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What is a cavity?
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Lorentz force
A charged particle moving with velocity                     through an 

electromagnetic field experiences a force

The total energy of this particle is                                                                     , the 

kinetic energy is ( )12 −= γmcWkin
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The role of acceleration is to increase the particle energy! 

Change of       by differentiation:W
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Note: Only the electric field can change the particle energy!
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Maxwell’s equations
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The electromagnetic fields inside the “hollow place” obey these equations:

With the curl of the 3rd, the time derivative of the 1st equation and the 
vector identity
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this set of equations can be brought in the form
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which is the Laplace equation in 4 dimensions. 

With the boundaries of the “solid body” around it (the cavity walls), there 
exist eigensolutions of the cavity at certain frequencies (eigenfrequencies).



Wave vector : 
the direction of     is the direction of 
propagation,
the length of     is the phase shift per 
unit length.

behaves like a vector.

Homogeneous plane wave
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The components of     are related to the wavelength in the direction of that 

component as                etc. , to the phase velocity as

Wave length, phase velocity
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Superposition of 2 homogeneous plane waves
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Metallic walls may be inserted where

without perturbing the fields. 

Note the standing wave in x-direction!
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x
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This way one gets a hollow rectangular waveguide
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Rectangular waveguide
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Fundamental (TE10 or H10) mode
in a standard rectangular waveguide.
Example: “S-band” : 2.6 GHz ... 3.95 GHz,
Waveguide type WR284 (2.84” wide), 
dimensions: 72.14 mm x 34.04 mm.
Operated at f = 3 GHz.

electric field

magnetic field

power flow:

power flow

power flow
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Waveguide dispersion
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What happens with different waveguide 
dimensions (different width a)?
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Phase velocity
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The phase velocity is the speed with 
which the crest or a zero-crossing travels 
in z-direction.
Note on the three animations on the 
right that, at constant f, it is          .
Note that at            ,               !  
With             ,                !          
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Rectangular waveguide modes
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TE10 TE20 TE01 TE11

TM11 TE21 TM21 TE30

TE31 TM31 TE40 TE02

TE12 TM12 TE41 TM41

TE22 TM22 TE50 TE32

plotted: E-field



Radial waves
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Also radial waves may be interpreted as 
superpositions of plane waves.
The superposition of an outward and an 
inward radial wave can result in the field of a 
round hollow waveguide.



Round waveguide
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f/fc = 1.44

TE11 – fundamental

mm/
9.87

GHz a
fc =

mm/
8.114

GHz a
fc =

mm/
9.182

GHz a
fc =

TM01 – axial field TE01 – low loss



Circular waveguide modes
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TE11 TM01

TE21 TE21

TE11

TE31

TE31 TE01 TM11

plotted: E-field



General waveguide equations:
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Transverse wave equation (membrane equation):

TM (or E) modesTE (or H) modes

boundary condition:

longitudinal wave equations 
(transmission line equations):

propagation constant:

characteristic impedance:

ortho-normal eigenvectors:

transverse fields:

longitudinal field:
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TM (E) modes:

TE (H) modes:

TE (H) modes:

TM (E) modes:

where

Ø = 2a

a
b
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Waveguide perturbed by notches
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“notches”

Reflections from notches lead to a superimposed standing wave pattern.
“Trapped mode”

Signal flow chart



Short-circuited waveguide
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TM010 (no axial dependence) TM011 TM012



Single WG mode between two shorts
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Simple pillbox
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electric field (purely axial) magnetic field (purely azimuthal)

(only 1/2 shown)

TM010-mode



Pillbox cavity field (w/o beam tube)
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The only non-vanishing field components :

h

Ø 2a
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Pillbox with beam pipe
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electric field magnetic field

(only 1/4 shown)TM010-mode
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One needs a hole for the beam pipe – circular waveguide below cutoff



A more practical pillbox cavity
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electric field magnetic field

(only 1/4 shown)TM010-mode
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Round of sharp edges 
(field enhancement!)



Stored energy
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The energy stored in the electric field is 

∫∫∫
cavity

VH d
2

2µ
The energy stored in the magnetic field is 
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Since     and      are 90° out of phase, the stored energy continuously swaps 
from electric energy to magnetic energy. On average, electric and magnetic 
energy must be equal.
The (imaginary part of the) Poynting vector describes this energy flux.
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In steady state, the total stored energy                                                      is 
constant in time.
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Stored energy & Poynting vector
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electric field energy Poynting vector magnetic field energy



Losses & Q factor
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The losses          are proportional to the stored energy      . 

In a vacuum cavity, losses are dominated by the ohmic losses due to the finite 
conductivity of the cavity walls.
If the losses are small, one can calculate them with a perturbation method:

• The tangential magnetic field at the surface leads to a surface current.

• This current will see a wall resistance 

• {        is related to the skin depth     by                      . }

• The cavity losses are given by 

• If other loss mechanisms are present, losses must be added.
Consequently, the inverses of the     ‘s must be added!

∫∫=
wall

tAloss AHRP d2

σ
ωµ
2

=AR

AR 1=ARσδδ

W
The cavity quality factor      is defined as the ratio                     .

lossP
WQ 0ω

=Q

Q

lossP



I define                                          . The exponential factor accounts for the 

variation of the field while particles with velocity         are traversing the gap 

(see next page).

With this definition,            is generally complex – this becomes important 

with more than one gap. For the time being we are only interested in           .

Acceleration voltage & R-upon-Q
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The proportionality constant defines the quantity called R-upon-Q:

The square of the acceleration voltage is proportional to the stored energy      . W

W
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Q
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ω

Attention, different definitions are used!

accV
accV

Attention, also here different definitions are used!

cβ



Transit time factor
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h/λ
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The transit time factor is the ratio of the acceleration voltage to the (non-physical) 
voltage a particle with infinite velocity would see.

The transit time factor of an ideal pillbox cavity (no axial field dependence) of 
height (gap length) h is:
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Field rotates by 360°
during particle passage.



Shunt impedance
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The proportionality constant defines the quantity “shunt impedance”

The square of the acceleration voltage is proportional to the power loss          .

Attention, also here different definitions are used!

lossP

loss

acc

P
V

R
2

2

=

Traditionally, the shunt impedance is the quantity to optimize in order to 
minimize the power required for a given gap voltage.



Equivalent circuit
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R

Cavity

Generator

IG


P

C=Q/(Rω0)

Vacc

Beam

IB

L=R/(Qω0)LC

:  coupling factor

R: Shunt impedance : R-upon-Q

Simplification: single mode
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Resonance
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Reentrant cavity
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Example: KEK photon factory 500 MHz         
- R probably as good as it gets -

this cavity optimized
pillbox

R/Q: 111 Ω 107.5 Ω
Q: 44270 41630
R: 4.9 MΩ 4.47 MΩ

Nose cones increase transit time factor,  round outer shape minimizes losses.

nose cone
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Loss factor
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0 5 10 15 20

t f0

-1

0

1

Voltage induced by a single 
charge q:

RR/β

Cavity

Beam

C=Q/(Rω0)

V (induced)
IB

L=R/(Qω0)LCEnergy deposited by a single 

charge q:

Impedance seen by the beam
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Summary: relations between Vacc, W, Ploss
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Energy stored inside the 
cavity

Power lost in the cavity 
walls

gap voltage
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Beam loading – RF to beam efficiency
The beam current “loads” the generator, in the equivalent circuit 
this appears as a resistance in parallel to the shunt impedance.

If the generator is matched to the unloaded cavity, beam loading 
will cause the accelerating voltage to decrease.

The power absorbed by the beam is                               ,

the power loss                         .

For high efficiency, beam loading should be high. 

The RF to beam efficiency is                                     .
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Characterizing cavities
• Resonance frequency

• Transit time factor

field varies while particle is traversing the gap

• Shunt impedance
gap voltage – power relation

• Q factor

• R/Q
independent of losses – only geometry!

• loss factor

CAS Varna/Bulgaria 2010- RF Cavities 36

Linac definitionCircuit definition
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Higher order modes
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IB

R3, Q3,ω3R2, Q2,ω2R1, Q1,ω1

......

external dampers

n1 n3n2
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Higher order modes (measured spectrum)
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without dampers

with dampers
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Pillbox: dipole mode
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electric field magnetic field

(only 1/4 shown)TM110-mode



CERN/PS 80 MHz cavity (for LHC)
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inductive (loop) coupling, 
low self-inductance
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Higher 
order 

modes
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Example shown:
80 MHz cavity PS 
for LHC.

Color-coded:
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What do you gain with many gaps?
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• The R/Q of a single gap cavity is limited to some 100 Ω.

Now consider to distribute the available power to n identical 

cavities: each will receive P/n, thus produce an accelerating 

voltage of                 .

The total accelerating voltage thus increased, equivalent to a 

total equivalent shunt impedance of . 

1 2 3 n

P/n P/nP/n P/n
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Standing wave multicell cavity

CAS Varna/Bulgaria 2010- RF Cavities 43

• Instead of distributing the power from the amplifier, one might 
as well couple the cavities, such that the power automatically 
distributes, or have a cavity with many gaps (e.g. drift tube 
linac). 

• Coupled cavity accelerating structure (side coupled)

• The phase relation between gaps is important!
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Brillouin diagram 
Travelling wave 

structure
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synchronous

2π

ω L/c

speed of light line, 
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Examples of cavities
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PEP II cavity
476 MHz, single cell,

1 MV gap with 150 kW, 
strong HOM damping,

LEP normal-conducting Cu RF cavities,
350 MHz. 5 cell standing wave + spherical cavity 
for energy storage, 3 MV



CERN PS 200 MHz cavities
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PS 19 MHz cavity (prototype, photo: 1966)
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CERN PS 80 MHz Cavity (1997)
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Ferrite cavity – CERN PSB, 0.6 ... 1.8 MHz
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PS Booster, ‘98
0.6 – 1.8 MHz,
< 10 kV gap
NiZn ferrites



CERN PS 10 MHz cavity (1 of 10)

23-Sept-2010 CAS Varna/Bulgaria 2010- RF Cavities 50



Drift-tube linac (JPARC JHF, 324 MHz)
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CERN SPS 200 MHz TW cavity
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Travelling wave cavities
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CLIC “T18”,  12 GHz

CLIC “HDS”, 12 GHz

“Shintake” structure, 5.7 GHz



Side-coupled cavity (JHF, 972 MHz)
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Single- and multi-cell SC cavities (1.3 GHz)
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SC cavity lab KEK, 
Japan



SC cavities in a cryostat (CERN LHC 400 MHz)
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SC deflecting cavity (KEK-B, 508 MHz)
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Asymmetric shape
to split the two
polarizations.



Summary     RF Cavities
• The EM fields inside a hollow cavity are superpositions of 

homogeneous plane waves. 

• When operating near an eigenfrequency, one can profit from 
a resonance phenomenon (with high Q).

• R-upon-Q, Shunt impedance and Q factor were are useful 
parameters, which can also be understood in an equivalent 
circuit. 

• The perturbation method allows to estimate losses and 
sensitivity to tolerances.

• Many gaps can increase the effective impedance.
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