

Beam Diagnostic Requirements Overview

Gero Kube

DESY (Hamburg)

- Measurement Principles
- Specific Diagnostics Needs for Hadron Accelerators
- Specific Diagnostics Needs for Electron Accelerators

Accelerators world wide

• accelerator applications

• particle species

- **lepton beams:** electrons, positrons
- hadron beams: protons, anti-protons, heavy ions

R.W. Hamm, M.E. Hamm, Industrial Accelerators and their Applications, World Scientific (2012)

> industrial applications:

 $\Sigma\approx 24000$

Medical applications:

 $\Sigma\approx 11000$

Accelerator Applications

• cathode ray tubes

• electron beam welding

PAVAC Energy Corp., welding and machining

• medical treatment

Siemens Eclipse Cyclotron (11 MeV) marketed for PET isotope production

Beam Parameters and Diagnostics

- beam position
 - orbit, lattice parameters, tune, chromaticity, feedback,...

• beam intensity

- dc & bunch current, coasting beam, lifetime, efficiencies,...
- beam profile
 - Iongitudinal and transverse distributions, emittances,...

beam loss

identify position of losses, prevent damage of components,...

• beam energy

- mainly required by users,...
- Iuminosity (collider)
 - key parameter, collision optimization...

and even more: charge states, mass numbers,...

Reminder: Beam Signal Generation

- hadron / electron machines
 - \rightarrow difference in signal generation and underlying physical principles (\rightarrow rest mass)

distinguish between hadron / electron beam diagnostics

- program for the following lectures
 - > Hadron Accelerators
 - \rightarrow Collider, Storage Ring

incl. Injector Chain (Linac, Injector Synchrotron, Transfer Line)

- \rightarrow Spallation Neutron Source
- \rightarrow Hadron Therapy Accelerator
- **Electron Accelerators**
 - \rightarrow Circular Collider
 - \rightarrow Synchrotron Light Source (3rd Generation)
 - \rightarrow Linac based Free Electron Laser
 - \rightarrow Outlook...

Hadron Collider (incl. Injector Chain)

Linac

- Injector Synchrotrons
- Transfer Line

Storage Ring

Tuusula (Finland), 2-15 June 2018

Hadron Collider (Storage Ring)

luminosity *L* collider performance \rightarrow

 σ : cross section (property of interaction)

FAIR @ GSI

- modern hadron collider (storage ring) with high beam energy ٥
 - superconducting magnets to achieve required particle bending
 - parts of diagnostics located in cold vacuum \rightarrow
 - beam-loss monitor system for quench protection required \rightarrow
 - long injector chain to reach final energy
 - pre-accelerators / transfer lines with different beam properties \rightarrow
 - different requirements for beam diagnostics \rightarrow

Gero Kube, DESY / MDI

Comments: Injector Chain (1)

- luminosity of collider
 - > assumption (for simplicity)
 - \rightarrow identical beams: $I_1 = I_2 = I$, $\varepsilon_x = \varepsilon_y = \varepsilon$

small beam emittances for high luminosity

CERN Courier, August 2013

- beam emittances in circular machines
 - lepton beams:formation of equilibrium emittances because of radiationdamping and quantum excitation due to synchrotron radiation

 $L \propto -$

 I^2

hadron beams: synchrotron radiation emission suppressed because of large

particle masses

emittance essentially determined in injector chain

• consequences for beam diagnostics in injector chain

i) accurate beam characterization already important in low energy machines

ii) minimum disturbing instrumentation in order to avoid emittance blow up

Comments: Injector Chain (2)

• normalized emittance ε_N conserved (Liouville)

absolute emittance:

(LHC: $\varepsilon_{\rm N} = 3.75 \text{ mm mrad}$)

adiabatic shrinking with increasing beam energy

example LHC injector chain

- > end of Linac II 50 MeV $\rightarrow \beta \gamma = 0.33$
- $\Rightarrow \text{ extraction SPS} \qquad 450 \text{ GeV} \quad \rightarrow \quad \beta \gamma = 480$
- > maximum energy LHC 7000 GeV $\rightarrow \beta \gamma = 7460$
- consequences for beam diagnostics

large emittances:

- i) large beam spots and divergences
- ii) tight mesh of focusing magnets \rightarrow little space for instrumentation

Iow energies:

- i) particles have small magnetic rigidity $B\rho \rightarrow easy$ to bend
- ii) change of particle speed with acceleration
- iii) space charge effects (especially heavy ions beams)
- iv) high energy deposition in matter (Bethe-Bloch)

x 1450

x 15

Source and Injector Linac

- example: H⁻ Injector Linac @ DESY
 - H⁻ Sources:
 - 18 keV magnetron source and rf-driven volume source
 - Low Energy Beam Transport (LEBT)
 - beam matching to acceptance of RFQ
 - Radio Frequency Quadrupole (RFQ)
 - acceleration from 18 keV up to 750 keV
 - Medium Energy Beam Transport (MEBT)
 - beam matching to acceptance of Linac
 - H⁻ Linac (Tank I III)

conventional Alvarez Linac, end energy $E_{kin} = 50 \text{ MeV}$

• High Energy Beam Transport (HEBT)

measure beam properties for Linac tuning match beam to synchrotron acceptance

Injection

H⁻ multi-turn injection using stripper foil (\rightarrow p conversion)

Source and Linac Instrumentation

- key devices for
 - adjusting beam transport through linac sections
 - tuning the RF system (phase, amplitude,...)
 - indicate operating status
 - \rightarrow permanently installed diagnostic beamline behind linac sections
 - \rightarrow moveable diagnostic test bench

(allows full 6d phase space characterization after each section)

- example
 - \rightarrow diagnostic bench for RFQ

commissioning @ GSI

courtesy: P. Forck (GSI)

Linac: Current and Transmission

• destructive: Faraday cup

→ low energy particles stopped in material (\rightarrow Bethe Bloch)

- very low intensities (down to 1 pA) can be measured
- non destructive: current transformer
- beam acts as single turn pimary winding of transformer
- > measuring AC component of beam current

moveable Faraday cup for GSI linac

courtesy: P. Forck (GSI)

commercially available devices

Gero Kube, DESY / MDI

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

Linac: Beam Position

- position information via electro-magnetic fields possible
- large bunch lengths, low acceleration frequencies
 - ▶ beam spectrum contains low frequencies (typically kHz 100 MHz)
 - requires high sensitivity of pick-up at these frequencies
- small signals (non-propagating field with low γ)
 - > capture as much field lines as possible, i.e. large electrodes

capacitive pick-up

inductive pick-up

Gero Kube, DESY / MDI

0

Linac: Transverse Beam Profile (1)

- luminescent screens ٥
 - destructive method
 - part of deposited energy results in excited electronic states \rightarrow light emission (CCD)

BN

- used also for beam position (instead of BPMs)
- high energy deposition (\rightarrow Bethe Bloch) especially critical for heavy ion machines

wires in both transversal planes

wires in one transversal plane

strips, larger surface than wire

JUAS 2006

degradation of screen material

less destructive method

grid:

harp:

SEM:

ZrO₂

C.Bal et al., Proc. of DIPAC 2005 Lyon, France, 57

Linac: Transverse Beam Profile (2)

- on-destructive: residual gas monitor
 - beam interaction with residual gas
 - \rightarrow creation of residual gas ions and electrons
 - electrostatic field accelerates ionization products towards
 Microchannel Plate
 - \rightarrow secondary electron generation (multiplication ~10⁶)
 - readout via phosphor screen and CCD (optical) or via
 wire array and guide field (electrical)
 - variant: residual gas fluorescence monitor

T.Giacomini et al., Proc. BIW 2004, p.286

<u>residual gas fluorescence monitor:</u> image of a 2.5 mA Ar^{10+} beam at vacuum pressure of 10⁻⁵ mbar from GSI LINAC

P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006

Linac: Transverse Emittance

- principle of slit-scan method
 - > low energy beams often space charge limited \rightarrow cutting out small beamlet
 - slit produces vertical slice in transverse phase space
 - > measure intensity as function of $\mathbf{x'}$ (\rightarrow propagate beamlet along drift space)
 - > moving of slit \rightarrow scan of phase space (N_x x N_{x'} measurements)

M.P.Stockli, Proc. BIW 2006, p.25

• 2-dimensional extension: Pepper pot

P.Forck, *Lecture Notes on Beam Instrumentation and Diagnostics*, JUAS 2006

 $\rightarrow 1$ measurement

 $N_x \ge N_{x'}$ holes

- monitor with x' resolution instead of scan:
 SEM, profile grid,...
 - \rightarrow N_x measurements

Linac: Longitudinal Plane

 \rightarrow alternative method: time of flight (TOF)

- momentum and momentum spread
 - dipole magnet spectrometer (small rigidity Bp)
 - transformation of momentum (spread)
 into position (spread)
 - > spatial resolving detector (screen, SEM,...)

$$\frac{\Delta x}{x_0} = \frac{\Delta p}{p_0}$$

- bunch shape and time distribution
 - **Bunch Shape Monitor** (BSM)
 - ▶ primary beam hits thin wire \rightarrow potential -10 keV
 - conversion of primary hadron beam into low energy secondary electrons
 - RF deflector converts time into space coordinates
 - \rightarrow operation close to RF zero-crossing
 - intensity profile \rightarrow with spatial resolving detector

Injector Synchrotron: DESY III

G. Hemmie and J.R.Maidment, Proc. PAC 1987, p. 172

Injector Synchrotron Diagnostics (1)

beam current

- measurement of injection efficiency (\rightarrow single bunch charge)
 - average current and coasting beam
- > AC current transformer (ACCT)
- parametric or DC current transformer (DCCT)
- circular accelerator \rightarrow one monitor sufficient

beam position ٥

- measurement of beam orbit (oscillation, closed orbit,...)
- position monitors
 - \rightarrow usually 4 per betatron oscillation (phase shift 90°)
- large bunch lengths, low acceleration frequencies
 - \rightarrow high pick-up sensitivity @ frequencies of interest
 - **DESY III:** inductive pick-ups

other schemes: shoe-box types (capacitive)

higher acceleration frequencies and energies: striplines

~ 200 Hz

DCCT principle

Injector Synchrotron Diagnostics (2)

- tune
 - eigenfrequency of betatron oscillations in circular mac
 - characteristic frequency of magnet lattice, produced b strength of quadrupole magnets
- principle of tune measurement
 - excite coherent betatron oscillations (\rightarrow kicker)
 - observe dipole moment due to (coherent)
 transverse beam oscillation
 - \rightarrow primary observable: time sequence of turn-by-turn position
 - > FFT of response

• comments

- excitation leads to emittance blow-up
 - \rightarrow small excitation required
 - \rightarrow high pickup sensitivity necessary
- high space charge at injection (acceptance occupied)
 - \rightarrow excitation can lead immediately to particle losses

0.6 0.65 0.7 0.75 0.8 0.85 0.9 non–integer part of tune

- example: DESY III
- > no tune measurements in standard operation
- > tune measurements only in dedicated machine studies
 - \rightarrow reproducible set-up of machine

Injector Synchrotron Diagnostics (3)

- transverse profiles / emittances
 - **screens** (destructive)
 - \rightarrow for commissioning, if doubts about signals from other monitor
 - wire scanners (less destructive)
 - \rightarrow thin wire quickly moved across the beam (> 1 m/sec)
 - → simultaneous detection of secondary particle shower outside vacuum chamber with scintillator/photo-multiplier assembly

U.Raich, Proc. of DIPAC'05, Lyon (France), 2005, p.1

secondary particle shower intensity in dependence of primary beam energy

for beam energy below 150 MeV use instead secondary emission (SEM) current of isolated mounted wire

- > residual gas monitor (non-destructive)
 - \rightarrow vacuum pressure in sycnchrotron much better (10⁻¹⁰ mbar) than in linac/transfer line (10⁻⁶ 10⁻⁸ mbar)
 - \rightarrow much lower signal \rightarrow local pressure bump...

Injector Synchrotron Diagnostics (4)

20

- bunch lengths and time structure
 - > measure bunch length (\rightarrow nsec) and longitudinal oscillations
 - > wall current monitor
 - \rightarrow offers bandwidth up to a few GHz
- losses
 - > indication of beam losses in specific critical places
 - \rightarrow optimization of injection and extraction
 - Beam Loss Monitors (BLMs)
- comment: pbar and heavy ion machines
 - > source emittance worse, adiabatic emittance shrinking not sufficient
 - for final beam quality
 - \rightarrow emittance improvement (for bunched beams) by electron cooling
 - > smaller cooling time at smaller beam energy
 - \rightarrow cooling performed typically in low energy synchrotron
 - > Schottky diagnostics
 - \rightarrow exploit individual particle behavior (Schottky noise) in beam spectrum

D. Belohrad, Proc. DIPAC2011, Hamburg (2011) 564

Longitudinal Schottky scan at the 10^{th} harmonic of Ar^{18+} at the GSI storage ring. The broad curve is the frequency spectrum at injection with $\Delta p/p = 1 \cdot 10^{-3}$ and the narrow curve is recorded after electron cooling down to a momentum width of $\Delta p/p = 2 \cdot 10^{-5}$.

> P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006

Example: LEIR @ CERN

• Low Energy Ion Ring LEIR

M. Chanel, Proc. of EPAC 2002, Paris (France), 2002, p.563

C. Bal et al., Proc. of DIPAC'05, Lyon (France), 2005, p.258

Transfer Line Diagnostics

- transfer line
 - > linking circular machines while matching the optical beam parameters
 - > adjust beam transport
 - \rightarrow control transfer efficiency:

AC current transformers

- → control beam position (steering)
 BPMs and/or screens
- determine beam quality
 - \rightarrow transverse emittance via beam profiles
 - i) measure beam size versus quadrupole field strength using one device
 - ii) measure beam size using multiple measurement devices for fixed optics

screens, residual gas monitors,...

- protect machine
 - \rightarrow control of beam losses, machine interlock

BLMs

Transfer Line Diagnostics (2)

• beam steering philosophy

- entry of transfer line: extracted beam information
- \rightarrow position/angle: *pair of pick-ups*
- \rightarrow qualitative shape: *screen*
- > central section: *stepwise steering & beam quality*
 - \rightarrow each steering magnet paired with *pick-up* (phase advance ~90°)

(i) entry

diagnostics

screen

pick-up

- \rightarrow emittance measurement: *screen(s)* in dispersion-free section
- > exit of transfer line: precision steering
 - \rightarrow two steerer magnets used as doublet
 - → adjust angle/position at septum to match condition for closed orbit of next accelerator section

P.J. Bryant, Proc. CERN Accelerator School, CERN 94-01, Vol.1

Gero Kube, DESY / MDI

90 deg

(ii) central section for stepwise steering,

steering

dipole

emittance measurement, ...

(iii) doublet for

beam

precision steering

best sensitivity

- \rightarrow for measurement / control
- \rightarrow maximum of β -function
 - (i.e. close to quads)

Storage Ring (Collider) Diagnostics

• intensity

- bunch charge, stored dc current: lifetime, coasting beam
- orbit
 - > lattice parameters (co): comparison between design and real machine
 - injection: elimination of mismatches (oscillations)
- tune, chromaticity, coupling
 - working point: avoid instabilities and losses
- beam distribution, emittance
 - beam profile: control of beam quality for luminosity
 - injection mismatch: optimization of injection
 - instabilities: observation of shape oscillations
- Iuminosity
 - count rate in experiments: tuning of collision at IP
- energy
 - cms energy for particle production

required B field

superconducting magnets

- quench protection
 - > loss monitors: prevent damage of magnets

Storage Ring Diagnostics: Remarks

- superconducting magnets and consequences
 - cold environment because of liquid He

HERA @ 4.4 K, LHC @ 1.8 K

- > consequence for beam diagnostics
 - \rightarrow beam instruments in cold environment
 - → careful instrument design: minimum heat transfer from beam instruments to the environment (e.g. by HOM heating)
 - → no intercepting diagnostics in (close to) cold sections because particle shower may lead to magnet quenches

CERN Courier, October 2006

→ protect beam intercepting monitors against possible misuse, i.e. *interlock system*

• common strategy

- concentration of beam instrumentation in straight sections (*insertions*) without need for particle bending
 - \rightarrow most instruments can be placed in warm environment
- > BPMs (which has to be placed all around the ring for closed orbit) partly in cold environment
 - \rightarrow BLMs (not in vacuum) installed all around the ring

Storage Ring Diagnostics (1)

• intensity

- bunch charge, filling pattern: AC current transformer (ACCT)
- > mean current: DC or parametric current transformer (DCCT)
- examples: from HERA p diagnostics

Gero Kube, DESY / MDI

Storage Ring Diagnostics (2)

- orbit, trajectory, oscillations
 - BPMs: for *cold* and *warm* environment
 - choice of type depends on:
 - linearity, dynamic range, resolution
 - \rightarrow stripline monitor, button electrode pick-up

LHC resolution achieved:

LHC orbit during commissioning

 $< 150 \ \mu m$ (single bunch & single turn), $< 10 \ \mu m$ (avg. orbit of all bunches)

LHC cold button pick-up

courtesy: Ch. Boccard (CERN)

HERA p cold stripline

courtesy: S.Vilcins (DESY)

Storage Ring Diagnostics (3)

- tune (chromaticity, coupling) \rightarrow defines working point of accelerator
 - principle: transverse beam excitation \rightarrow excite coherent transv. oscillations
 - \rightarrow FFT mode / Swept Frequency mode / PLL mode
 - constraint: minimize *emittance blow* up due to excitation
 - \rightarrow high sensitivity pick-up detector
 - \rightarrow minimum disturbing excitation scheme
 - excitations: i) *tune kicker*: white noise kick, simple and robust (typically for commissioning)

ii) *tune shaker:* swept frequency (sine wave)

Hera P Tunes Printing Options Expert help 2972 coupling coupling Limit 💌 Value 📢 🕨

٥ comments

- chromaticity: via head-tail phase shift
- D. Cocq, O.R. Jones, H. Schmickler, AIP Conf. Proc. 451 (1998) 281
- passive (without external excitation): Schottky spectrum contains informations about tune, chromaticity,...

Storage Ring Diagnostics (4)

- tune, chromaticity: dynamic effects in superconducting storage rings
 - > s.c. eddy currents / persistent currents: strong influence on storage ring performance at *injection energy*
 - \rightarrow affect *multipole components* of s.c. dipole magnet
 - \rightarrow are *not really persistent* (decay with time)
 - \rightarrow need correction
 - persistent currents are *reinduced to their full strength* on

first steps of the ramp, approaching original hysteresis curve

"Snap Back": requires reliable control during ramp

online measurements (magnetic multipole components), correction tables, ...

beam ramping up

- tune and chromaticity feedback
 - → HERA @ DESY: "Brain Locked Loop" (BLL)

6 knobs (2 x tune, 2 x chromaticity, 2 x coupling)

experienced shift crew (at least two people)

→ LHC @ CERN: Phase Locked Loop (PLL)

(*HERA:* most important sextupole component)

R. Steinhagen, Proc. CAS 2008, CERN-2009-005

Storage Ring Diagnostics (5)

- transverse beam profile and emittance
 - single pass diagnostics
 - simple and robust, high sensitivity (single or few bunches only), modest demand on accuracy
 - *luminescent screens*
 - profile diagnostics for few turns
 - study of injection mismatch (betatron, dispersion matching on first turns observing shape oscillations) turn by turn acquisition (10-20 turns), modest demand on accuracy Fermilab IPM only moderate beam blow up allowed, energy deposition in screen is critical

LHC wire scanner

- **Optical Transition Radiation (OTR)** using thin foils
- diagnostics for the circulating beam
 - evolution of the rms beam size, emittance measurements, tilt due to coupling minimum beam blow-up (\rightarrow non-intercepting measurements), high accuracy
 - residual gas (luminescence) monitors
 - *fast wire scanners* (flying wires, > 1 m/sec)
 - synchrotron radiation monitor

(fringe field, short magnet, undulator)

HERA p SyLi monitor

Storage Ring Diagnostics (6)

- Iongitudinal beam distribution and time structure
 - Iongitudinal profile
 - \rightarrow classical longitudinal bunch parameters:

bunch center of gravity, rms bunch length, core distribution

-) examples $(1\sigma \text{ values})$
 - \rightarrow **HERA p** @ 920 GeV: $\sigma_t = 1.6$ nsec
 - \rightarrow **LHC** @ 450 GeV: $\sigma_t \sim 0.425$ nsec

@ 7 TeV: $\sigma_t \sim 0.250$ nsec

- > abort gap monitoring
 - \rightarrow continuous monitoring that rise time gap of dump extraction kicker is free of particles

if particles in gap would not receive proper kick when dump system is fired:

damage of machine components

- detection of ghost bunches
 - \rightarrow may disturb BPM system read-out or physics data taking

synchrotron radiation based diagnostics

LHC WCM: T. Bohl and J.F.Malo, CERN-BE-2009-06

wideband Wall Current Monitor

Beam Instrumentation CAS, Tuusula (Finland), 2-15 June 2018

Storage Ring Diagnostics (7)

luminosity

need: determines accelerator performance

parameter for optimization of beam collisions at IP

principle: choose reaction channel with known cross section σ_{re} count rate measurement for events $N_{\rm rc}$ of this channel

> $\mathcal{L} = \dot{N}_{rc} / \sigma_{rc}$ *luminosity:*

- **HERA luminosity at H1** - A LE - A & R LE LE BE /L % LE = M B Lumi 0.92 spLumi 0.35 -1m | last 2min. -5m -4i o 声声上ive mod
- hadronic cross sections are not precisely calculable because of constituent particle nature problem:
 - reaction rates do not serve as absolute luminosity monitors, i.e. only for optimization
 - absolute luminosity determination complicated task, often duty of experiments
- example: ep collider HERA, absolute luminosity determination via $e p = \gamma e' p'$ Bremsstrahlung (Bethe-Heitler):
 - cross section well known

energy

- hadron-hadron collider absolute energy determination relatively unimportant importance:
 - \rightarrow constituent nature of hadrons (quarks and gluons) which share beam momentum
 - \rightarrow total energy in reaction only loosely related to beam energies
- measurement: beam momentum via dipole current is sufficient

ZEUS Luminosity Spectrometer Upper detecto B=0.5T probabilit conversio 92m to the v →ete interaction ⇒low ratel 12m

Storage Ring Diagnostics (8)

- quench protection / loss monitors
 - stored beam energy:

> quench level of a cable: HERA @ 820 GeV

 $\Delta T_c = 0.8 \text{ K}$ between He bath temperature $T_b = 4.4 \text{ K}$ and quench temperature $T_{cs} = 5.2 \text{ K}$!

- beam loss monitors
 - \rightarrow gas ionization chambers, PIN diodes, photomultipliers & scintillators, SE multiplier tubes...

Examples for Hadron Accelerator Diagnostics

- Spallation Neutron Source
- Hadron Therapy Accelerator

Tuusula (Finland), 2-15 June 2018

Spallation Neutron Source

- fission (reactor)
 - \rightarrow chain reaction
 - \rightarrow continuous flow
 - \rightarrow 1 neutron / fission

spallation (accelerator driven)

- \rightarrow no chain reaction
- \rightarrow of interest: short pulse operation allows time resolved experiments
- \rightarrow 20 ~ 30 neutrons / proton

• beam characteristics

- proton beam energy
 - \rightarrow number of neutrons proportional to E in range of 0.2 ... 10 GeV
- **E** = 1 ... 3 GeV

> average beam power:

on proton

thermal

neutror

neutron

fission of the excited nucleus chain reaction by moderated

neutrons

Spallation Neutron Source

- → Swiss Spallation Neutron Source SINQ @ PSI (Switzerland): (continuous beam from cyclotron)
- implications on beam diagnostics

handling of high beam power

HELMHOLTZ

High Power Diagnostics

- achieving high beam power
 - systems to help understanding dynamics of intense beams
 - → beam halo measurements, ...
- measuring high power beams
 - diagnostic systems that can measure fundamental beam parameters during full power operation
 - challenging: transverse beam profiles
 - → laser systems for H⁻ beams, ionization profile monitors for p beams, ...
- protecting the diagnostics
 - protect diagnostic systems that cannot survive high power beams
 - \rightarrow machine protection interfaces for intercepting devices, ...
- protecting the facility
 - b diagnostics that protect the facility from beam-induced damage or activation
 - → loss monitors, beam-on-target diagnostics, ...

T.Shea (SNS/ESS), talk held at EPAC04

Diagnostics for SNS @ ORNL

courtesy: T.Shea (ESS/SNS)

Hadron Therapy Accelerator

- hadron therapy
 - damage DNA of tumor cells with high-energetic ion beams
 - **requirement:** constant and high dose profile at tumor

low dose at critical organs

- 3D beam scanning over tumor region
 - transverse directions
 - \rightarrow pencil beam scanning
 - Iongitudinal direction
 - → energy/intensity alignment of many Bragg-peaks allow creation of Spread-Out Bragg Peak (SOBP)
- implications on beam diagnostics
 - non destuctive diagnostics during patient treatment
 - precise determination of

position & size

energy & intensity

Scanning Magnets

Tumor tissue

M. Durante and H. Paganetti, Rep. Prog. Phys. 79 (2016) 096702

Facility Layout

• example: Heidelberger Ionenstrahl-Therapiezentrum (HIT), Germany

- (4) heading towards treatment room
- (5) treatment room
- (6) position control
- (7) gantry
- (8) treatment room in gantry

- (1) ion sources
 - > 2 ion sources (p, H_2 , C^{4+} , O^{6+})
 - → typical 130 µA C⁴⁺ DC-beam
- (2) 2-stage linac
 - four-rod RFQ-structure (400 keV/u)
 - > IH-DTL (7 MeV/u)
 - → 30µs-Macropulse: 50 µA C⁶⁺
- (3) synchrotron
 - > 64 m circumference
 - > magnetic rigidity: 6.6 Tm
 - ▶ E= 48 220 MeV/u (proton)
 - ▶ E= 88 430 MeV/u (carbon)
 - ▶ 6×10⁸ Carbon

https://www.klinikum.uni-heidelberg.de/fileadmin/hit/dokumente/121019KV_SS_HITImage_engl_web_ID17763.pdf

Beam Diagnostics for Medical Accelerators

- EU project
 - → https://www.liverpool.ac.uk/oma-project/
- organization
 - → University of Liverpool

• Workshop about Beam Diagnostics:

HEI MHOLTZ