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Instrumentation---Diagnostics
• Instrumentation: summary word for all the 

technologies needed to produce primary 
measurements of beam parameters.

• Diagnostics: making use of these instruments in 
order to
- operate the accelerators   ex: orbit control
- improve the performance of the accelerators

ex: tune feedback, emittance preservation
- deduce further beam parameters or performance 
indicators of the machine by further data 
processing

ex: chromaticty measurements, betatron 
matching
- detect equipment faults
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• Optimisation of Machine Performance
(“the good days”)

→ Orbit measurement & correction
→ Luminosity: basics + luminosity tuning, betatron matching

• Diagnostics of transverse beam motion
→ Tune & chromaticity measurements
→ Dynamic effects: tune and chromaticity control
→ On-line β measurements

• Trying to make the machine work
(“the bad days”)

→ The beam does not circulate!
→ The beam gets lost, when changing the beta*

That is what
gets reported

on in
conferences

Outline for Today
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Orbit Acquisition

Horizontal

Vertical
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Orbit Correction (Operator Panel)
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Orbit Correction (Detail)
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Luminosity & Beam-Beam Tune Shift

• Luminosity

• Normalized emittance

• Beam-beam tune shift

• To maximize L and minimize the stored energy, 
increase N to the tune shift limit, choose a large 
number of bunches (M) and a small β*
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Luminosity Measurement in the LHC:
Nominal locations of the neutral (TAN) absorbers

• The TAN absorbs forward neutral collision products (mostly neutrons and 
photons) and is placed in front of the outer beam separation dipole D2
•Ideal location to measure the forward flux of collision products
•The count rate is proportional to luminosity
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• Peak power density of 1-10 W.kg-1.m-1 (location of luminosity detector)

• A 3m radiation hard cable will allow electronics to be located in a region with
power density < 10-5 W.kg-1.m-1 (100 Gy/year for nominal operation)

TAN Power Deposition (W/kgm)
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LHC Luminosity Measurement

• Capable of 40MHz acquisition
• Has to withstand high radiation dose: ~108 Gy/year

→ estimated 1018 Neutrons/cm2 over its lifetime (20yrs LHC operation)
→ estimated 1016 Protons/cm2 over its lifetime (20yrs LHC operation)

• No maintenance

Requirements:

Selected Technology:
• Pressurized Ionisation Chambers

→ developed by LBL (Berkeley, US)
– Good radiation hardness
– Meet 40 MHz bandwidth demand
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Improving luminosity
1) Stronger focusing insertions

transition from high beta optics at injection to low 
beta optics at collision (so called beta squeeze): 
critical process with dynamic effects on orbit, tune and 
chromaticty

2) Smaller emittance and emittance preservation through the 
pre-injectors

measurements of beam size from low energy beams to 
high energy beams

betatron matching at injection
3) Higher intensity: sounds simple, but one needs 

diagnostics (and cures) for the onset of instabilities,
real time longitudinal and transverse feedback, control of 
radiation issues, i.e. beam loss monitors. 
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Optical Transition Radiation Monitors

OTR Screen

Beam

Mirror

Intensifier -
CCD

As Beam hits the 12μm Titanium foil 2 cones of radiation are emitted 

Capturing emitted radiation on a CCD gives 2D beam distribution
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Turn-by-Turn OTR Results
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Quadrupolar Pick-Up

• Position contribution can not 
be avoided, but can be 
measured and subtracted.

• Design suppresses the 
dominating intensity signal 
by coupling to the radial 
magnetic field component.

Induction loop

Pick-up seen along 
beam path
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Installation in the CERN-PS

βh βv Dh

SS 03 22 m 12 m 3.2 m
SS 04 12 m 22 m 2.3 m

“One pick-up per plane”
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Measurement of Matching
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→ Injected emittances.
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→ Horizontal dispersion 
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• Input parameters
→ βH, βV, DH

→ ΔμH, ΔμV
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• Most input parameters can 
be checked experimentally
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••• OptimisationOptimisationOptimisation of Machine Performanceof Machine Performanceof Machine Performance
(((“““the good daysthe good daysthe good days”””)))

→→→ Orbit measurement & correctionOrbit measurement & correctionOrbit measurement & correction
→→→ Luminosity: basics + luminosity tuning, betatron matching

• Diagnostics of transverse beam motion:
Important tools to stabilize performance at high levels
→ Tune & chromaticity measurements
→ Dynamic effects: tune and chromaticity control
→ On-line β measurements

••• Trying to make the machine workTrying to make the machine workTrying to make the machine work
(((“““the bad daysthe bad daysthe bad days”””)))

→→→ The beam does not circulate!The beam does not circulate!The beam does not circulate!
→→→ The beam gets lost, when changing the beta*The beam gets lost, when changing the beta*The beam gets lost, when changing the beta*

Outline for Today
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Measurement of Q (betatron tune)

• Q – the eigenfrequency of betatron oscillations in a 
circular machine
→ One of the key parameters of machine operation

• Many measurement methods available:
→ different beam excitations
→ different observations of resulting beam oscillation
→ different data treatment

QF
QF QF

QDQD

SF
SF

SF SD SD

Characteristic Frequency
of the Magnet Lattice

Produced by the strength of the
Quadrupole magnets
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Principle of any Q-measurement

Beam

Excitation Source for
Transverse beam

Oscillations
- stripline kickers
- pulsed magnets

Excitation Source for
Transverse beam

Oscillations
- stripline kickers
- pulsed magnets

Observation of
Transverse beam

Oscillations
- E.M. pickup

- resonant BPM
- others

Observation of
Transverse beam

Oscillations
- E.M. pickup

- resonant BPM
- others

G(ω) H(ω)
BTF:= H(ω)/G(ω)

Measurement of 
betatron tune Q:
Maximum of BTF
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Simple example: FFT analysis

G(ω) == flat
(i.e. excite all frequencies)

Made with random noise kicks

Measure beam position over 
many consecutives turns

apply FFT → H(ω)

BTF = H(ω)
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Network Analysis
1. Excite beams with a 

sinusoidal carrier

2. Measure beam 
response

3. Sweep excitation 
frequency slowly 
through beam 
response
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Time Resolved Measurements
• To follow betatron tunes during machine transitions we 

need time resolved measurements. Simplest example:
→ repeated FFT spectra as before (spectrograms)
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Principle of PLL tune measurements

Beam

VCO
Voltage controlled 

oscillator

A sin(ωt)

BPM

B sin(ωt+ϕ)

Phase detector
AB sin(2 ωt +ϕ)cos(ϕ)

Lowpass
Frequency control:

ABcos(ϕ)

Read VCO
Frequency=

tune!
At regular

Time intervals

This PLL system 
looks to the 90 deg. 
point of the BTF
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Illustration of  PLL tune tracking

A

q
Φ

q

Single carrier PLL locks 
on 900 point of BTF;
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Example of PLL tune measurement

In this case continuous tune 
tracking was used whilst 
crossing the horizontal and 
vertical tunes with a power 
converter ramp.

Closest tune approach is 
a measure of coupling

qh

qv

qh -qv
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Tune Measurement Systems
• Standard Tune Measurement (FFT) and PLL tune tracker will use a new 

BaseBand Tune (BBQ) system developed at CERN using Direct Diode 
Detection (3D)
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3D Method Advantages / Disadvantages
Advantages
• Sensitivity (noise floor measured at RHIC in the 10 nm range!!)
• Virtually impossible to saturate

→ large Frev suppression already at the detectors + large dynamic range
• Simplicity and low cost

→ no resonant PU, no movable PU, no hybrid, no mixers, it can work with any PU
• Base band operation

→ excellent 24 bit audio ADCs available
• Signal conditioning / processing is easy

→ powerful components for low frequencies
• Independence from the machine filling pattern guaranteed
• Flattening out the beam dynamic range (small sensitivity to number of bunches)

Disadvantages
• Operation in the low frequency range

→ More susceptible to EMC
• It is sensitive to the “bunch majority”

→ gating needed to measure individual bunches
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Results from the PS (AD cycle)
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Measurement of Coupling using a PLL 
Tune Tracker

Frequency

A
m

pl
itu

de

Fully coupled machine: Δ = |C-|

Only horizontal tune shows up in horizontal FFT

FFT of Horizontal Acquisition Plane

Start with decoupled machine
Gradually increase coupling Vertical mode shows up & frequencies shift        

Hor

Ver

Δ
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Measurement of Coupling using a PLL 
Tune Tracker
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Tracking the vertical mode in the horizontal plane &
vice-versa allows the coupling parameters to be calculated
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Measurement of Coupling using a PLL 
Tune Tracker (RHIC Example)
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β Function Measurement by k-Modulation
• Purpose:

→ measurement of  < β >  within a quadrupole
→ optics knowledge
→ emittance determination: ε = σ2

rms / β

• Principle:
→ a (small) strength variation  Δk within a quadrupole induces a tune  

variation  ΔQ
ΔQ      =   Δk/4π ∫Quad β(s) ds

< βH,V >  =   (4π ΔQH,V / LΔk) (1+ε(ΔQ))

• L is the quadrupole magnetic length
• ΔQ  is small enough to keep second order term contribution < 1%

• Δk modulated using k-modulation facility in LEP to test:
→ What is the smallest possible perturbation? (LHC emittance budget)
→ Can it work with beams colliding head ON ?
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β Measurement using k-Modulation in LEP
Effect of Q feedback loop speed 

(PLL mode)

→ ΔI = 1A, 0.25 Hz

→ “ fast” mode:  20 Hz

→ “normal” mode: 12 Hz
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β Measurement using k-Modulation in LEP

Comparison between static Δk , 
1000 turns and k-modulation 

LEP: 85GeV, 800mA, 4 bunches

• 1000 turns:
→ βmiddle QUAD = 175.4 m
→ β-beating: -9.2%
→ <β> =164.8 m

• k-modulation:
→ 1A (5×10-4), 0.25 Hz
→ <β> = 162.9 m

ΔQ  vs  Δk (static)
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Comparison between static Δk and
k-modulation with colliding beams in LEP

[103.3 GeV, 1860 μA on 1860 μA ]

• Static Δk:
→ I0 + 0.5 A :    <β> =  383.9 m 
→ I0 
→ I0  - 0.5 A :    <β> =  392.8 m 

• k-modulation:
→ I0 + ΔI
→ ΔI = 1A, 0.25 Hz
→ <β> =  389.4 m
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Chromaticity (Q’ or ξ) 

Achromatic incident light
[Spread in particle energy]

Lens
[Quadrupole]

Focal length is
energy dependent

Optics Analogy:

Spread in the Machine Tune 
due to Particle Energy Spread
Controlled by Sextupole magnets
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Chromaticity – Its Importance for the LHC?

• Change in b3 during snap-back
→ Change in Q’ of ~150 units

• Nominal operation requires 
ΔQ’ < 3

• Correction by:
→ Feed-forward tables from 

magnet/chromaticity 
measurements

→ On-line feedback from b3 
measurements on reference 
magnets

→ Possible on-line feedback directly 
from chromaticity measurements
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Chromaticity - What observable to choose?

Tune Difference for different 
beam momenta ⇔ used at HERA, LEP, RHIC in 

combination with PLL tune tracking

Width of tune peak or
damping time ⇔ model dependent, non-linear effects, 

Used extensively at DESY

Amplitude ratio of synchrotron 
sidebands ⇔

Difficult of exploit in hadron
machines with low synchrotron tune,
influence of  lattice resonances?

Excitation of energy oscillations
and PLL tune tracking ⇔ First promising steps in the SPS

Bunch spectrum variations 
during betatron oscillations ⇔ difficult to measure

Head-tail phase advance 
(same as above, but in time 
domain)

⇔ very good results but requires kick 
stimulus ⇒ emittance growth!
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Applied Frequency Shift 
Δ F (RF)

Δ Qh

Δ Qv

Q’ Measurement via RF-frequency 
modulation (momentum modulation)

Amplitude & sign of chromaticity
calculated from continuous tune plot
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qh

qv

Measurement Example during LEP β-squeeze
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Chromaticity & Head-Tail Motion
Positive Chromaticity (Above Transition)

Q > Q0

Q < Q0

τ

Δp/p

Head Tail

-ωsτ

Longitudinal Phase-Space

τ̂

Positive Chromaticity (Above Transition)

Q > Q0

Q < Q0

τ

Δp/p

Head Tail

-ωsτ

Longitudinal Phase-Space

τ̂τ̂
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Chromaticity & Head-Tail Motion
Negative Chromaticity (Above Transition)

Q < Q0

Q > Q0

τ

Δp/p

Head Tail

-ωsτ

Longitudinal Phase-Space

Negative Chromaticity (Above Transition)

Q < Q0

Q > Q0

τ

Δp/p

Head Tail

-ωsτ
Q < Q0

Q > Q0

τ

Δp/p

Head Tail

-ωsτ

Longitudinal Phase-Space
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Simulated Response



Beam DiagnosticsCAS 2005 Hermann Schmickler (CERN - AB)

The Head-Tail Measurement Principle
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Head-Tail System Set-up (SPS)

Straight
Stripline
Coupler

Beam PipeBeam

Hybrid

VME
Acquisition
via GPIB

Sum

Difference

Bunch Synchronous
Trigger

GPIB link
UNIX

User Interface

Fast (2GS/s per channel)
Digital Oscilloscope

SPS Tunnel
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Measuring Q’ (Example 1: low Qs)

Qs
-1 = 310 turns
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Qs
-1 = 97 turns

Measuring Q’ (Example 2: high Qs)
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Measuring Q’’ and Q’’’
Radial Position versus Chromaticity (115GeV)
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Online measurement and feedback of Q & Q’

• The aim for the LHC:
→ Permanent Q & Q’ measurements with hard constraints on:

• emittance preservation
• insensitivity to machine-parameter changes

(orbit, coupling…)
→ Online feedback to power supplies of quadrupole and 

sextupole magnets (bandwidth < 10 Hz)

• What has been done so far:
→ Early example from LEP  → next slide
→ Present situation at DESY → following movie
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Early example from LEP
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HERA-p solution:
• “Chirp” tune 

measurements

• Online display

• Operator 
“joystick”
feedback to 
quadrupole and 
sextupole power-
supplies

Ti
m

e

Tune
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Online Q-display at HERA-p with
“BLL” as control (brain locked loop)
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••• OptimisationOptimisationOptimisation of Machine Performanceof Machine Performanceof Machine Performance
(((“““the good daysthe good daysthe good days”””)))

→→→ Orbit measurement & correctionOrbit measurement & correctionOrbit measurement & correction
→→→ Luminosity: basics, profile and Luminosity: basics, profile and Luminosity: basics, profile and βββ --- measurementsmeasurementsmeasurements

••• Diagnostics of transverse beam motionDiagnostics of transverse beam motionDiagnostics of transverse beam motion
→→→ Tune & chromaticity measurementsTune & chromaticity measurementsTune & chromaticity measurements
→→→ Dynamic effects: tune and chromaticity controlDynamic effects: tune and chromaticity controlDynamic effects: tune and chromaticity control
→→→ OnOnOn---line line line βββ measurementsmeasurementsmeasurements

• Trying to make the machine work
(“the bad days”)

→ The beam does not circulate!
→ The beam gets lost, when changing the beta*

Outline for Today
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LEP – No Circulating Beam

QL10.L1Positrons
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Zoom on QL1

QL10.L1
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& 10 metres to the right …

Unsociable sabotage: both bottles were empty!!
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LEP Beams Lost During Beta Squeeze
From 
LEP 

logbook
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…and the corresponding diagnostics
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In these two lectures we have seen how to 
build and use beam instrumentation to 

run and optimise accelerators

Hopefully it has given you an insight into 
the field of accelerator instrumentation 

and the diverse nature of the 
measurements and technologies involved

http://sl-div.web.cern.ch/sl-div-bi/CAS%20/lecture/

http://sl-div.web.cern.ch/sl-div-bi/CAS /lecture/
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