangle / 2$$

Blow-up from injection error

• So if we plug in the new coordinates....

$$\begin{aligned} \mathbf{A}_{new}^{2} &= \overline{\mathbf{Y}}_{new}^{2} + \overline{\mathbf{Y}}_{new}^{2} = \left(\overline{\mathbf{Y}}_{0} + \mathbf{D}\cos\theta\right)^{2} + \left(\overline{\mathbf{Y}}_{0} + \mathbf{D}\sin\theta\right)^{2} \\ &= \overline{\mathbf{Y}}_{0}^{2} + \overline{\mathbf{Y}}_{0}^{2} + 2\mathbf{D}\left(\overline{\mathbf{Y}}_{0}\cos\theta + \overline{\mathbf{Y}}_{0}\sin\theta\right) + \mathbf{D}^{2} \\ \left\langle \mathbf{A}_{new}^{2} \right\rangle &= \left\langle \overline{\mathbf{Y}}_{0}^{2} \right\rangle + \left\langle \overline{\mathbf{Y}}_{0}^{2} \right\rangle + \left\langle 2\mathbf{D}\left(\overline{\mathbf{Y}}_{0}\cos\theta + \overline{\mathbf{Y}}_{0}\sin\theta\right) \right\rangle + \left\langle \mathbf{D}^{2} \right\rangle \\ &= 2\varepsilon_{0} + 2\mathbf{D}\left(\cos\theta\left\langle \overline{\mathbf{Y}}_{0}^{0} \right\rangle + \sin\theta\left\langle \overline{\mathbf{Y}}_{0}^{0} \right\rangle\right) + \mathbf{D}^{2} \\ &= 2\varepsilon_{0} + \mathbf{D}^{2} \end{aligned}$$

• Giving for the emittance increase

$$\varepsilon_{new} = \left\langle \mathbf{A}_{new}^{2} \right\rangle / 2 = \varepsilon_{0} + \mathbf{D}^{2} / 2$$
$$= \varepsilon_{0} \left(1 + \Delta \mathbf{a}^{2} / 2 \right)$$

Blow-up from injection offset

A numerical example....

Consider an offset Δa of 0.5 sigma for injected beam

$$\varepsilon_{new} = \varepsilon_0 \left(1 + \Delta a^2 / 2 \right)$$

=1.125*ɛ*,

- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch.
- Filamentation will produce an emittance increase.
- In normalised phase space, consider the matched beam as a circle, and the mismatched beam as an ellipse.

General betatron motion

$$y_{2} = \sqrt{\varepsilon_{2} \beta_{2}} \sin(\phi + \phi_{o})$$
$$y'_{2} = \sqrt{\varepsilon_{2} / \beta_{2}} \left[\cos(\phi + \phi_{o}) - \alpha_{2} \sin(\phi + \phi_{o}) \right]$$

applying the normalising transformation for the matched beam

$$\begin{bmatrix} \overline{\mathbf{Y}}_{\mathbf{2}} \\ \overline{\mathbf{Y}}_{\mathbf{2}} \end{bmatrix} = \sqrt{\frac{1}{\beta_1}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_1 & \beta_1 \end{bmatrix} \cdot \begin{bmatrix} y_2 \\ y'_2 \end{bmatrix}$$

an ellipse is obtained in normalised phase space

$$\boldsymbol{A}^{2} = \overline{\boldsymbol{\mathsf{Y}}}_{\boldsymbol{2}}^{2} \left[\frac{\beta_{1}}{\beta_{2}} + \frac{\beta_{2}}{\beta_{1}} \left(\alpha_{1} - \alpha_{2} \frac{\beta_{1}}{\beta_{2}} \right)^{2} \right] + \overline{\boldsymbol{\mathsf{Y}}}_{\boldsymbol{2}}^{2} \frac{\beta_{2}}{\beta_{1}} - 2\overline{\boldsymbol{\mathsf{Y}}}_{\boldsymbol{2}} \overline{\boldsymbol{\mathsf{Y}}}_{\boldsymbol{2}}^{*} \left[\frac{\beta_{2}}{\beta_{1}} \left(\alpha_{1} - \alpha_{2} \frac{\beta_{1}}{\beta_{2}} \right) \right]$$

characterised by $\mathbf{\gamma}_{\mathit{new}} ~ \mathbf{\beta}_{\mathit{new}} ~ \mathit{and} ~ \mathbf{\alpha}_{\mathit{new}},$ where

$$\alpha_{new} = \frac{-\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right), \qquad \beta_{new} = \frac{\beta_2}{\beta_1}, \quad \gamma_{new} = \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2$$

We can evaluate the square of the distance of a particle from the origin as

$$\mathbf{A}_{new}^2 = \overline{\mathbf{Y}}_{new}^2 + \overline{\mathbf{Y}}_{new}^2 = \lambda^2 \cdot \mathbf{A}_0^2 \sin^2(\phi + \phi_f) + \frac{1}{\lambda^2} \mathbf{A}_0^2 \cos^2(\phi + \phi_f)$$

The new emittance is the average over all phases

$$\begin{split} \varepsilon_{now} &= \frac{1}{2} \left\langle \mathsf{A}_{now}^{2} \right\rangle = \frac{1}{2} \left(\lambda^{2} \left\langle \mathsf{A}_{0}^{2} \sin^{2}(\phi + \phi_{f}) \right\rangle + \frac{1}{\lambda^{2}} \left\langle \mathsf{A}_{0}^{2} \cos^{2}(\phi + \phi_{f}) \right\rangle \right) \\ &= \frac{1}{2} \left\langle \mathsf{A}_{0}^{2} \right\rangle \left(\lambda^{2} \left\langle \sin^{2}(\phi + \phi_{f}) \right\rangle + \frac{1}{\lambda^{2}} \left\langle \mathsf{A}_{0}^{2} \right\rangle \left\langle \cos^{2}(\phi + \phi_{f}) \right\rangle \right) \\ &= \frac{1}{2} \varepsilon_{0} \left(\lambda^{2} + \frac{1}{\lambda^{2}} \right) \end{split}$$

If we like, we can substitute back for λ to give

$$\boldsymbol{\varepsilon}_{new} = \frac{1}{2}\boldsymbol{\varepsilon}_{0} \left(\boldsymbol{\lambda}^{2} + \frac{1}{\boldsymbol{\lambda}^{2}}\right) = H\boldsymbol{\varepsilon}_{0} = \frac{1}{2}\boldsymbol{\varepsilon}_{0} \left(\frac{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}} + \frac{\boldsymbol{\beta}_{2}}{\boldsymbol{\beta}_{1}} \left(\boldsymbol{\alpha}_{1} - \boldsymbol{\alpha}_{2}\frac{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}\right)^{2} + \frac{\boldsymbol{\beta}_{2}}{\boldsymbol{\beta}_{1}}\right)$$

where subscript 1 refers to the matched ellipse, 2 refers to the mismatched ellipse.

A numerical example....

Consider b = 3a for the mismatched ellipse

$$\lambda = \sqrt{b/a} = \sqrt{3}$$
$$\varepsilon_{new} = \frac{1}{2}\varepsilon_0 \left(\lambda^2 + 1/\lambda^2\right)$$
$$= 1.67\varepsilon_0$$

Emittance and mismatch measurement

- Beam screen provides density profile of the beam
- Profile fit gives transverse beam sizes σ .

Emittance and mismatch measurement

- In a ring, β is 'known' so ϵ can be calculated from a single screen
- In a line, need measurements at 3 screens, plus the two transfer matrices $\rm M_{01}$ and $\rm M_{12}$
- 3 measurement locations allows determination of ϵ, α and β

Emittance and mismatch measurement

We have
$$\begin{bmatrix} \beta_1 \\ \alpha_1 \\ \gamma_1 \end{bmatrix} = \begin{bmatrix} C^2 & -2CS & S^2 \\ -CC' & CS' + SC' & -SS' \\ C^2 & -2C'S' & S'^2 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{bmatrix}$$

so that
$$\beta_1 = C_1^2 \beta_0 - 2C_1 S_1 \alpha_0 + \frac{S_1^2}{\beta_0} (1 + \alpha_0^2), \quad \beta_2 = C_2^2 \beta_0 - 2C_2 S_2 \alpha_0 + \frac{S_2^2}{\beta_0} (1 + \alpha_0^2)$$

using
$$\beta_0 = \frac{\sigma_0^2}{\varepsilon}$$
, $\beta_1 = \left(\frac{\sigma_1}{\sigma_0}\right)^2 \beta_0$, $\beta_2 = \left(\frac{\sigma_2}{\sigma_0}\right)^2 \beta_0$

we find
$$\boldsymbol{\alpha}_0 = \frac{1}{2} \boldsymbol{\beta}_0 \mathbf{W}$$

where
$$\mathbf{W} = \frac{(\sigma_2 / \sigma_0)^2 / S_2^2 - (\sigma_1 / \sigma_0)^2 / S_1^2 - (C_2 / S_2)^2 + (C_1 / S_1)^2}{(C_1 / S_1) - (C_2 / S_2)}$$

Emittance and mismatch measurement

with
$$\beta_1 = C_1^2 \beta_0 - 2C_1 S_1 \alpha_0 + \frac{S_1^2}{\beta_0} (1 + \alpha_0^2)$$
 $\beta_2 = C_2^2 \beta_0 - 2C_2 S_2 \alpha_0 + \frac{S_2^2}{\beta_0} (1 + \alpha_0^2)$
and $\beta_0 = \frac{\sigma_0^2}{\varepsilon}$, $\beta_1 = \left(\frac{\sigma_1}{\sigma_0}\right)^2 \beta_0$, $\beta_2 = \left(\frac{\sigma_2}{\sigma_0}\right)^2 \beta_0$
and $\mathbf{W} = \frac{(\sigma_2 / \sigma_0)^2 / S_2^2 - (\sigma_1 / \sigma_0)^2 / S_1^2 - (C_2 / S_2)^2 + (C_1 / S_1)^2}{(C_1 / S_1) - (C_2 / S_2)}$

and

Some algebra with the three above equations gives

$$\beta_0 = \frac{1}{\sqrt{(\sigma_2/\sigma_0)^2/S_2^2 - (C_2/S_2)^2 + W(C_2/S_2)^2 - W^2/4}}$$

And finally we can evaluate

$$\boldsymbol{\varepsilon} = \boldsymbol{\sigma}_0^2 \boldsymbol{\beta}_0$$

Comparing measured α_o , β_0 with expected values gives measurement of mismatch

Blow-up from thin scatterer

- Thin beam screens (Al_2O_3, Ti) used to generate profiles.
- Thin metal windows used to separate vacuum of transfer lines from vacuum in circular machines.
- The emittance of the beam increases when it passes through, due to multiple Coulomb scattering.

 $\beta_c = v/c$, p = momentum, $Z_{inc} = particle charge /e$, L = target length, $L_{rad} = radiation length$

Blow-up from thin scatterer

Each particles gets a random angle change θ_s but there is initially no effect on the positions

 $\overline{\mathbf{Y}}_{new} = \overline{\mathbf{Y}}_{\mathbf{0}}$ $\overline{\mathbf{Y}}_{new} = \overline{\mathbf{Y}}_{\mathbf{0}} + \boldsymbol{\theta}_{s}$

After filamentation the particles have different amplitudes and the beam has a larger emittance

$$\varepsilon = \left< A_{new}^2 \right> / 2$$

Blow-up from thin scatterer

$$A_{new}^{2} = \overline{\mathbf{Y}_{new}^{2}} + \overline{\mathbf{Y}_{new}^{2}}$$

$$= \overline{\mathbf{Y}_{0}^{2}} + \left(\overline{\mathbf{Y}_{0}} + \sqrt{\beta}\theta_{s}\right)^{2}$$

$$= \overline{\mathbf{Y}_{0}^{2}} + \overline{\mathbf{Y}_{0}^{2}} + 2\sqrt{\beta}\left(\overline{\mathbf{Y}_{0}}\theta_{s}\right) + \beta\theta_{s}^{2}$$

$$\langle \mathbf{A}_{new}^{2} \rangle = \langle \overline{\mathbf{Y}_{0}^{2}} \rangle + \langle \overline{\mathbf{Y}_{0}^{2}} \rangle + 2\sqrt{\beta}\langle \overline{\mathbf{Y}_{0}}\theta_{s} \rangle + \beta\langle \theta_{s}^{2} \rangle$$

$$= 2\varepsilon_{0} + 2\sqrt{\beta}\langle \overline{\mathbf{Y}_{0}} \rangle\langle \theta_{s} \rangle + \beta\langle \theta_{s}^{2} \rangle$$

$$= 2\varepsilon_{0} + \beta\langle \theta_{s}^{2} \rangle$$

$$\varepsilon_{new} = \varepsilon_{0} + \frac{\beta}{2}\langle \theta_{s}^{2} \rangle$$

Filamentation Filamentation Filamentation Filamentation Filamentation Filamentation Filamentation

v

Ellipse after

Need to keep β small to minimise blow-up

An example - charge stripping

- For LHC heavy ions, Pb⁵³⁺ is stripped to Pb⁸²⁺ at 4.25GeV/u using a 0.8mm thick AI foil, in the PS to SPS line
- $\Delta \epsilon$ minimised with low- β insertion in the transfer line
- Emittance increase expected is about 8%

Summary

- Transfer lines present interesting challenges and differences from circular machines
 - No periodic condition mean optics is defined by initial beam ellipse and transfer line lattice
 - Matching at the extremes is non-trivial
 - Performance criteria include aperture and emittance blow-up