Beam Instrumentation,

Finland

2-15 June 2018, Tuusula,

Schottky Diagnostics

00

Piotr Kowina, Peter Forck and Rahul Singh GSI Helmholtzzentrum für Schwerionenforschung

Darmstadt

P. Kowina et al. GSI, Schottky Diagnostics

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion and summary

Longitudinal Schottky Spectrum delivers:

- > Mean revolution frequency f_o , incoherent spread in revolution frequency $\Delta f / f_o$ \Rightarrow in accelerator physics: mean momentum p_o , momentum spread $\Delta p / p_o$
- \succ For bunched beams: synchrotron frequency f_s
- Insight in longitudinal beam dynamics including non-linearities

Transverse Schottky Spectrum delivers:

- Tune **Q** i.e. number of betatron oscillations per turn
- > Chromaticity ξ with $\frac{\Delta Q}{Q_0} = \xi \cdot \frac{\Delta p}{p_0}$ i.e. coupling between momentum and tune
- Transverse emittance (in most case in relative units)

For intense beams:

Modifications of the spectrum is used to probe beam models

Installed at nearly <u>every</u> proton, anti-proton & ion storage ring for coasting beams Installed in many hadron synchrotrons for bunched beam investigations

Emission of electrons in a vacuum tube:

W. Schottky, 'Spontaneous current fluctuations in various electrical conductors', Ann. Phys. 57 (1918) [original German title:'Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern']

Result: Emission of electrons follows statistical law \Rightarrow white noise

Physical reason: Charge carrier of final mass and charge

Walter Schottky (1886 – 1976):

- German physicist at Universities Jena,
 Würzburg & Rostock and at company Siemens
- Investigated electron and ion emission from surfaces
- Design of vacuum tubes
- Super-heterodyne method i.e spectrum analyzer
- Solid state electronics e.g. metal-semiconductor interface called 'Schottky diode'
- **No** connection to accelerators

GSİ

Emission of electrons in a vacuum tube:

W. Schottky, 'Spontaneous current fluctuations in various electrical conductors', Ann. Phys. 57 (1918) [original German title:'Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern']

Result: Emission of electrons follows statistical law \Rightarrow white noise

Physical reason: Charge carrier of final mass and charge for <u>single</u> pass arrangement **Assuming**: charges of quantity e, N average charges per time interval and τ duration of travel

General Noise Sources of Electronics Devices

Any electronics is accompanied with noise due to:

Thermal noise as given by the statistical movement of electrons described by Maxwell-Boltzmann distribution Within resistive matter average cancels: U_{mean} = < U > = 0 but standard deviation remains:

 $\begin{array}{l} U_{noise} = \sqrt{\langle U^2 \rangle} = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f} & \text{this is white noise i.e. no frequency dependence,} \\ k_B \text{ Boltzmann constant, } T \text{ temperature, } R \text{ resistivity, } \Delta f \text{ bandwidth} \\ \Leftrightarrow \text{ Spectra noise for } R = 50 \ \Omega \text{ and } T = 300 \ \text{K:} & U_{noise} / \sqrt{\Delta f} = \sqrt{4k_B TR} \approx 0.446 \ nV / \sqrt{Hz} \\ \Leftrightarrow \text{ spectral power density: } \frac{\Delta P_{noise}}{\Delta f} = \frac{1}{R} \cdot \left(\frac{U_{noise}}{\sqrt{\Lambda f}}\right)^2 \approx -174 \ \text{dBm/Hz} \end{array}$

6

Noise is the statistical fluctuations of a signal !

Schottky Noise' Analyzed in Frequency Domain

Please look at this corn field:

Each straw seems to be fully stochastically distributed over the field : Similar to white noise

What If now look from a different perspective :

- You see a clear macrostructure (even with some harmonics)
- You see even fine microstructure of the single corn rows
 - → in the case of the Schottky signal analysis the different perspective is the frequency domain.

C Schottky Signal Analyzed in Frequency Domain

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion and summary

Remark:

Assumption for the considered cases (if not stated otherwise):

- > Equal & constant synchrotron frequency for all particles $\Rightarrow \Delta f_{syn} = 0$
- > No interaction between particles (e.g. space charge) \Rightarrow no incoherent effect e.g. $\Delta Q_{incoh} = 0$
- > No contributions by wake fields \Rightarrow no coherent effects by impedances e.g. $\Delta Q_{coh} = 0$

 \Rightarrow synchrotron oscillation with frequency $f_s \propto \sqrt{U_{rf}} \ll f_0$, typ. 0.1 kHz < f_s < 5 kHz

For most considered cases (if not stated otherwise):

- > No direct interaction of the particles, i.e. no incoherent effect like by space charge
- No significant contributions by induced wake field i.e. no coherent effects by impedances

Momentum compaction factor α :

A particle with a offset momentum \rightarrow different orbit

\Rightarrow orbit length C varies: $\frac{\Delta C}{C_0} = \alpha \cdot \frac{\Delta p}{p_0}$

Slip factor or frequency dispersion η :

A particle with offset momentum \rightarrow diff. revolution frequency

 \Rightarrow rev. frequency varies: $\frac{\Delta f}{f_0} = \eta \frac{\Delta p}{p_0}$ Chromaticity ξ :

A faster particle is less focused at a quadrupole

$$\Rightarrow$$
 tune varies: $\frac{\Delta Q}{Q_0} = \xi \cdot \frac{\Delta p}{p_0}$

Remark:

The values of α η and ξ depend on the lattice setting i.e. on the arrangement of dipoles and quadrupoles

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge *e* rotates with $t_1 = 1/f_0$: Current at pickup $I_1(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_0)$ $\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$

i.e. frequency spectrum comprise of δ -functions at $h f_0$

This can be proven by **Fourier Series** for periodic signals (and display of positive frequencies only)

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge *e* rotates with $t_1 = 1/f_0$: Current at pickup $I_1(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_0)$ $\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$

Particle 2 of charge **e** rotating with $\mathbf{t_2} = \mathbf{1}/(f_0 + \Delta f)$: Current at pickup $I_2(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_2)$

$$\Rightarrow I_2(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - h \cdot [f_0 + \Delta f])$$

Important result for 1st step:

The entire information is available around all harmonics

> The distance in frequency domain scales with $h \cdot \Delta f$

Schottky pickup

P. Kowina et al. GSI, Schottky Diagnostics

Longitudinal Schottky Analysis: 2nd Step

Averaging over many particles for a coasting beam:

Assuming **N** randomly distributed particles characterized by phase θ_1 , θ_2 , θ_3 , ..., θ_N with same revolution time $t_0 = 1/f_0 \Leftrightarrow$ same revolution frequency f_0

The total beam current is:
$$I(t) = ef_0 \sum_{n=1}^N \cos \theta_n + 2ef_0 \sum_{n=1}^N \sum_{h=1}^\infty \cos(2\pi f_0 ht + h\theta_n)$$

For observations much longer than one turn: average current $\langle I \rangle_h = 0$ for **each** harm. $h \neq 1$ **but** In a band around **each** harmonics h the *rms* current $I_{rms}(h) = \sqrt{\langle I^2 \rangle_h}$ remains:

$$\langle I^2 \rangle_h = \left(2ef_0 \sum_{n=1}^N \cos(h\theta_n) \right) = (2ef_0)^2 \cdot (\cos h\theta_1 + \cos h\theta_2 + ... \cos h\theta_N)^2$$

 $\equiv (2ef_0)^2 \cdot N \left\langle \cos^2 h \, \theta_i \right\rangle = (2ef_0)^2 \cdot N \cdot \frac{1}{2} = 2 e^2 f_0^2 \cdot N \quad \text{due to the random phases } \theta_n$

The power at each harmonic h is:

$$P_h = Z_t \left\langle I^2 \right\rangle_h = 2 Z_t e^2 f_0^2 \cdot N$$

measured with a pickup of transfer impedance Z_t

Important result for 2nd step:

> The **integrated** power in each band is constant and $P_h \propto N$ **Remark:** Random distribution is connected to shot noise & W. Schottky (1918)

born July died March

Introducing a frequencies distribution for many particles:

The dependence of the distribution per band is: $\frac{dP_h}{df} = Z_t \cdot \frac{d}{df} \langle I^2 \rangle_h = 2Z_t e^2 f_0^2 N \cdot \frac{dN}{df}$ Inserting the acc. quantity $\frac{df}{f_0} = h \eta \cdot \frac{dp}{p_0}$ leads to : $\frac{dP_h}{df} = 2Z_t e^2 p_0 N \cdot \frac{f_0}{h} \cdot \frac{1}{n} \cdot \frac{dN}{dn}$

Important results from 1st to 3rd step:

> The power spectral density $\frac{dP_h}{df}$ in **each** band

> The maxima of each band scales $\left.\frac{dP_h}{df}\right|_{max} \propto \frac{1}{h}$

Measurement: Low f preferred for good signal-to-noise ratio

- > The width increase for each band: $\frac{dP_h}{df} \propto h$ *Measurement:* High f preferred for good frequency resolution
- > The power scales only as $\frac{dP_h}{df} \propto N$ due to random phases of particles i.e. incoherent single particles' contribution
- ▶ For ions A^{q+} the power scales $\frac{dP_h}{df} \propto q^2 \Rightarrow$ larger signals for ions

Remark: The 'power spectral density' $\frac{dP_h}{df}$ is called only 'power' P_h below

Example:

Gaussian

n = 1

overlap

 $\mathsf{U}_{\mathsf{sum}}$

∆**p/p** = 2%

Introducing a frequencies distribution for many particles:

The dependence of the distribution per band is: $\frac{dP_h}{df} = Z_t \cdot \frac{d}{df} \langle I^2 \rangle_h = 2Z_t e^2 f_0^2 N \cdot \frac{dN}{df}$ Inserting the acc. quantity $\frac{df}{f_0} = h \eta \cdot \frac{dp}{p_0}$ leads to : $\frac{dP_h}{df} = 2Z_t e^2 p_0 N \cdot \frac{f_0}{h} \cdot \frac{1}{n} \cdot \frac{dN}{dn}$

Important results from 1st to 3rd step:

> The power spectral density $\frac{dP_h}{df}$ in **each** band

reflects the particle's momentum distribution: The maxima of each band scales $\frac{dP_h}{df}\Big|_{max} \propto \frac{1}{h}$ e width > The maxima of each band scales $\frac{dP_h}{df} \Big|_{max} \propto \frac{1}{h}$ *Measurement:* Low f preferred for good signal-to-noise ratio

> The width increase for each band: $\frac{dP_h}{df} \propto h$

Measurement: High *f* preferred for good frequency resolution

- > The power scales only as $\frac{dP_h}{df} \propto N$ due to random phases of particles i.e. incoherent single particles' contribution
- ▶ For ions A^{q+} the power scales $\frac{dP_h}{df} \propto q^2 \Rightarrow$ larger signals for ions

Remark: The 'power spectral density' $\frac{dP_h}{df}$ is called only 'power' P_h below

16

 $\propto 1/f$

10

harm. of revolution freq. $h = f/f_{o}$

12

U_{left}

right

14

 θ_1

Pickup for Schottky Signals: Capacitive Pickup

A Schottky pickup are e comparable to a capacitive BPM:

- > Typ. 20 to 100 cm insertion length
- high position sensitivity for transverse Schottky
- Allows for broadband processing
- Linearity for position **not** important

Example: Schottky pickup at GSI synhrotron

Coupling to beam $U_{signal} = Z_t \cdot I_{beam}$ Typically $Z_t = 1 \dots 10 \Omega$, C = 30 \ldots 100 pF $\Rightarrow f_{cut} \approx 30$ MHz

⇒ operation rang $f = 30 \dots 200$ MHz i.e. above f_{cut} but below signal distortion ≈ 200 MHz

Example: Schottky for HIT, Heidelberg operated as capacitive (mostly) or strip-line

Electronics for a typical broadband Pickup

Analog signal processing chain:

- Sensitive broadband amplifier
- Hybrid for sum or difference
- Evaluation by spectrum analyzer

Enhancement by external resonant circuit :

- > Cable as $\lambda/2$ resonator
- Tunable by capacitive diode
- > Typical quality factor $Q \approx 3 \dots 10$
- \Rightarrow resonance must be broader than the beam's frequency spread

Challenge for a good design:

- Low noise amplifier required
- For multi stage amplifier chain: prevent for signal saturation

Choice of frequency range:

- At maximal pickup transfer impedance
- ▶ Lower f ⇒ higher signal

- \blacktriangleright Higher $f \Rightarrow$ better resolution
- Prevent for overlapping of bands

Basic Detection Instrument: Analog Spectrum Analyzer

The spectrum analyzer determines the frequency spectrum of a signal:

Steps for an <u>analog</u> device:

- Low pass filter, typ. f < 3 GHz</p>
- Mixing with
 scanning local oscillator
- ➢ Difference frequency by narrow band pass filter, width typ. ≈ 1 kHz
- ➢ Rectification ⇒ units W or dBm
- > Scan duration typically \approx 1 s

i.e. averaging signal over many turns Parameter to be chosen (partly dependent):

- ➢ Reference level P_{ref} [dBm]
- > Center frequency $f_{LO} = f_{center}$
- > Span $f_{span} = f_{stop} f_{start}$
- ➢ Resolution bandwidth ∆*f*_{res}
 i.e. band-pass filter width
- \succ Video bandwidth Δf_{video} i.e. data smoothing
- Sweep time t_{sweep}

Basic Detection Instrument: Digital Spectrum Analyzer

The spectrum analyzer determines the frequency spectrum of a signal:

- FFT parameter, windowing
- digital filters
- time for acquisition 0.1 ... 10 s
- Most often given in traditional parameters
- ➤ reference level P_{ref} [dBm]
- > Span $f_{span} = f_{stop} f_{start}$
- ▶ Resolution bandwidth Δf_{res}

Example: **Coasting** beam at GSI synchrotron at injection $E_{kin} = 11.4 \text{ MeV/u} \Leftrightarrow \beta = 15.5 \%$, harmonic number h = 119

Application for coasting beam diagnostics:

- > Injection: momentum spread via $\frac{\Delta p}{p_0} = -\frac{1}{\eta} \cdot \frac{\Delta f_h}{h f_0}$ as influenced by re-buncher at LINAC
- Injection: matching i.e. f_{center} stable at begin of ramp
- Dynamics during beam manipulation e.g. cooling
- \blacktriangleright Relative current measurement for low current below the dc-transformer threshold of $\approx 1 \mu A$

Construction Longitudinal Schottky for acceleration Ramp Operation

Example for longitudinal Schottky spectrum to check proper acceleration frequency:

> Injection energy given by LINAC settings, here $E_{kin} = 11.4 \text{ MeV/u} \Leftrightarrow \beta = 15.5 \%$, $\Delta p/p \approx 10^{-3} (1\sigma)$

- multi-turn injection & de-bunching within ≈ ms
- adiabatic bunch formation & acceleration
- > Measurement of revolution frequency f_{rev}
- Alignment of acc. f_{rf} to have f_{rev} = h · f_{rf} i.e. no frequency jump !

C Longitudinal Schottky for Momentum Spread *Ap/p₀* Analysis

Momentum spread $\Delta p/p_0$ measurement after multi-turn injection & de-bunching of t < 1ms duration to stay within momentum acceptance during acceleration **Method:** Variation of buncher voltage i.e. rotation in longitudinal phase space

 \rightarrow minimizing of momentum spread $\Delta p/p_{o}$

Example: $10^{10} U^{28+}$ at 11.4 MeV/u injection plateau 150 ms, $\eta = 0.94$ Longitudinal Schottky at harmonics h = 117Momentum spread variation:

 $\Delta p/p \approx (0.6...2.5) \cdot 10^{-3}$ (1 σ)

P. Kowina et al. GSI, Schottky Diagnostics

C Electron Cooling: Improvement of Beam Quality

Electron cooling: Superposition ion and cold electron beams with the same

Physics:

- Momentum transfer by Coulomb collisions
- Cooling force results from energy loss in the cold, co-moving electron beam Cooling time: 0.1 s for low energy highly charged ions, 1000 s for high energy protons

Electron Cooling: Monitoring of Cooling Process

Example: Observation of cooling process at GSI storage ring Ion beam: 10⁸ protons at 400 MeV Electron beam I_{ele} = 250 mA Momentum spread (1 σ): $\Delta p/p$ = 4 ·10⁻⁴ \rightarrow 3 ·10⁻⁵ within 650 s

Application:

- Alignment of cooler parameter and electron-ion overlap
- Determination of cooling forces and intra-beam scattering acting as a counteract

25

- J. Roßbach et al., Cool 2015, p. 136 (2015)
- P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

Longitudinal cooling of 7E9 particles at COSY in FZ-Jülich

26

Even particles shifted to lower energies during rebunching were captured by the filter cooling.

Fastest stochastic cooling ever seen at COSY

B. Lorentz, Aries Workshop, Mai. 2018,

Electronics for a typical broadband Pickup

Analog signal processing chain:

- Sensitive broadband amplifier
- Hybrid for sum or difference
- Evaluation by spectrum analyzer

Enhancement by external resonant circuit :

- > Cable as $\lambda/2$ resonator
- Tunable by capacitive diode
- ▶ Typical quality factor $Q \approx 3 \dots 10$
- \Rightarrow resonance must be broader than the beam's frequency spread

Challenge for a good design:

- Low noise amplifier required
- For multi stage amplifier chain: prevent for signal saturation

Choice of frequency range:

- At maximal pickup transfer impedance
- $\succ \text{ Lower } \boldsymbol{f} \Rightarrow \text{ higher signal}$
- \blacktriangleright Higher $f \Rightarrow$ better resolution
- Prevent for overlapping of bands

Resonant Pick-up at The CERN AD Schottky system

Horizontal & vertical TPUs - characteristics

- PUs resonant @5.6 MHz (Q = 900).
- Low-noise feedback (same as LPU) to regain broad-band properties.

M. E. Angoletta CARE-N3-HHH-ABI Workshop, Chamonix, 2007

Pillbox Cavity for vey low Detection Threshold

Enhancement of signal strength by a cavity

Example: Pillbox cavity at GSI and Lanzhou storage ring for with variable frequency

Low Beam current Measurement using a Schottky Cavity

Observation of *single* **ions is possible:**

Example: Storage of **six** ¹⁴²Pm ⁵⁹⁺ at 400 MeV/u during electron cooling

Application:

- Single ion observation for basic accelerator research
- Observation of radio-active nuclei for life time and mass measurements

F. Nolden et al., NIM A 659, p.69 (2011), F. Nolden et al., DIPAC'11, p.107 (2011), F. Suzaki et al., HIAT'15, p.98 (2015)

Outline:

Introduction to noise and fluctuations relevant for Schottky analysis

- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion and summary

Composition of two waves:

Carrier: For synchrotron \rightarrow revolution freq. $f_0 = 1/t_0$ $U_c(t) = \hat{U}_c \cdot \cos(2\pi f_0 t)$

Signal: For synchrotron \rightarrow betatron frequency $f_{\beta} = q \cdot f_0$ q < 1 non-integer part of tune Q = n + q $U_{\beta}(t) = \hat{U}_{\beta} \cdot \cos(2\pi q f_0 t)$

Amplitude multiplication of both signals $m_{\beta} = \frac{\widehat{U}_{\beta}}{\widehat{U}_{\beta}} = 1$

$$\Rightarrow \boldsymbol{U}_{tot}(t) = \left[\widehat{\boldsymbol{U}}_{\boldsymbol{C}} + \widehat{\boldsymbol{U}}_{\boldsymbol{\beta}} \cdot \cos(2\pi q f_0 t) \right] \cdot \cos(2\pi f_0 t)$$
$$= \widehat{\boldsymbol{U}}_{\boldsymbol{C}} \cdot \cos(2\pi f_0 t)$$
$$+ \frac{1}{2} \widehat{\boldsymbol{U}}_{\boldsymbol{\alpha}} \cdot \left[\cos(2\pi [1 - q] f_0 t) + \cos(2\pi [1 + q] f_0 t) \right]$$

$$1/2 \circ_{\beta} e^{-\beta} (\cos(2\pi [1 q])_{0}) + \cos(2\pi [1 q])_{0})$$

32

Using:
$$\cos(x) \cdot \cos(y) = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

Remark:

Pickup difference signal \Rightarrow central carrier peak vanish if beam well centered in pickup

Transverse Spectrum for a coasting Beam: Single Particle

P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

Observation of the difference signal of two pickup electrodes:

Betatron motion by a single particle 1 at Schottky pickup: Displacement: $x_1(t) = A_1 \cdot \cos(2\pi q f_0 t)$

*A*₁: single particle*q*: non-integer part of tunetrans. amplitude

Dipole moment:
$$d_1(t) = x_1(t) \cdot I(t)$$

transverse part longitudinal part equals 'signal' equals 'carrier' Inserting longitudinal Fourier series: $d_1(f) =$ $ef_0 \cdot A_1 + 2ef_0A_1 \cdot \sum_{h=1}^{\infty} \cos(2\pi q f_0 t) \cdot \cos(2\pi h f_0 t)$

 $= ef_0 \cdot A_1 + ef_0 A_1 \cdot \sum_{h=1}^{\infty} \cos(2\pi [h-q] f_0 t) \cdot \cos(2\pi [h+q] f_0 t)$

34

P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

Observation of the difference signal of two pickup electrodes:

Betatron motion by two particles at pickup: Displacements: $\mathbf{x_1}(t) = A_1 \cdot \cos(2\pi q_1 f_0 t)$: $\mathbf{x_2}(t) = A_2 \cdot \cos(2\pi q_2 f_0 t)$

Transverse Schottky band for a distribution:

- Amplitude modulation of longitudinal signal (i.e. 'spread of carrier')
- Two sideband centered at $f_h^{\pm} = (h \pm q) \cdot f_0$ \Rightarrow tune measurement
- The width is unequal for both sidebands (see below)
- The integrated power is constant (see below)

Example: \boldsymbol{Q} = 4.21, $\Delta \boldsymbol{p}/\boldsymbol{p}_{o}$ = 2·10⁻³ , η = 1, ξ = -1

Example for Tune Measurement using transverse Schottky

Example of a transverse Schottky spectrum:

- Wide scan with lower and upper sideband
- Tune from central position of both sidebands

$$q = h \cdot \frac{f_h^+ - f_h^-}{f_h^+ + f_h^-}$$

- Sidebands have different shape
- Tune measurement without beam influence
- \Rightarrow usage during regular operation

Example: Horizontal tune $Q_h = 4.161 \rightarrow 4.305$ within 0.3 s for preparation of slow extraction Beam Kr³³⁺ at 700 MeV/u,

*f*₀ = 1.136 MHz ⇔ *h* = 22

Characteristic movements of sidebands visible

Reference particle: tune **q**₀

Particle 1 with $p_1 > p_0 \Rightarrow q_1 = q_0 - |\xi \cdot \Delta p_1 / p_0| < q_0$ Particle 2 with $p_2 < p_0 \Rightarrow q_2 = q_0 + |\xi \cdot \Delta p_2 / p_0| > q_0$

Sideband Width for a coasting Beam

Results:

Sidebands have different width in dependence of Q_{σ} , η and ξ

i.e. 'longitudinal \pm transverse \pm coupling' \Rightarrow 'chromatic tune'

 \succ The width measurement can be used for chromaticity ξ measurements

C Example of Chromaticity Measurement at Tevatron

Remark: Spectrum measured with bunched beam and gated signal path, see below A. Jansson et al., EPAC'04, p. 2777 (2004) & R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011)

39

P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

CPower per Band for a coasting Beam & transverse *rms* Emittance 📻 📻 🁖

Dipole moment for a harmonics **h** for a particle with betatron amplitude A_n : $d_n(hf) = 2ef_0A_n \cdot \cos(2\pi q f_0 t + \theta_n) \cdot \cos(2\pi h f_0 t + \varphi_n)$ Averaging over betatron phase θ_n and spatial distribution for the **n** = 1...**N** particles: $\Rightarrow \langle d^2 \rangle = e^2 f_0^2 \cdot N/2 \cdot \langle A^2 \rangle \cdot N/2$ with $\langle A^2 \rangle \equiv x_{rms}^2 = \varepsilon_{rms}\beta$ square of average transverse amplitudes $\Rightarrow P_h^{\pm} \propto \langle d^2 \rangle = e^2 f_0^2 \cdot \frac{N}{2} \cdot \varepsilon_{rms}\beta$ with ε_{rms} transvers emittance and β -function at pickup **Results:**

> Power P_h^{\pm} is the same at each harmonics **h**

> Power decreases for lower emittance beams (due to decreasing modulation power)

 \Rightarrow measurement of rms emittance is possible. *Example*: Transverse Schottky at GSI during cooling

Example:

Emittance shrinkage during stochastic cooling Sideband behavior:

- width: smaller due to longitudinal cooling
- \succ high: ≈ constant due to transverse cooling
- > Power P_h^{\pm} decreases \Rightarrow Emittance determination, but requires normalization by profile monitor

F. Nolden , DIPAC'01, p. 6 (2001)

Transverse rms Emittance Determination at RHIC

The integrated power in a sideband delivers the rms emittance $P_h^{\pm} \propto \langle d^2 \rangle \propto \varepsilon_{rms} \cdot \beta$

Example: Schottky cavity operated at dipole mode TM_{120} @ 2.071 GHz & TM_{210} @ 2.067 GHz i.e. a beam with offset excites the mode (like in cavity BPMs)

Peculiarity: The entire cavity is movable \Rightarrow the stored power delivers a calibration *P(x)*

Result: rms emittances coincide with IPM measurement within the 20 % error bars TABLE II. Results of Schottky emittance scan and comparison to RHIC IPM. Emittance values are normalized.

Ring and plane	Schottky β function (m)	Schottky rms beam size (mm)	Schottky emittance ($\pi \ \mu$ m, 95%)	IPM emittance ($\pi \ \mu$ m, 95%)
Blue horizontal	28 ± 4	1.04 ± 0.1	23 ± 5	24 ± 5
Blue vertical	27 ± 4	0.95 ± 0.1	20 ± 4	23 ± 3
Yellow horizontal	27 ± 4	0.99 ± 0.1	22 ± 4	19 ± 4
Yellow vertical	30 ± 5	1.15 ± 0.1	26 ± 5	28 ± 4

41

K.A. Brown et al., Phys. Rev. AB, 12, 012801 (2009), W. Barry et al., EPAC'98, p. 1514 (1998)

P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion and summary

Remark:

Assumption for the considered cases (if not stated otherwise):

- > Equal & constant synchrotron frequency for all particles $\Rightarrow \Delta f_{syn} = 0$
- > No interaction between particles (e.g. space charge) \Rightarrow no incoherent effect e.g. $\Delta Q_{incoh} = 0$

42

> No contributions by wake fields \Rightarrow no coherent effects by impedances e.g. $\Delta Q_{coh} = 0$

C Principle of Frequency Modulation

Frequency modulation by composition of two waves:

Carrier: For synchrotron → revolution freq. $f_0 = 1/t_0$ $U_c(t) = \hat{U}_c \cdot \cos(2\pi f_0 t)$

Signal: For synchrotron \rightarrow synchrotron freq. $f_s = Q_s \cdot f_0$ $Q_s < 1$ synchrotron tune i.e. long. oscillations per turn $\tau_s(t) = \hat{\tau}_s \cdot \cos(2\pi f_s t)$

Frequency modulation is: $U_{tot}(t) = \hat{U}_C \cdot$

$$\cos\left(2\pi f_0 t + m_s \cdot \int_0^t \tau_s(t') dt'\right)$$
$$= \widehat{U}_C \cdot \cos\left(2\pi f_0 t + \frac{m_s \widehat{\tau}_s}{2\pi f_s} \cdot \sin(2\pi f_s t)\right)$$

Source: wikipedia

Frequency Modulation: General Consideration

Frequency modulation by composition of two waves: Carrier: For synchrotron \rightarrow revolution freq. $f_0 = 1/t_0$ $U_c(t) = \hat{U}_C \cdot \cos(2\pi f_0 t)$ Signal: For synchrotron \rightarrow synchrotron freq. $f_s = Q_s \cdot f_0$ $Q_s < 1$ synchrotron tune i.e. long. oscillations per turn $\tau_s(t) = \hat{\tau}_s \cdot \cos(2\pi f_s t)$ Frequency modulation is: $U_{tot}(t) = \hat{U}_C \cdot \cos(2\pi f_0 t + m_s \cdot \int_0^t \tau_s(t') dt')$ $= \hat{U}_C \cdot \cos(2\pi f_0 t + \frac{m_s \hat{\tau}_s}{2\pi f_s} \cdot \sin(2\pi f_s t))$

Frequency domain representation:

Bessel functions $J_p(x)$ with modulation index $x = \frac{m_S \hat{\tau}_S}{2\pi f_S}$

 $U_{tot}(t) = \hat{U}_c \cdot J_0(x) \cos(2\pi f_0 t) \qquad \text{central peak} \\ + \sum_{k=0}^{\infty} (-1)^k \hat{U}_c \cdot J_p(x) \cos(2\pi (f_0 - pf_s)t) \text{ lower sidebands}$

$$+\sum_{p=1}^{\infty} \hat{U}_{c} \cdot J_{p}(x) \cos(2\pi (f_{0} + pf_{s})t)$$

 \Rightarrow infinite number of satellites, but only few are above a detectable threshold (Carson bandwidth rule)

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

O Bunched Beam: Longitudinal Schottky, Single Particle

 $\mathbf{U}_{\mathsf{sum}}$

Single particle of a bunched beam \rightarrow modulation of arrival by synchrotron oscillation: Synchrotron frequency $f_s = Q_s \cdot f_0$ $Q_s < 1$ synchrotron tune i.e. long. oscillations per turn $\tau_s(t) = \hat{\tau}_s \cdot \cos(2\pi f_s t + \psi)$ U_{right}

Modification of coasting beam case for a frequency modulation: $I_1(t) = ef_0 + 2ef_0 \sum_{h=0}^{\infty} \cos \left\{ 2\pi h f_0 [t + \hat{\tau}_s \cdot \cos(2\pi f_s t + \psi)] \right\}$

Each harmonics **h** comprises of lower and upper sidebands: $\sum_{p=-\infty}^{\infty} J_p(2\pi h f_0 \hat{\tau}_s) \cdot \cos(2\pi h f_0 t + 2\pi p f_s t + p \psi)$

For **each** revolution harmonics **h** the longitudinal is split

- > Central peak at hf_0 with height $J_0(2\pi \cdot hf_0 \cdot \hat{\tau}_s)$
- > Satellites at $hf_0 \pm pf_s$ with height $J_p(2\pi \cdot hf_0 \cdot \hat{\tau}_s)$

Note:

- The argument of Bessel functions contains amplitude of synchrotron oscillation $\hat{\tau}_s$ & harmonics *h*
- Distance of sidebands are independent on harmonics h

modulated

revolution

rf cavity

O Bunched Beam: Longitudinal Schottky, Many Particles

Particles have different amplitudes $\hat{\tau}_s$ and initial phases ψ \Rightarrow averaging over initial parameters for n = 1...N particles:

Results:

Central peak p = 0: No initial phase for single particles $U_0(t) \propto I_0(2\pi \cdot hf_0 \cdot \hat{\tau}_s) \cdot \cos(2\pi hf_0 t)$ \Rightarrow Total power $P_{tot}(p=0) \propto N^2$ i.e. contribution from 1... N particles add up coherently \Rightarrow Width: $\sigma_{p=0} = 0$ (ideally without power supplier ripples etc.) **Remark:** This signal part is used in regular BPMs \Rightarrow this is **not** a Schottky line in a **stringent** definition > Side bands $p \neq 0$: initial phases ψ appearing $U_{\mathbf{p}}(t) \propto J_{\mathbf{p}} \left(2\pi \cdot \mathbf{h} f_0 \cdot \hat{\tau}_s\right) \cdot \cos(2\pi \mathbf{h} f_0 t + 2\pi \mathbf{p} f_s t + \mathbf{p} \psi)$ \Rightarrow Total power $P_{tot}(p \neq 0) \propto N$ i.e. contribution from 1...**N** particles add up **incoherently** \Rightarrow Width: $\sigma_{p\neq 0} \propto p \cdot \Delta f_s$ lines getting wider due to momentum spread $\Delta p / p_0 \&$ possible spread of synchrotron frequency Δf_{c}

Example for scaling of power: If $N = 10^{10}$ then $P_{tot}(p = 0) \approx 100 \text{dB} \cdot P_{tot}(p \neq 0)$ $\begin{array}{c|c}
 U_{left} & U_{sum} \\
 \hline
 <math>\tau_s(t) & U_{right} \\
 initial \\
 bunch & phase \psi \\
 etc.) & f cavity
\end{array}$

🔅 🔨 Example of longitudinal Schottky Analysis for a bunched Beam 📻 📻 👖

Example: **Bunched** beam at GSI synchrotron *Beam:* Injection $E_{kin} = 11.4$ MeV/u harm. h = 120

Application for 'regular' beams:

- > Determination of synchrotron frequency f_s
- Determination of momentum spread:
 - envelope does **not** represent directly coasting beam
 - \Rightarrow **not** directly usable for daily operation
 - but can be extracted with detailed analysis due to the theorem $\sum_{p=-\infty}^{\infty} J_p^2(x) = 1$ for all x $\sum_{p=-\infty}^{\infty} J_p(x) = 1$ and $J_{-p}(x) = (-1)^p J_p(x)$ \Rightarrow for each band $h: \int P_{bunch} df = \int P_{coasting} df$

Power spectrum with $P \propto J_p^2(x)$

Application for intense beams:

- The sidebands reflect the distribution P(f_s) of the synchrotron freq. due to their incoherent nature see e.g. E. Shaposhnikova et al., HB'10, p. 363 (2010) & PAC'09, p. 3531 (2009), V. Balbecov et al., EPAC'04, p. 791 (2004)
- However, the spectrum is significantly deformed amplitude $\hat{\tau}_s$ dependent synchrotron freq. $f_s(\hat{\tau}_s)$ see e.g. O. Boine-Frankenheim, V. Kornilov., Phys. Rev. AB 12. 114201 (2009)

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion and summary

Transverse Schottky Analysis for bunched Beams

Schottky pickup

Structure of spectrum:

- Longitudinal peak with synchrotron SB
 - central peak $P_0 \propto N^2$ called coherent
 - sidebands $P_p \propto N$ called incoherent
- Transverse peaks comprises of
 - replication of coherent long. structure
 - incoherent base might be visible

Remark: Spectrum can be described by lengthy formula

see e.g. S. Chattopadhay, CERN 84-11 (1984) Remark: Height of long. band depends

center of the beam in the pickup

P. Kowina et al. GSI, Schottky Diagnostics

Transverse Schottky Analysis for bunched Beams

P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

Transverse Schottky Analysis for bunched Beams at LHC

Schottky spectrogram during LHC ramp and collision:

The interesting information is in the *in*coherent part of the spectrum (i.e. like for coasting beams)

Longitudinal part

- Width: → momentum spread momentum spread decreases
- Transverse part
 - **Center:** \rightarrow tune shift for collision setting
 - Width: → chromaticity
 difference of lower & upper SB
 - Integral : \rightarrow emittance reduction of geometric emittance

Example: LHC nominal filling with Pb^{82+} ',harm. $h \approx 4 \cdot 10^5$ \rightarrow acceleration & collisional optics within ≈ 50 min

FNAL realization and measurement:

- A. Jansson et al., EPAC'04, p. 2777 (2004) &
- R. Pasquinelli, A. Jansson, Phys. Rev AB **14**, 072803 (2011)

CERN: M. Betz et al. IPAC'16, p. 226 (2016), M. Betz et al., NIM A 874, p. 113 (2017)

P. Kowina et al. GSI, Schottky Diagnostics

LHC 4.8 GHz Schottky: Technical Design of slotted Waveguide 📻 📻 📺

Challenge for bunched beam Schottky:

Suppression of broadband sum signal to prevent for saturation of electronics **Design consideration:**

Remember scaling: width $\Delta f \propto h$, power $P \propto 1/h$

- Low sum signal i.e. outside of bunch spectrum (LHC: acceleration by $f_{acc} = 25$ MHz)
- Avoiding overlapping Schottky bands
- Sufficient bandwidth to allow switching **Technical choice:**
- Narrow band pickup by two wave guide for TE₁₀ mode, cut-off at 3.2 GHz
- Coupling slots for beam's TEM mode \succ
- \Rightarrow center f_c =4.8 GHz \Leftrightarrow harm. $h \approx 4.10^5$

& **BW** ≈0.2 GHz

Photo of 1.8 GHz Schottky pickup at FNAL recycler

270 slots of 2 x 20 mm²

E-field in wave guide

ΛΛΛΛΛΛ

wave guide

47 x 22 mm²

top signal out

CERN: M. Wendt et al. IBIC'16, p. 453 (2016), M. Betz, NIM A 874, p. 113 (2017) FNAL: R. Pasquinelli et al., PAC'03, p. 3068 (2003) & R. Pasquinelli, A. Jansson, Phys. Rev AB 14, 072803 (2011). CAS on Beam Instrumentation, Tuusula (Finland), June 2018 52 P. Kowina et al. GSI, Schottky Diagnostics

LHC 4.8 GHz Schottky: Electronics for triple Down Conversion 📻 📻 👖

53

Challenge for bunched beam Schottky:

Suppression of broadband sum signal to prevent for saturation of electronics

Design considerations:

- Careful matching
- Switching during bunch passage switching time ≈ 1 ns ⇒ one bunch per turn
- Filtering of low signals without deformation to increase signal-to-noise
- Down-mixing locked to acc. rf
- ADC sampling with $4 \cdot f_0$ revolution freq. $f_0 = 11.2$ kHz Requirements: low noise & large dynamic range

M. Wendt et al. IBIC'16, p. 453 (2016), & M. Betz et al., NIM A submitted

Outline:

- Introduction to noise and fluctuations relevant for Schottky analysis
- Main part: Schottky signal generation and examples for:
 - Longitudinal for coasting beams
 - Transverse for coasting beams
 - Longitudinal for bunched beams
 - Transverse for bunched beams
- Some further examples for exotic beam parameters
- Conclusion and summary

C Deformed Schottky Spectra for high Intensity coasting Beams

G S I

Transverse spectra can be deformed even at 'moderate' intensities for lower energies Remember: Transverse sidebands were introduced as **coherent** amplitude modulation **Goal:** Modeling of a possible deformation leading to correct interpretation of spectra Extracting parameters like tune spread ΔQ_{incoh} by comparison to detailed simulations

Example: Coasting beam GSI synchrotron Ar¹⁸⁺ at 11.4 MeV/u, harm. h = 40, coherent $\Delta Q_{coh} \approx 0$

- Calculation of space charge & impedance modification
- Calculation of beam's frequency spectrum
- Comparison to the experimental results
- \Rightarrow Model delivers reliable beam parameters, spectra can be explained

Schottky diagnostics:

Spectra do not necessarily represents the distribution, but parameter can be extracted

O. Boine-Frankenheim et al., Phys. Rev. AB 12, 114201 (2009), S. Paret et al., Phys. Rev. AB 13, 022802 (2010)

C Longitudinal Schottky: Modification for very cold Beams

Very high phase space density leads to modification of the longitudinal Schottky spectrum

P. Kowina et al. GSI, Schottky Diagnostics

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

Usage of the Schottky method at hadron synchrotrons

Beam	Measurement	Subjective assessment
Coasting long.	f_o , $\Delta p/p_o$, matching, stacking and cooling	OP: Basic daily operation tool 'It just works!'
Coasting trans.	${old Q}_0$, ${old \xi}$, ${old {\mathcal E}_{trans}}$	OP: Very useful tool for Q_0 for $\xi \& \varepsilon$ indirect method MD: For $\xi \& \varepsilon$ sometimes used requires some evaluation
Bunched long.	f_s , $\Delta p/p_0$	OP: Seldom used MD: Important
Bunched trans.	$oldsymbol{Q}_{0}$, $oldsymbol{\xi}$, $oldsymbol{arepsilon_{trans}}$	OP: Online monitoring for Q ₀ very useful MD: Important tool

High intensity beam investigations:

Schottky spectrum is well suited to given access to parameter like to spread ΔQ_{ic} Frequency spectrum of the beam \Rightarrow characteristic modifications \Rightarrow model verification

OP: operation, MD Machine Development

Schottky signals are based on modulations and fluctuations: Modulation ⇔ coherent quantities:

> Measurement of f_{0} , $Q_0 \& f_s$ from peak center \rightarrow frequent usage by operators Fluctuation \Leftrightarrow incoherent quantities:

- > Measurement of $\Delta p/p_0 \& \xi$ from peak width \rightarrow frequent usage for $\Delta p/p_0$ by operators
- > signature of $\Delta f_s \otimes \Delta Q$ from peak shape \rightarrow for machine development only at GSI
- **General scaling:** incoherent signal power $P(h) \propto q^2 N / h$ and width $\Delta f(h) \propto h$
- **q**: ion charge state, **N**: number of ions, **h**: harmonics
- **Detection**: > Recordable with wide range of pickups, measurement possible in each harmonics
 - > Electronics for very weak signals must be matched to the application

For valuable discussion I like to thank:

- > M. Wendt CERN and O. Chorniy GSI for intense discussion and many materials ©
- > M. Betz LBL (formally CERN), O. Boine-Frankenheim GSI, P. Hülsmann GSI,
 - A. Jansson ESS (formally FNAL), A.S. Müller KIT, M. Steck GSI, J. Steinmann KIT and many others

Thank you for your attention!

Spare slides

Hadron synchrotron: most beams non-relativistic or $\gamma < 10$ (exp. LHC) \Rightarrow no synch. light emission \Leftrightarrow stationary particle movement \Rightarrow turn-by-turn correlation

Electron synchrotrons relativistic $\gamma \approx 5000 \implies$ synchrotron light emission

 \Leftrightarrow break-up of turn-by-turn correlation ?

Test of longitudinal Schottky at ANKA (Germany): Goal: determination of momentum spread $\Delta p / p_0$ Ring shaped electrode as broadband detector

Results:

- Narrow coherent central peak
- Synchrotron sidebands clearly observed
- ➢ Sideband wider as central peak
 ⇒ incoherent cntribution
- Ratio of power P_{central} / P_{SB} as expected
- \Rightarrow Attempt started, feasibility shown!

Further investigations are ongoing

K.G. Sonnad et al., PAC'09, p. 3880 (2009)

61

Schottky signals require the periodic passage of the **same** particle to ensure the correlation to build up.

P. Kowina et al., HB'12, p. 538 (2012)

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

 \bigcirc Longitudinal Schottky at a LINAC ??? \Rightarrow <u>No |||</u>

P. Kowina et al. GSI, Schottky Diagnostics

🕻 Electron Cooling: Linear Chain by Minimal Momentum Spread 📻 📻 🏦

Example: Observation of longitudinal momentum at GSI storage ring

- > Ion beam: U⁹²⁺ at 360 MeV/u applied to electron cooling with I_{ele} = 250 mA
- > Variation of stored ions by lifetime of $\tau \approx 10$ min i.e. total store of several hours
- Longitudinal Schottky spectrum with 30 s integration every 10 min
- \Rightarrow Momentum spread (1 σ): $\Delta p/p = 10^{-4} \rightarrow \text{below } 10^{-6} \text{ when reaching an intensity threshold}$

Interpretation:

- Intra beam scattering as a heating mechanism is suppressed below the threshold
- > lons can't overtake each other, but building a 'linear chain' (transverse size $\sigma_x < 30 \,\mu$ m)

63

Momentum spread is basically given by stability of power suppliers

M. Steck et al., Phys. Rev. Lett 77, 3803 (1996), R.W. Hasse, EPAC 00, p. 1241 (2000)

P. Kowina et al. GSI, Schottky Diagnostics

Example of Schottky Mass Spectroscopy for Nuclear Physics

G S I

Typical experimental setup:

- ➢ High intensity beam of e.g. U⁷³⁺ is accelerated in GSI synchrotron and send to a target
- Cocktail of rare isotopes are produced inside this target are injected into GSI storage ring
- Storage ring: Special optics setting for isochronous mode with slip factor $\eta = 0$
- Stochastic pre-cooling , followed by electron cooling: $\Delta p/p_0 = 5 \cdot 10^{-7} \Leftrightarrow \Delta f/f_0 = 2 \cdot 10^{-7}$ typ.
- \Rightarrow mass measurement of isotopes an excited states as a large experimental program
- \Rightarrow single isotope detection possible

64

T. Radon et al., Phys. Rev Lett 78, 4701 (1997), M. Hausmann et al., NIM A 446, p. 569 (2000), B. Sun et al., Nucl. Phys. A 834, 473 (2010)

P. Kowina et al. GSI, Schottky Diagnostics

Longitudinal Schottky Analysis: 1st Step

Schottky noise analysis is based on the power spectrum for consecutive passage of the **same** finite number of particles

Particle 1 of charge *e* rotates with $t_1 = 1/f_0$: Current at pickup $I_1(t) = ef_0 \cdot \sum_{h=-\infty}^{\infty} \delta(t - ht_0)$ $\Rightarrow I_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - hf_0)$

i.e. frequency spectrum comprise of δ -functions at $h f_0$ For this repetitive signal **Fourier Series** can be applied:

$$I_{1}(t) = ef_{0} \cdot \sum_{h=-\infty}^{\infty} a_{h} \cdot \cos\left(2\pi h f_{0} \cdot t\right)$$

with the Fourier coefficients: $a_h = \frac{1}{t_0} \cdot \int_0^{t_0} I_1(t) \cdot \cos(2\pi h f_0 \cdot t) dt$

 $\Rightarrow \mathbf{a}_0 = 1 \text{ and } \mathbf{a}_h = 2 \text{ for } \mathbf{h} \ge 1 \Rightarrow \mathbf{l}_1(f) = ef_0 + 2ef_0 \cdot \sum_{h=1}^{\infty} \delta(f - \mathbf{h}f_0)$ i.e. **positive** frequency spectrum comprise of δ -functions at $\mathbf{h} \cdot \mathbf{f}_0$ Schottky pickup

P. Kowina et al. GSI, Schottky Diagnostics 65 CAS on Bea

CAS on Beam Instrumentation, Tuusula (Finland), June 2018

LHC 4.8 GHz Schottky: Tune and Chromaticity Measurement

Tune from position of sideband:

Permanent monitoring of tune

- Without excitation
- High accuracy down to 10⁻⁴ possible
- Time resolution here 30 s

Comparison to BBQ system based on:

- Transverse (gentle) excitation
- Bunch center detection
- Time resolution here 1 s

Chromaticity from width of sidebands of <u>in</u>coherent part:

- Two different offline algorithms
- Satisfactory accuracy
- Time resolution here 30 s
- Performed at MD time, breaks are due to experimental realignments

Comparison to traditional method (red dots):

- > Change of bunching frequency $\Rightarrow \delta p = p_{actual} p_0$
- > Tune measurement and fit $\Delta Q / Q_0 = \xi \cdot \delta p / p_0$

time duration \approx 3 h

M. Betz et al. IPAC'16, p. 226 (2016), M. Betz et al., NIM A 874, p. 113 (2017)