

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati via Enrico Fermi 40 - 00044 Frascati(RM) - Italy

Lecture I&II Outline

A. Gallo, Timing and Synchronization I, 2-15 June 2018, Tuusula, Finland

MOTIVATIONS

Lecture I

- ✓ Why accelerators need synchronization, and at what precision level
- DEFINITIONS AND BASICS
 - ✓ Glossary: Synchronization, Master Oscillator, Drift vs. Jitter
 - ✓ Fourier and Laplace Transforms, Random processes, Phase noise in Oscillators
 - ✓ Phase detectors, Phase Locked Loops, Precision phase noise measurements
 - ✓ Electro-optical and fully optical phase detection

ecture II.

SYNCRONIZATION ARCHITECTURE AND PERFORMANCES

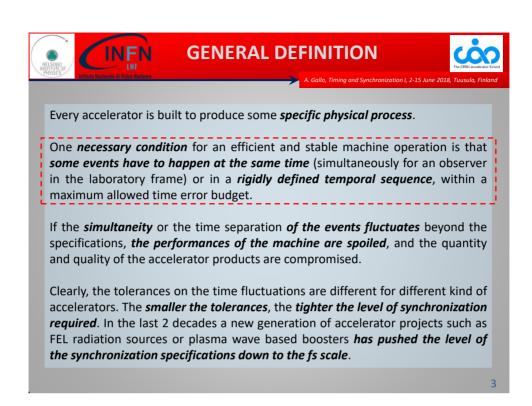
- ✓ Phase lock of synchronization clients (RF systems, Lasers, Diagnostics, ...)
- ✓ Residual absolute and relative phase jitter
- ✓ Reference distribution actively stabilized links

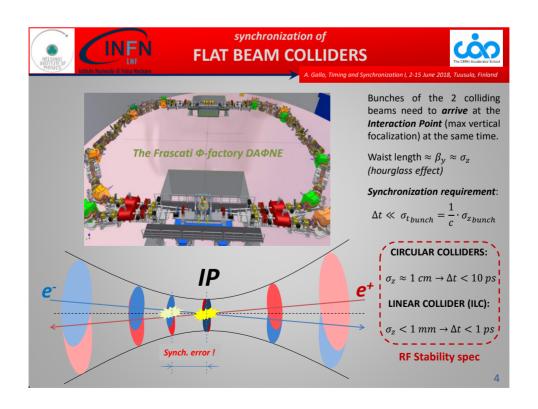
BEAM ARRIVAL TIME FLUCTUATIONS

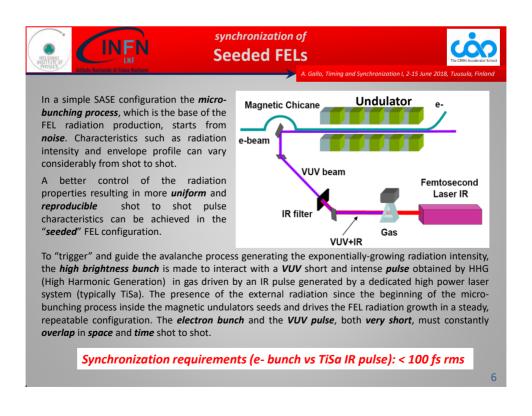
- ✓ Bunch arrival time measurement techniques
- Expected bunch arrival time downstream magnetic compressors (an example)
- ✓ Beam synchronization general case

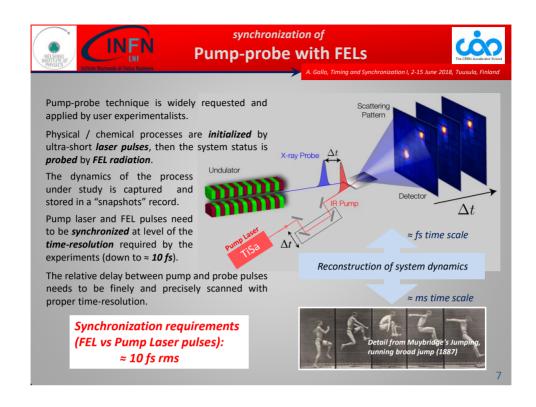
CONCLUSIONS AND REFERENCES

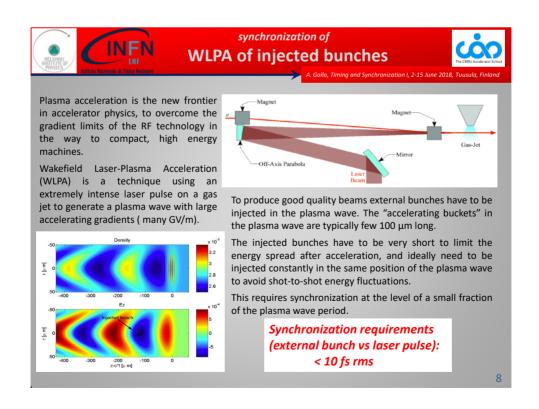
2

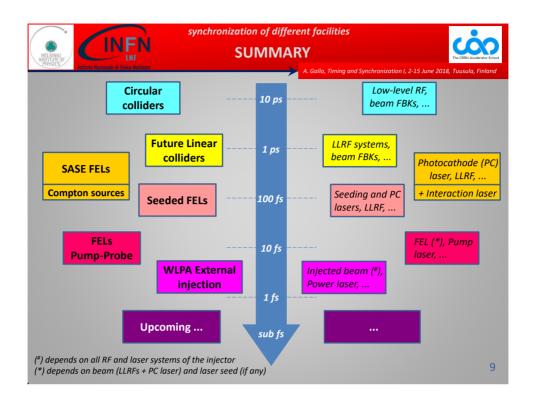


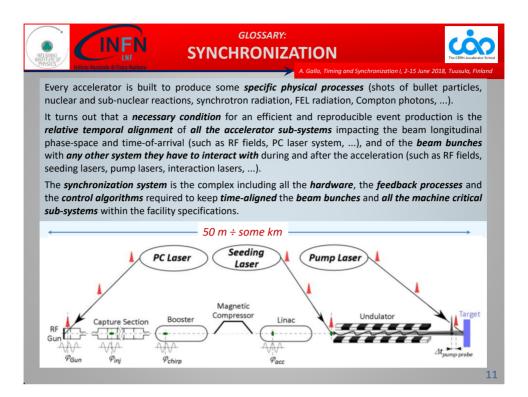


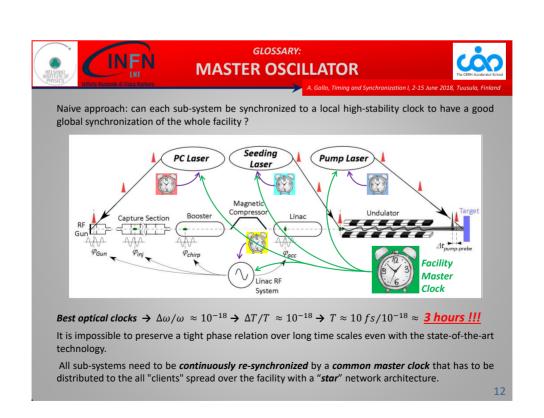


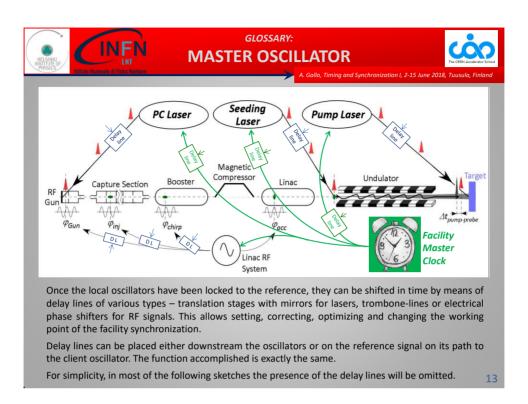


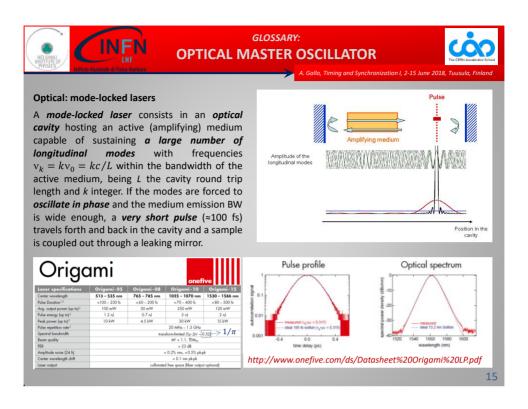


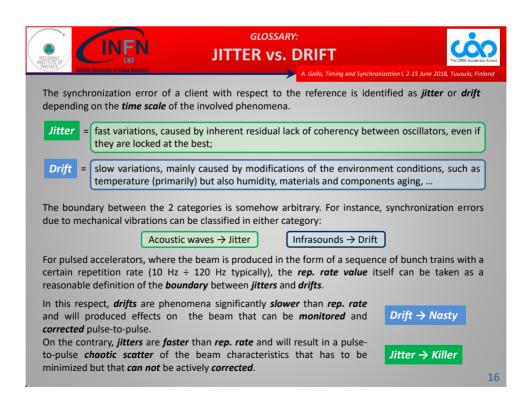


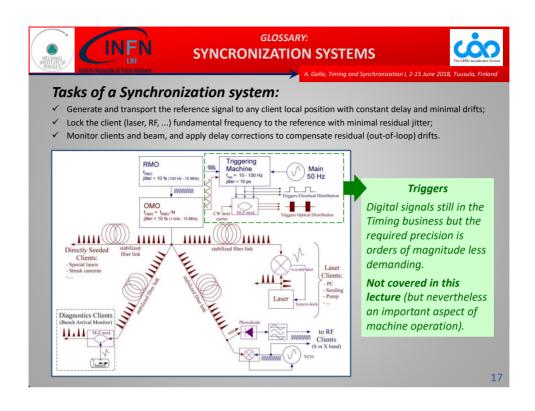


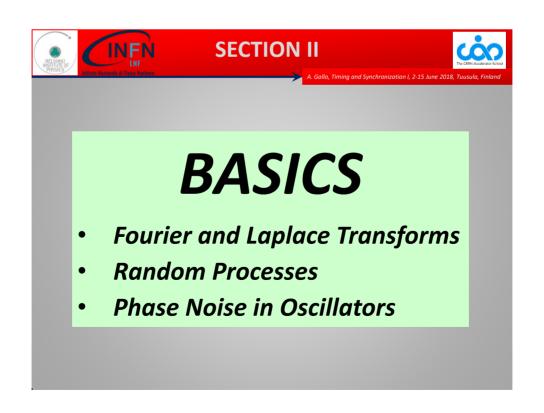


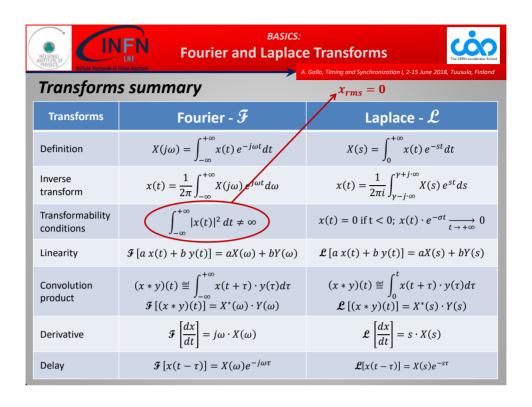


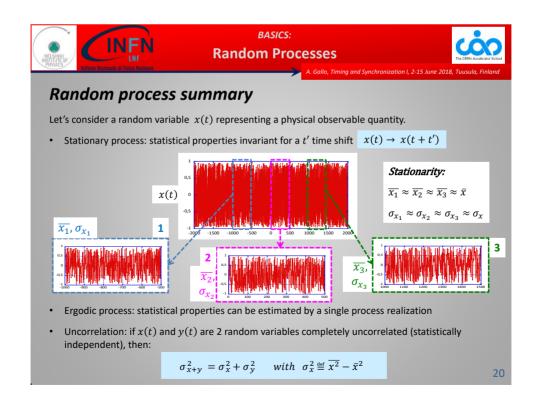


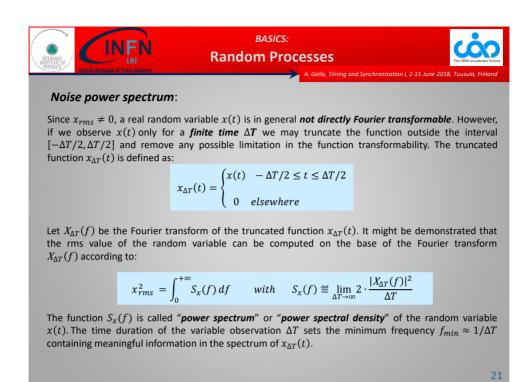


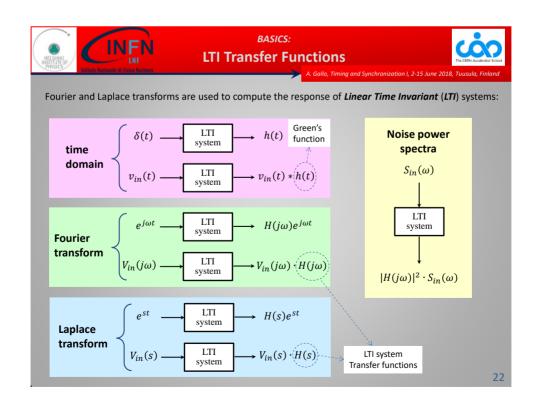


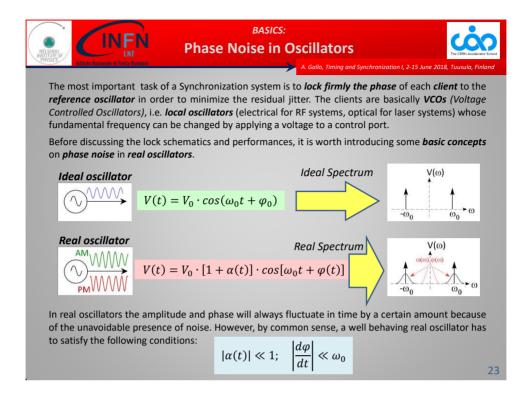


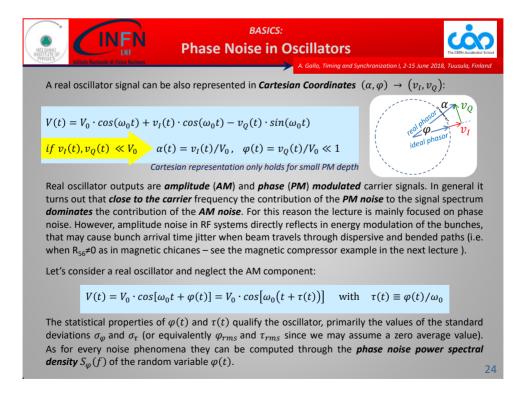




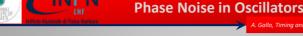








BASICS:



Again, for practical reasons, we are only interested in observations of the random variable $\varphi(t)$ for a finite time ΔT . So we may truncate the function outside the interval $[-\Delta T/2, \Delta T/2]$ to recover the function transformability.

$$arphi_{\Delta T}(t) = egin{cases} arphi(t) & -\Delta T/2 \leq t \leq \Delta T/2 \\ 0 & elsewhere \end{cases}$$

Let $arPhi_{\Delta T}(f)$ be the Fourier transform of the truncated function $arphi_{\Delta T}(t)$. We have:

$$(\varphi_{rms}^2)_{\Delta T} = \int_{f_{min}}^{+\infty} S_{\varphi}(f) df \text{ with } S_{\varphi}(f) \stackrel{\text{def}}{=} 2 \frac{|\Phi_{\Delta T}(f)|^2}{\Delta T}$$

 $S_{\omega}(f)$ is the **phase noise power spectral density**, whose dimensions are rad^2/Hz .

Again, the time duration of the variable observation ΔT sets the minimum frequency $f_{min} \approx 1/\Delta T$ containing meaningful information on the spectrum $\Phi_{\Delta T}(f)$ of the phase noise $\varphi_{\Delta T}(t)$.

IMPORTANT:

we might still write

$$\varphi_{rms}^2 = \lim_{\Delta T \to \infty} (\varphi_{rms}^2)_{\Delta T} = \int_0^{+\infty} \left(2 \cdot \lim_{\Delta T \to \infty} \frac{|\varphi_{\Delta T}(f)|^2}{\Delta T} \right) df = \int_0^{+\infty} S_{\varphi}(f) df$$

but we must be aware that in this case ϕ_{rms} is *likely to diverge*. This is physically possible since the power in the carrier does only depend on amplitude and not on phase. In these cases the rms value can better be specified for a given observation time ΔT or equivalently for a given frequency range of integration $[f_1, f_2]$.

BASICS:

Phase Noise in Oscillators

We have:

$$\varphi_{rms}^{2} \Big|_{\Delta T} = 2 \cdot \int_{f_{min}}^{+\infty} \mathcal{L}(f) \, df \quad with \quad \mathcal{L}(f) = \begin{cases} \frac{|\Phi_{\Delta T}(f)|^{2}}{\Delta T} & f \ge 0 \\ 0 & f < 0 \end{cases}$$

The function $\mathcal{L}(f)$ is defined as the "Single Sideband Power Spectral Density" and is called "script-L"

 $\mathcal{L}(f) = \frac{power \ in \ 1 \ Hz \ phase \ modulation \ single \ sideband}{total \ simple \ power} = \frac{1}{2} S_{\varphi}(f) \leftarrow IIIE \ standard \ 1139 - 1999$ total signal power

Linear scale $\rightarrow \mathcal{L}(f)$ units $\equiv Hz^{-1}$ or rad^2/Hz

Log scale $\rightarrow \mathbf{10} \cdot \text{Log}[\mathcal{L}(f)]$ units $\equiv dBc/Hz$

CONCLUSIONS:

- ✓ Phase (and time) jitters can be computed from the spectrum of $\varphi(t)$ through the $\mathcal{L}(f)$ - or $S_{\varphi}(f)$ -
- ✓ Computed values depend on the integration range, i.e. on the duration ΔT of the observation. Criteria are needed for a proper choice (we will see ...).

