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Accelerator Magnets
The magnets control the direction and size of the 
beams of the circulating beam:
Dipoles - bend and steer the beams;
Quadrupoles - focus the beams;
Sextupoles - control the focusing of ‘off 

momentum’ particles 
(chromaticity);

All together they make up the ‘lattice’.
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A Cell in a Lattice
A Separated Function Lattice:

F-Quad

D-Quad

F-Sext

D-Sext

Dipole

Cell Layout
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A typical ‘C’ cored Dipole

Other 
arrangements for 
dipoles:

‘H’ cores;

‘window frame’.
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H core and window-frame magnets
‘H core’:

‘Window frame’:
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Dipole requirements
The dipole magnets need:

• high field homogeneity.

The dipole power circuit needs:
• stringent current continuity in the dipole circuit;
• high current stability;
• high current accuracy;
• low ripple;
• smooth current waveform (no discontinuities in I 

or dI/dt)
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Flux density distribution in a dipole.
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Dipole field homogeneity on beam axis

Homogeneity expressed as ∆B/B = {B(x,y)-B(0,0)}/B(0,0);  typically ± 1:104

within the ‘good field region’ defined by the beam transverse dimensions.
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Dipole field homogeneity in gap

contours 
are 
±0.01%

required 
good field 
region:
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Field continuity between Dipoles
The dipoles in a lattice must have strong string 
current continuity (~ 1:104 or better):

• series connection (apart from very large 
accelerators – LHC for e.g.);

• low current leakage through cooling water and 
other parallel paths;

• low earth capacitance in a.c. accelerators (see 
presentation on ‘Cycling Accelerators’.
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Dipole Current Stability
In a synchrotron:
•the particles are ‘trapped’ in a        
potential well around a point on the 
rising side of the r.f. waveform (non-
relativistic beam);
•low energy particles arrive late - more 
r.f. volts – more acceleration (phase 
stability);
•dipole field controls beam energy;
•gradient discontinuities can disrupt 
phase stability.

Vrf

synchronous 
phase (non 
relativistic 
particles).
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Quadrupole magnets
The quadrupoles focus the beam; there must be at 
least two types in the lattice:

• ‘F’ types which focus horizontally, defocus 
vertically;

• ‘D’ types which defocus horizontally, focus 
vertically.

Quadrupoles have similar requirements as dipoles, 
with high stability power supplies; they must be very 
accurately aligned.
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Quadrupole fields

x

By

The field is zero at the centre and varies linearly with horizontal 
and vertical position. Off-centre particles are focused (or 
defocused); particles on the central orbit are undeviated (but 
misplacement of the magnetic centre results in horizontal or 
vertical  beam bending).
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Assessment of quadrupole gradient quality
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‘Diamond’
quadrupole 
cross 
section.
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Effect of current instabilities.
Quadrupoles must ‘track’ the dipoles (ie energy):

• they control the machine Q value - current variation could 
engage a resonance - beam loss - stabilities of the order of 
1:104 are usually needed;

• they control the beta values in the lattice – current variation 
results in variation in beam size.

In many accelerators the quadrupoles are connected in series in 
‘families’ (F and D for example).
In others (synchrotron sources for example) they are 
individually powered (separate power converters!) to give 
local control of beta values (beam size):
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Sextupoles

0
0 x

By

The field and field gradient are zero at the centre; the field varies 
with a square law with horizontal and vertical position. Off-
momentum (and therefore off-centre) particles see a gradient field 
and are therefore focused (or defocused); particles on the central 
orbit are undeviated and unfocused.
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Sextupole functionality
Sextupoles are included in many lattices to control 

chromaticity:

• there are usually ‘H’ (controlling horizontal chromaticity) 
and ‘V’ type sextupoles in a lattice;

• the H and V are usually series connected in ‘families’.
• must also track the dipoles if field varies;
• but are often less critical than quadrupoles (depends on 

lattice configuration).

Are useful for including ‘correction’ dipole fields (and 
others) with auxiliary windings separately powered.
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Combined function magnets
Some or all quadrupole field can be combined into dipoles-
bending and focusing in the same magnet 
(but relative strengths cannot be adjusted!).

x

Characterised by 'field index' n
(+ or – depending on gradient).

n = - {ρ/B0}{dB/dx};

where ρ is radius of curvature or beam;
B0 is central field in the magnet.
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Magnet excitation - Dipoles
curl H =   j;
∫ H.ds =  NI;
(Hi)λ + (Hg)g =  NI;
Hi =  B/(µµ0)    (small);
Hg =  B/µ0 (larger);
B = µ0 NI /(g + λ/µ);

Amp –turns:
NI = B (g + λ/µ )/ µ0 ;
NI ≈ B g / µ0 µ >> 1. 

µ >> 

g

λ

1

NI/2

NI/2

magnet gap: g; flux path in yoke: λ;
steel permeability: µ (>>1); total turns in 2 coils: N;
excitation current: I; field (A/m) in yoke: Hi;
field (A/m) in gap: Hg; flux density in gap: B (assumed constant)
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Reluctance and low permeability.

NI = B (g + λ/µ )/ µ0

gap ‘reluctance’ yoke ‘reluctance’

The magnet designed must limit the 
Amp-turns lost in the yoke by 
limiting the flux density  in the steel:

• use wider top, bottom and back 
legs;

•diverge the pole if necessary.
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Relative permeability of low silicon steel
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Typical values of non-linearity.
In low and medium field (≤ 1.5 T) dipoles, the yoke 

reluctance should not exceed 2 ~ 3% of gap 
reluctance.

At values of B above 1.5 T, µ begins to fall rapidly; the 
magnet is becoming non-linear; current has to be 
increased to overcome the non-linearity.

Above 1.9 T, µ is typically less than 100 (depending on 
steel type); yoke reluctance will exceed 5%. The 
dipole is becoming saturated. The power converter 
will need to provide significant extra current and 
power.
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Excitation in Quads and Sextupoles.

For inscribed radius R, 
and ignoring yoke reluctance;

Amp – turns per pole:

Quadrupole:
NI = Gq R2/ 2 µ0;

Sextupole:
NI = Gs R3/3 µ0;

R

where: Gq is quadrupole gradient (T/m);
Gs is sextupole gradient (T/m2).
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The magnet/power converter interface.
Parameters to be chosen/optimised to ensure 
magnet/power converter compatibility:

• number of turns per magnet;
• current density in the conductor;
• length/field strength of the magnet.

In ‘conventional’ (not s.c.) magnets, these optima are 
determined by financial as well as technical issues. In 
s.c. magnets, the interface is technical (and 
financial!).
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Number of turns - relationships
Fixed:    

beam energy;
total Ampere-turns in coil: (NI);
conductor current density: j;

Therefore:
current I ∝ 1/N;
cross section/turn: A  = I/j ;

∝ 1/N;
coil resistance: R ∝ N/A;

∝ N2 ;
power loss: W =  I2 R;

∝ (1/N)2 N2;
independent of N!
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Number of turns - consequences
Advantages of large N:

• lower I – power converter current is decreased;
• less loss in transformers, rectifiers, cables.

Disadvantages of large N:
• higher voltage on converter, cables, magnets terminals;
• coil conductor content remains constant but inter-turn 

insulation increases – coil becomes more larger .

So,  choice of N is a compromise between magnet 
design and power converter design.
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Examples of typical turns/current
From the Diamond 3 GeV synchrotron source:
Dipole:

N  (per magnet): 40;
I max 1500 A;
Volts (circuit): 500 V.

Quadrupole:
N (per pole) 54;
I max 200 A;
Volts (per magnet): 25 V.

Sextupole:
N (per pole) 48;
I max 100 A;
Volts (per magnet) 25 V.
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Current density (j) in conventional conductors.

Fixed:
beam energy;
number of turns N and current I.

Therefore:
cross section/turn: A  = I/j ;
coil resistance: R ∝ 1/A;

∝ j ;
power loss: W =  I2 R;

∝ j;
coil volume and weight ∝ 1/j
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Current density - consequences

Advantages of low j:
• lower W – power bill is decreased;
• lower W – power converter size is decreased;
• less heat dissipated into magnet tunnel.

Disadvantages:
• higher capital cost;
• larger magnets.

Chosen value is an
optimisation of magnet 
capital against power costs.
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J and N in s.c. magnets
Specialised topic:

Current density
chosen according
to conductor B/j
behaviour:

j    (A/mm2)

B  (T) load-line

quench limit

Number of turns 
determined by cable 
availability.
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Length (ℓ)/Field (B) in d.c. magnets
Fixed:magnetic strength B ℓ ;

number of turns N;
j in conductor (but see below).

Then: field B ∝ 1/ℓ.
current I ∝ 1/ℓ;
resistance R ~ ℓ;
power W = I2 R;

∝ 1/ℓ;
So longer magnets need less power – but more steel and 
conductor – this affects the optimisation of j !!

But if the conductor volume is kept constant (j varies):
cross section/turn A ∝1/ℓ;
resistance R ~ ℓ 2;

Power is then independent of  ℓ .
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Length (ℓ)/Field (B) in a.c. magnets
Fixed:magnetic strength B ℓ ;

number of turns N;
j in conductor.

Then: field B ∝ 1/ℓ.
stored energy E ∝ B 2 ℓ.

∝ 1/ℓ.
A.C. power converter rating will strongly depend on stored
energy (see presentation on cycling accelerators).

So: longer a.c. magnets have lower VA ratings irrespective
of coil cross section or current density.
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Length (ℓ)/Field (B) – conclusion.
Whilst magnet and power converter economics will 
play a role in determining the optimum B against ℓ, 
many other issues are also involved:

• building and infrastructure costs;
• r.f. power rating (particularly in electron 

accelerators);
• vacuum system costs;
• radiation spectra from bending magnets (in 

synchrotron sources);
• etc.
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