

Tune, Chromaticity and Coupling Measurement

BI CAS 2018

Tuusula, Finland 2nd – 15th June, 2018

Rhodri Jones

Head of the CERN Beam Instrumentation Group

Tune Measurement

Rhodri Jones – CERN Beam Instrumentation Group

Machine Tune

Machine Tune

Characteristic Frequency of the Magnetic Lattice Given by the strength of the Quadrupole magnets

Parameters per plane

- Q : Full betatron tune
- q : Fractional tune (operating point)

Real life more complex

- horizontal & vertical oscillations couple
- betatron motion at large amplitudes non-linear

Betatron motion and the Tune

Betatron motion and the Tune

Beam size

- defined by incoherent betatron motion of all particles
- Particles have momentum spread
 - gives spread in focussing by quadrupoles
 - gives rise to spread in the frequency of the betatron oscillations (chromaticity)
- Coherent oscillations will de-cohere
 - Hadrons do not forget!
 - once hit they oscillate (practically) forever
 - any excitation must be kept very small

Tune Measurement

• Integer tune

- seen in orbit response
- ~550 dual plane BPMs
- H: 59, V: 64 for LHC

• Fractional tune (q)

- Seen from turn-by-turn signal of single BPM if beam is given a kick
- Fast Fourier Transform (FFT) of oscillation data gives resonant frequency (q)

Rhodri Jones – CERN Beam Instrumentation Group

Tune Measurement – the principle

A stimulus is needed to globally excite the beam

- Resulting betatron oscillations observed on a position pick-up
- Time domain signals usually converted to frequency domain
 - Displays which frequencies are present in the oscillations

Rhodri Jones - CERN Beam Instrumentation Group

Tune Measurement – the principle

- Observable is the turn-by-turn position from a BPM
- BPM electrode signal has temporal shape related to the temporal structure (intensity profile) of the passing beam

 Most of the signal produced is linked to intensity
- On top we look for very small variations linked to position
 Such signals are very difficult to simulate in the lab

Tune Measurement – the principle

• A typical perfect detection scheme

M. Gasior (CERN)

Reality

Dynamic range issues

- Signals related to betatron oscillations are small with respect to beam offset signals
- Even for centred beam leakage is of order 1-10 % (of 100V!) for ns beam pulses

Rhodri Jones – CERN Beam Instrumentation Group

BaseBand Tune (BBQ) Measurement System

- Direct Diode Detection the advantages
 - Single RF Schottky diode can handle up to 50 V pulses
 - Higher with a few diodes in series (LHC detector has 6 diodes)
 - Betatron modulation downmixed to below the revolution frequency
 - Allows efficient signal processing with inexpensive, high resolution ADCs
 - Just AM radio receiver so what's new?
 - Slow discharge & use of low noise, high impedance amplifiers
 - Brutal filtering of revolution line & everything outside band of interest

Rhodri Jones - CERN Beam Instrumentation Group

LHC BBQ System Performance

Rhodri Jones – CERN Beam Instrumentation Group

Real-Time Tune Display

Rhodri Jones - CERN Beam Instrumentation Group

PLL Tune Measurement

PLL Tune Measurement

But $q_{obs} = q_{ref}$ for forced harmonic oscillator (our beam) $\Rightarrow \frac{1}{2}AB [\cos(-\phi)]$ (DC value) Feed back this value to change exciter frequency (voltage controlled oscillator) when $q_{ref} = q_{tune}$ then $\phi = \frac{\pi}{2}$ for harmonic oscillator : $\frac{1}{2}AB [\cos(-\pi/2)] = 0$

Rhodri Jones – CERN Beam Instrumentation Group

Illustration of PLL tune locking

Illustration of PLL tune tracking

Rhodri Jones - CERN Beam Instrumentation Group

PLL Tune Tracking Example

- Early example of PLL Tune tracking at RHIC during a ramp
 - Comparison to kicked tune measurement (green & blue solid dots)
- Advantage
 - Much lower excitation frequency possible due to known detection frequency
 - Allows continual tracking without significant emittance blow-up
- Disadvantage
 - Can lock to synchrotron sidebands or spurious peaks
 - Same is also true of peak fitter for standard FFT measurement

Rhodri Jones – CERN Beam Instrumentation Group

Chromaticity Measurement

Rhodri Jones - CERN Beam Instrumentation Group

• Machine Chromaticity Optics Analogy: Lens Quadrupole Cuadrupole Achromatic incident light Spread in the Machine Tune due to Particle Energy Spread Controlled by Sextupole magnets

First Order

$$\Delta Q = Q' \frac{\Delta p}{p} = \left(\frac{1}{\gamma^2} - \alpha\right)^{-1} Q' \frac{\Delta f}{f}$$
$$\xi = \frac{Q'}{Q}$$

Rhodri Jones – CERN Beam Instrumentation Group

Tune, Chromaticity and Coupling Measurements - BI CAS 2018

 $= \frac{\partial^{(n)} Q}{\gamma \varsigma^{(n)}} \qquad \delta := \frac{\Delta p}{p}$

Generalised

Measurement Techniques

Tune change for different beam momenta	\Leftrightarrow	Standard method used on all machines. Can be combined with PLL tune tracking to give on-line measurement
Width of tune peak or damping time	\Leftrightarrow	Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	\Leftrightarrow	Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects
Width ratio of Schottky sidebands	\Leftrightarrow	Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	\Leftrightarrow	Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance (same as above, but in time domain)	\Leftrightarrow	Good results on several machines but requires kick stimulus \Rightarrow emittance growth!

Rhodri Jones - CERN Beam Instrumentation Group

CÉRN

• DC Change in Momentum

- Typically used on fast cycling machines
- Measure the tune throughout cycle
 - Requires continuous tune measurement capability
- Compare results for 2 or 3 cycles with slight energy offset to calculate chromaticity

RF induced momentum change (known)

Old example from CERN-SPS

- Q difference during the ramp for 2 radial steering (∆p/p) settings
- Complete picture of chromaticity throughout the cycle

Rhodri Jones – CERN Beam Instrumentation Group

Slow RF Variation

- Apply time varying RF modulation
- Continuously measure the tune
 - Amplitude of tune variation proportional to chromaticity

Example from the LHC

- Sinusoidal RF modulation at 0.05Hz
- Tune continuously tracked in all planes of both beams
- Chromaticity calculated once acquisition complete

Rhodri Jones – CERN Beam Instrumentation Group

Slow RF Variation

- Apply time varying RF modulation
- Continuously measure the tune
 - Amplitude of tune variation proportional to chromaticity

Example from CERN-LEP

- Triangular RF modulation
- Allows sign to be easily determined

Applied Frequency Shift

 $Q_h \& Q_v$ Variation

Rhodri Jones – CERN Beam Instrumentation Group

Slow RF Variation

- Apply time varying RF modulation
- Continuously measure the tune
 - Amplitude of tune variation proportional to chromaticity
- Need to make sure of delays in RF modulation & acquisition chains to obtain correct sign when using symmetrical modulation function

Rhodri Jones – CERN Beam Instrumentation Group

- Dynamic Measurement Examples
 - LHC Ramp
 - RF continuously modulated
 - Tune measured using the sensitive Base Band Tune (BBQ) system
 - Tune calculated from peak fitting of resulting frequency spectrum
 - Chromaticity calculated from amplitude of tune modulation

Rhodri Jones – CERN Beam Instrumentation Group

RF Momentum Modulation Techniques

RF Phase Modulation

- Proposed by D. McGinnis (FNAL)
- Phase modulate the RF instead of frequency modulation
 - Possible to achieve faster modulation
- Measure demodulated tune signal
 - Tune tracker supplies carrier frequency but does not need to track modulation
 - Tevatron Results for 5° modulation @ 23Hz

Rhodri Jones – CERN Beam Instrumentation Group

Summary of RF Momentum Modulation

Frequency modulation

- Standard chromaticity measurement technique for all machines
 - Usually using DC frequency offset or slow frequency modulation
- On-line calculation requires continuous tune measurement
- Typical parameters
 - RF momentum modulation of 10^{-4} to 10^{-3} @ < 1Hz
 - Generally acceptable orbit changes of 0.1 to 1mm for 1m dispersion
 - Chromaticity resolution of 1 unit requires tune resolution of 10⁻⁵ to 10⁻⁴
 - Can be achieved by
 - Demodulating at correct frequency
 - Averaging tune measurements or adapting PLL bandwidth
 - Trade-off between RF modulation amplitude and frequency

Phase modulation

- Promising initial tests but not applied operationally
- May be limited by RF power required at higher frequencies

Measurement Techniques

Tune change for different beam momenta	\Leftrightarrow	Standard method used on all machines. Can be combined with PLL tune tracking to give on-line measurement
Width of tune peak or damping time	\Leftrightarrow	Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	\Leftrightarrow	Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects
Width ratio of Schottky sidebands	\Leftrightarrow	Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	\Leftrightarrow	Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance (same as above, but in time domain)	\Leftrightarrow	Good results on several machines but requires kick stimulus \Rightarrow emittance growth!

Rhodri Jones – CERN Beam Instrumentation Group

Amplitude of Synchrotron Sidebands

- Chromaticity gives rise to synchrotron sidebands around tune
 - Tune variation with longitudinal motion at the synchrotron frequency

Rhodri Jones – CERN Beam Instrumentation Group

Amplitude of Synchrotron Sidebands

- Background
 - Presented by R.H. Siemann
 - Physics of Particle Accelerators (1989)
 - Demonstrated in the Tevatron
 - G. Jackson (1989)
- Chromaticity calculated from ratio of synchrotron sidebands
 - Sidebands follow Bessel functions with chromaticity term
 - Relies on absence of collective effects

Rhodri Jones – CERN Beam Instrumentation Group

Amplitude of Synchrotron Sidebands

- Recent measurement DIAMOND Light Source (UK)
 - RF modulation changes orbit not compatible with user operation
 - Looking for technique to measure chromaticity on-line
 - Measure Beam Transfer Function (BTF) on single bunch
 - Using transverse bunch by bunch feedback system
 - Emittance blow-up of single bunch irrelevant

Rhodri Jones – CERN Beam Instrumentation Group

Amplitude of Synchrotron Sidebands

- From Empirical Fit to Theoretical Approach @ DIAMOND
 - Use expression for sideband amplitude that is ratio of Bessel functions
 - As relationship cannot be inverted analytically, use a piecewise fit with a square root and a 9th order polynomial
 - The only other knowledge required is energy spread
 - Measured from beam size in two locations

Rhodri Jones – CERN Beam Instrumentation Group

Amplitude of Synchrotron Sidebands

- Dealing with High Intensity Effects @ GSI (DE)
 - Modification of tune spectra by space charge & impedance
 - Measured using Base Band Tune system
 - Relative heights & mode structure given by chromaticity
 - Can be calculated with simplified analytical models

Rhodri Jones – CERN Beam Instrumentation Group

Measurement Techniques

Tune change for different beam momenta	\Leftrightarrow	Standard method used on all machines. Can be combined with PLL tune tracking to give on-line measurement
Width of tune peak or damping time	\Leftrightarrow	Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	\Leftrightarrow	Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects?
Width ratio of Schottky sidebands	\Leftrightarrow	Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	\Leftrightarrow	Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance (same as above, but in time domain)	\Leftrightarrow	Good results on several machines but requires kick stimulus \Rightarrow emittance growth!

Rhodri Jones – CERN Beam Instrumentation Group

Chromaticity from Schottky Spectra

- Schottky a powerful tool for non-invasive measurements
 - Ideally suited to coasting (unbunched) beams & heavy ions (Z² relationship)
 - Rely on detecting statistical fluctuations in position of finite number of particles
 - Acquisition times are therefore typically long
 - Bunched beam Schottky challenge
 - Measurement of small signals in presence of revolution lines up to 100000 times higher

Rhodri Jones – CERN Beam Instrumentation Group

Chromaticity from Schottky Spectra

- Chromaticity from Schottky spectra
 - From difference in widths of lower & upper sidebands on given revolution (f_0) harmonic (n)

$$\Delta f_{\pm} = f_0 \frac{\Delta p}{p} \left[(n \pm q)\eta \pm Q\xi \right] \approx f_0 \frac{\Delta p}{p} \left[n \times \eta \pm Q' \right]$$

- Ideally detect at n where Q' of same order as n x η
 - · Width variations are then dominated by chromaticity

Constraints

- Need to avoid band overlap where sidebands merge
 - Keep n low
- Need to be outside coherent bunch spectrum for bunched beams
 - Keep n high to minimise revolution components
- Trade-off may not be optimal for chromaticity measurements
 - + E.g. LHC where n ~ 430000 (4.8 GHz & f_0 = 11 kHz) gives n x η ~ 140
 - One unit of chromaticity represents < 2% variation in width difference

Chromaticity from Schottky Spectra

- Bunched beam Schottky example from the LHC
 - Variation in sideband widths as chromaticity is changed from 2 to 15

Rhodri Jones – CERN Beam Instrumentation Group

Measurement Techniques

Tune change for different beam momenta	\Leftrightarrow	Standard method used on all machines. Can be combined with PLL tune tracking to give on-line measurement
Width of tune peak or damping time	\Leftrightarrow	Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	\Leftrightarrow	Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects
Width ratio of Schottky sidebands	\Leftrightarrow	Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	\Leftrightarrow	Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance (same as above, but in time domain)	\Leftrightarrow	Good results on several machines but requires kick stimulus ⇒ emittance growth!

Rhodri Jones – CERN Beam Instrumentation Group

Head-Tail Chromaticity Measurement

- Developed at CERN in late 1990's for fast chromaticity measurement & possible alternative to RF modulation in LHC
 - Kick all particles in bunch to same initial phase
 - Measure subsequent phase difference of head & tail over synchrotron period

Rhodri Jones – CERN Beam Instrumentation Group

Head-Tail Chromaticity Measurement

Demonstrated in CERN-SPS & Tevatron but had limitations

- Needed strong kick to overcome static orbit offsets
 - Various electronic means attempted to overcome this with little success
- Affected by space charge at low energy
- Can suffer from short decoherence times (< synchrotron tune)
- Should also work with continuous excitation (S. Fartoukh)
 - Requires sensitive tune measurement gated on head & tail of bunch
 - Attempts to adapt base band tune system for this not successful to date

Rhodri Jones – CERN Beam Instrumentation Group

Chromaticity Summary

- Many techniques available to measure chromaticity
- RF frequency modulation most widely used
 - Sufficient for majority of machines
 - Possibility for on-line measurement
 - Requires sensitive, continuous tune measurement system
 - Main limitations
 - Induced orbit change prohibits on-line measurement at synchrotron light sources & high intensity colliders
 - Relatively slow measurement rate
- Schottky diagnostics
 - Ideal for unbunched beams & heavy ion machines
 - Challenging for bunched beams
- Several techniques could do with another look
 - Fast RF phase modulation with tune spectrum demodulation
 - Low excitation strength Head-Tail measurements

Coupling Measurement

Rhodri Jones – CERN Beam Instrumentation Group

Coupling

- Start with decoupled machine
 - Only horizontal tune shows up in horizontal FFT (& vertical in vertical FFT)
- Gradually increase coupling (skew quadrupole field)
 - Vertical mode shows up in horizontal FFT & frequencies shift

Rhodri Jones – CERN Beam Instrumentation Group

- Measured tunes the physical observables seen in FFT
 - Often called the 'normal modes' or 'eigenvalues'

Set tunes

- What the tunes would be in absence of coupling
- Tune split $\Delta = (Q_x Q_y)$
 - Difference between the set horizontal & vertical tunes
- Magnitude of the coupling coefficient |C⁻|
 - The closest $Q_I \& Q_{II}$ can approach each other 'closest tune approach'
 - Any closer is a 'forbidden zone' in a system of coupled oscillators

Measuring Coupling

- 3 Main Methods
 - Orbit changes
 - Change orbit in one plane by exciting steering correctors or by changing injection conditions & measure effect in other plane
 - Large coupling sources identified as locations where horizontal orbit change generates a vertical kick & vice versa
 - Acquire large numbers of orbits for excitation of different correctors to determine skew quadrupole component of each magnet
 - Closest tune approach
 - Approach horizontal & vertical tunes until they cross
 - Coupling derived from how close tunes can approach
 - Kick response
 - Kick in one plane & measure in other using
 - Tune FFT or Phase Locked Loop
 - Pairs of BPMs to derive Resonance Driving Terms

Measuring Coupling – Closest Tune Approach

- Measure tunes while changing the quadrupole strength
 - Coupling Measurement in LEP using Phase Locked Loop tune measurement
 - Coupling measurement in LHC using base band tune measurement

Rhodri Jones – CERN Beam Instrumentation Group

Measuring Coupling – Kick Response

- Kick Beam in one plane and measure oscillations in other
 - Observe with tune measurement system
 - Magnitude of local coupling can be derived from amplitude ratios of tune peaks

$$|C^{-}| \propto \frac{\sqrt{r_{1}r_{2}}}{1 + r_{1}r_{2}}$$
 $r_{1} = \frac{A_{1,y}}{A_{1,x}}$ $r_{2} = \frac{A_{2,x}}{A_{2,y}}$

Rhodri Jones – CERN Beam Instrumentation Group

Measuring Coupling – Kick Response

Resonant Driving Terms

 Using the amplitude & phase of FFT spectrum RDTs proportional to the coupling strength can be calculated

Rhodri Jones – CERN Beam Instrumentation Group

Coupling via Resonant Driving Terms

Using a single BPM

- The Normal FFT (tune measurement)
- Spectrum is mirrored around half revolution
 - Cannot distinguish phase of oscillation

Using a pair of BPMs

- Produce a complex variable
- Can reconstruct both amplitude & phase

Using the Complex Variable

Rhodri Jones – CERN Beam Instrumentation Group

Coupling via Resonant Driving Terms

Example from the LHC

- Kick Beam & measure oscillations using BPMs throughout the ring
- Reconstruct local coupling at each BPM location
- Clear difference between local & average "global" coupling
 - FFT based on tune measurement system (single location) would not have detected such a structure

Coupling via Resonant Driving Terms

Example from the LHC

- Kick Beam & measure oscillations using BPMs throughout the ring
- Reconstruct local coupling at each BPM location
- Clear difference between local & average "global" coupling
 - FFT based on tune measurement system (single location) would not have detected such a structure
- Correct on an arc by arc basis using skew quadrupoles

Summary

Tune Measurement

- A basic "must have" diagnostic system
- Emittance preservation an important issue for hadron machines implying low amplitude excitation
- Single kick, single measurement systems now replaced by continuous measurement systems
 - High sensitivity systems making use of μ m level residual oscillations
 - Phase Locked Loops

Chromaticity Measurement

- Workhorse is tune measurement during RF modulation
- Large array of other techniques available for specific situations
- Coupling Measurement
 - Important to decouple machine for beam stability & feedback stability
 - Kick response the main technique exploited
 - Tune FFT or Phase Locked Loop
 - Pairs of BPMs to derive Resonance Driving Terms