

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Different power supplies for different machines

Hans-Jörg Eckoldt DESY Warrington, UK 17.05.04

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Congratulation

for having chosen

POWER ELECTRONICS

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Power electronics needs the knowledge of

- Power electronic devices
- Mains behavior
- Regulation theory
- High precision measurement
- Mechanical capabilities
- Analog circuit technology
- Digital circuit technology
- Control system
- Statistics for large number of systems
- Databases
- Cooling technology
- Programming e.g. Internet, FPGAs, DSPs, PLCs
- Simulation tools
 - Missing RF, but with switched mode power supplies we are working on this

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Sorry!

- Please be not disappointed, if your very interesting power supply is not mentioned here
- Due to the large number it is not possible

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Structure of the seminar

- Cycling machines
- Fast ramping machines
- Slow ramping machines
- Pulsed machines
 - Magnet Power Supply
 - Constant power power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Cycling Machines

- DESY II, Hamburg
- ESRF, Grenoble
- BESSY II; Berlin
- SLS, Villingen

- Operation at frequencies between 0.3 and some 10 Hz
- Special care has to be taken for the flicker frequencies

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Disturbances to the mains

The amount of allowed disturbances is defined in the German standard VDE 0838, IEC 38 or the equivalent European standard EN 61000.

No energy consumer is allowed to produce more distortions than 3% of the voltage variation of the mains. For low frequencies in the visual spectrum this value is even more restricted. The low frequencies are called flicker frequencies. The human eye is very sensitive to changes in light intensities in this frequency domain.

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Allowed disturbancies to the grid according to IEC 38/VDE 0838

Bild 5-2: Verträglichkeitspegel für regelmäßige rechteckförmige Spannungsänderungen

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

White circuit

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Calculated Power with and without White circuit for BESSY II

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY II 4.5 GeV, 7 GeV, 10 GeV max.

	Dipole	QP	SP
l _{max}	1170 A	1530 A	530 A
I rms magnet	873 A	940 A	324 A
U rms Choke/magnet	4.3 kV * 12 51.6 kV	3.34 kV	273 V
I _{DC PS}	585 A	765 A	255 A
U _{DC PS}	27.7 V	122.4 V	32 V
I _{AC PS}	665 A	540 A	187 A
U _{AC PS}	990 V	3.22 kV	273 V

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY II Overview (artist view)

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY II with compound inductor (White choke)

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY II dipole power supply with Steinmetz circuit

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY QP, SP circuit

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

ESRF 6 GeV

	Dipole	QPF	QPDF
l _{max}	1500 A	500 A	500 A
U rms Choke/magnet	11 kV	2 kV	2 V
I _{DC PS}	800 A	200 A	180 A
U _{DC PS}	600 V	200 V	200 V
I _{AC PS}	800 A	200 A	180 A
U _{AC PS}	V	V	V

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Power supply of ESRF

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

BESSY II 1.9 GeV

	Dipole	QPF	QPDF
I _{max}	2277 A	492 A	395 A
U rms Choke/magnet	3112 kV	527 V	423V
I _{DC PS}	800 A	200 A	180 A
U _{DC PS}	120 V	70 V	70 V
I _{AC PS}	778 A	200 A	200 A
U _{AC PS}	311V	184 V	184 V

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Schematic of the BESSY II Power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Power supply at SLS

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Fast ramping machines

- DESY III
- Tevatron
- Fermilab Main Injector
- Cern Antiproton
 Decelerator
- PETRA

- Ramping times from a second to a minute
- U=R*i + L*di/dt
 Due to the inductance the
 term demands for a
 significant higher voltage
 than for steady state
- Negative voltage has to be applied for down ramping
- Precautions for the mains have to be taken

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY III

	Dipole
I flat top	1160 A
U _{flat top}	1 kV
I flat bottom	50 A
U flat bottom	42 V
di/dt	665 A/s
Ramping time	4 sec

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY III Power supply with dynamic reactive power compensation

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Signals for the DESY III ramp

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

DESY III Power supply with dynamic reactive power compensation

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Tevatron

	Dipole
I flat top	4400 A
U _{flat top}	1 kV
I flat bottom	400 A
U flat bottom	42 V
di/dt	67 A/s
Ramping time	60 sec

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Tevatron distribution of power supplies

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

UUU MAGNETS uw 11 POWER LEAD 4.8mF SERIES SHUNT SCR SCR ٩ł DC BREAKER PASSIVE FILTER CHOKE DUMP 1 KV P.S. + DUMP RESISTOR

Power supply of Tevatron

TEVATRON POWER SUPPLY SYSTEM POWER CIRCUIT

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Fermilab Main Injector

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Fermilab main injector data

Requirement	
Dipole and quadrupole power, peak	120 MVA
Dipole and quadrupole power, average	60 MVA
RF, beamline power supplies, peak	30 MVA
RF, beamline power supplies, average	20 MVA
Backfeed capability, peak	40 MVA
Backfeed capability, average	30 MVA
Accelerator cycling time	1.5 sec

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

CERN Antiproton Decelerator Cycle

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Antiproton decelerator power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Power supply for the PS-Booster beam transport line with polarity switcher and regenerative circuit

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

PETRA-Dipole ring NW NO PETRA - DIPOLKREIS W 0 untere Spulenlage obere Spulenlage SW SO S

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Voltage changes due to the ramping of the PETRA-machine

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Slow ramping machines

- HERA
- LEP
- LHC
- Here nearly every lab can be named
- Ramping lasts several minutes or
- Working at steady state
- The variety of power supplies is large and shows in general the state of the art of the power electronics of that time

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

HERA Proton Dipole Power Supply

8000 A, +500V,-300V Optical current 5600A

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

SCR Power supplies

- Power larger than 50 kW
- Currents larger than 800 A
- Voltages higher than 130 V
- Good prices
- Simple design
- Different Solutions according to the specs
 - LC filter
 - Praeg Filter
 - Active filter

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

SCR supply with LC filter

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

SCR Power supply with Praeg filter

400 V

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

HERA Buck converter

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Schematic of the LEP double resonant power supply

125 V, 300 A or 188 V, 200 A or 250 A, 150 V

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

LHC 600A/10V, 40V Power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

LHC 600A/10V, 40V Power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

LHC 600A/10V, 40V Power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

SCR unit for LHC transport line with active filter

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Pulsed machines

- Linear Collider, sometimes, somewhere
- XFEL, Hamburg
- VUV-FEL, Hamburg

- Machines are working with short pulses between a few µsec up to ms
- Repetition rates between 1 and 50 Hz
- High demands on power supplies
- Suppress the repetition rate toward the grid

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

New XFEL power supply for sc QP +/- 100 A/10V

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Ζı

t

XFEL Power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Web Access to the power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Voltage at XFEL Modulator

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Switched mode power supply for constant power

G	Rectifier
i _B	supply current
i _L	primary current of the transformer
u _C	voltage of the resonance capacitor
U _{Cload}	output voltage to the switch of the
	klystron
i _{Bt1}	current i_B at the time t1
L	primary stray inductivity of the
	transformer
f	resonance frequency of the resonant
	circuit of L and C
n	gear ratio of the transformer and
	rectifier
Т	period time of the switching frequency
	of S1 and S2
С	resonance capacitor
UB	supply voltage
U _N	line voltage
$C_{\rm f}$	filter capacitor

L_f filter inductance

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Derivation of the equivalent circuit to the switch mode power supply

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Series connection of buck converters

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Conclusion

- There are a lot of very interesting power supplies in the machines
- This was only a very short overview of what is installed into machines over the world
- It shall give an idea what kind and where solutions and help are to find when someone encounters a new problem
- A very good source of information is:
 - Joint Accelerator Conferences Website
 - http://accelconf.web.cern.ch/AccelConf/

Hans-Jörg Eckoldt

THE CERN ACCELERATOR SCHOOL

Thanks for your attention