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Useful books and references

A. Hofmann, The Physics of Synchrotron Radiation
Cambridge University Press 2004

H. Wiedemann, Synchrotron Radiation
Springer-Verlag Berlin Heidelberg 2003

H. Wiedemann, Particle Accelerator Physics I and II
Springer Study Edition, 2003

A. W. Chao, M. Tigner, Handbook of Accelerator Physics and 
Engineering, World Scientific 1999

M. Sands, SLAC-121
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Charge at rest: Coulomb field, no radiation

Uniformly moving charge 
does not radiate (but! Cerenkov!)

Accelerated charge

Why do they radiate?

v = const.
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Bremsstrahlung
or 

breaking radiation
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Transverse acceleration

v
a

Radiation field quickly 
separates itself from the 
Coulomb field
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Radiation is emitted into a narrow cone

v << cv << c v ≈ cv ≈ c

v ~ c

θe θ
 

θ = 1
γ ⋅ θe
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Synchrotron radiation power

 P ∝ E 2B2

 
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10– 5 m
GeV 3

Power emitted is proportional to:
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2 ρπ
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The power is all too real!
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Synchrotron radiation power

 P ∝ E2B2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10– 5 m
GeV 3

   
U0 =Cγ ⋅ E4

ρ  
U0 = 4π

3 αhcγ 4

ρ

 
α = 1

137

 hc = 197 Mev ⋅ fm

Power emitted is proportional to:

Energy loss per turn:

2
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2 ρπ
γ

γ
EcC

P ⋅=
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3
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ρ
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Typical frequency of synchrotron light
Due to extreme collimation of light observer sees only 
a small portion of electron trajectory (a few mm)

   
l ~ 2ρ

γ

 
Δt ~ l

βc – l
c = l

βc 1 – β

γ/1

Pulse length: 
difference in times it 
takes an electron 
and a photon to 
cover this distance

 
Δt ~ 2ρ

γ c ⋅ 1
2γ 2

 
ω ~ 1

Δt ~ γ 3ω0
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Spectrum of synchrotron radiation

• Synchrotron light comes in a 
series of flashes
every T0 (revolution period)

• the spectrum consists of
harmonics of 

• flashes are extremely short: 
harmonics reach up to very 
high frequencies

• At high frequencies the 
individual harmonics overlap

time

T0

0
0

1
T

=ω

0
3ωγω ≅typ

continuous spectrum !

! Hz10~
4000 ~

MHz1~

16
typ

0

ω

γ
ω
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  dP
dω

=
Ptot
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Radiation effects in electron storage rings

Average radiated power restored by RF
• Electron loses energy each turn
• RF cavities provide voltage to accelerate electrons

back to the nominal energy
Radiation damping

• Average rate of energy loss produces DAMPING of electron 
oscillations in all three degrees of freedom (if properly 
arranged!)

Quantum fluctuations
• Statistical fluctuations in energy loss (from quantised emission 

of radiation) produce RANDOM EXCITATION of these oscillations
Equilibrium distributions

• The balance between the damping and the excitation of the 
electron oscillations determines the equilibrium distribution of
particles in the beam

 U0 ≅ 10– 3 of E0

VRF > U0



RADIATION DAMPING
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  P⊥

P| |

P
  U0

c

  P⊥

P| |

P

  eVRF = U0

  U0
c

RF Cavity

Every turn electron radiates small 
amount of energy

only the amplitude of the 
momentum changes

Average energy loss and gain per turn

  
E1 = E0 – U0 = E0 1 –

U0
E0

  
P1 = P0 – U0

c = P0 1 –
U0
E0

Only the longitudinal component 
of the momentum is increased in 
the RF cavity

Energy of betatron
oscillation

 Eβ ∝ A2

 
A1

2 = A0
2 1 –

U0
E0

or A1 ≅ A0 1 –
U0
2E0
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But this is just the exponential decay law!

The oscillations are exponentially damped
with the damping time (milliseconds!)

In terms of radiation power

and since 

   
ΔA
A = –

U0
2E τteAA −⋅= 0

Damping of vertical oscillations

0

02
U

TE
=τ the time it would take particle to 

‘lose all of its energy’

γ

τ
P
E2

= 4EP ∝γ
3

1
E

∝τ



  p⊥
  p⊥

p p

Particle acceleration
In a linear accelerator:

In a storage ring beam passes many 
times through same RF cavity RF

Particle is accelerated by ΔE each turn, or

Particle energy on average remains constant, 
RF system compensates energy loss per turn



RF cavity provides accelerating field 
with frequency
• h – harmonic number

The energy gain:

Synchronous particle: 
• has design energy 
• gains from the RF on the average as 

much as it loses per turn U0

Longitudinal motion: 
compensating radiation loss U0

( )τRFRF eVU =

0fhfRF ⋅=

RF

τ

VRF

U0



τ

VRF

U0

Particle ahead of synchronous one
• gets too much energy from the RF
• goes on a longer orbit (not enough B)

>> takes longer to go around
• comes back to the RF cavity closer to synchronous part.

Particle behind the synchronous one 
• gets too little energy from the RF
• goes on a shorter orbit (too much B)
• catches-up with the synchronous particle

Longitudinal motion: 
phase stability



τ

ε

Longitudinal motion: energy-time oscillations

energy deviation from the design energy, or 
the energy of the synchronous particle

longitudinal coordinate measured from the 
position of the synchronous electron



During one period of synchrotron oscillation:
when the particle is in the upper half-plane, it loses more 
energy per turn, its energy gradually reduces

when the particle is in the lower half-plane, it loses less 
energy per turn, but receives U0 on the average, so its 
energy deviation gradually reduces

The synchrotron motion is damped
the phase space trajectory is spiraling towards the origin

Longitudinal motion: 
damping of synchrotron oscillations 22BP E∝γ

  U > U0

  U < U0

τ

ε
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Transverse betatron oscillations 
are damped with
Synchrotron oscillations 
are damped twice as fast

The total amount of damping (Robinson theorem) 
depends only on energy and loss per turn

the sum of the partition numbers

Robinson theorem: Damping partition numbers

   1
τx

+ 1
τy

+ 1
τε

=
2U0
ET0

=
U0

2ET0
Jx + Jy + Jε

 Jx + Jz + Jε = 4

0

02
U
ET

zx ==ττ

0

0

U
ET

=ετ
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 Pγ∝E2B2
Radiation loss

Displaced off the design orbit particle sees fields that 
are different from design values

energy deviation ε
different energy:

different magnetic field B
particle moves on a different orbit, defined by the

off-energy or dispersion function Dx

both contribute to linear term in

betatron oscillations: zero on average

2
γ EP ∝

( )εγP
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 Pγ∝E2B2
Radiation loss

To first order in ε

electron energy changes slowly, at any instant it is 
moving on an orbit defined by Dx

after some algebra one can write

 Urad = U0 + U′ ⋅ ε

 
U′ ≡ dUrad

dE E0

  
U′ = U0

E0
2 + D

   
D ≠ 0 only when k

ρ ≠ 0
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Typically we build rings with no vertical dispersion

Horizontal and energy partition numbers can be 
modified via D :

Use of combined function magnets

Shift the equilibrium orbit in quads with RF frequency

Damping partition numbers
 Jx + Jz + Jε = 4

1=zJ 3=+ εJJx

D−=1xJ D+= 2εJ



EQUILIBRIUM BEAM SIZES



Damping only
• If damping was the whole story, the beam emittance (size) 

would shrink to microscopic dimensions!
• Lots of problems! (e.g. coherent radiation)

Quantum fluctuations
• Because the radiation is emitted in quanta, radiation itself 

takes care of the problem!
• It is sufficient to use quasi-classical picture:

» Emission time is very short
» Emission times are statistically independent 

(each emission - only a small change in electron energy)

Quantum nature of synchrotron radiation

Purely stochastic (Poisson) process



Quantum excitation of energy oscillations

Photons are emitted with typical energy
at the rate (photons/second)   

N =
Pγ

u ph

Fluctuations in this rate excite oscillations

During a small interval Δt electron emits photons

losing energy of

Actually, because of fluctuations, the number is

resulting in spread in energy loss

  N = N ⋅ Δ t

 N ⋅ u ph

 N ± N

 ± N ⋅ u ph

For large time intervals RF compensates the energy loss, providing 
damping towards the design energy E0

Steady state: typical deviations from E0
≈ typical fluctuations in energy during a damping time τε

 
u ph ≈ h ω typ = h c γ 3

ρ



We then expect the rms energy spread to be

and since                  and

Relative energy spread can be written then as: 

it is roughly constant for all rings

• typically

Equilibrium energy spread: rough estimate

phuN ⋅⋅≈ εε τσ

   
τε≈

E0
Pγ phuNP ⋅=γ

   σε ≈ E0 ⋅ uph geometric mean of the electron and photon energies!

   σε
E0

≈ γ λ–e
ρ

 
λ–e = h

mec
∼ 4 ⋅ 10– 13m

 σε

E0
~ const ~ 10 – 3

2ρ∝E



More detailed calculations give 

• for the case of an ‘isomagnetic’ lattice

with

It is difficult to obtain energy spread < 0.1%
• limit on undulator brightness!

Equilibrium energy spread

 
ρ s = ρ0 in dipoles

∞ elsewhere

 
σε
E

2
=

Cq E 2

Jερ0

   
Cq = 55

32 3
hc

mec 2 3 = 1.468 ⋅ 10 – 6 m
GeV 2



Equilibrium bunch length

Bunch length is related to the energy spread
Energy deviation and time of arrival
(or position along the bunch)
are conjugate variables (synchrotron oscillations)

recall that

Two ways to obtain short bunches:

RF voltage (power!)
Momentum compaction factor in the limit of α = 0
isochronous ring: particle position along the bunch is 
frozen

τ

ε

 
τ = α

Ωs

ε
E

 
στ = α

Ωs

σε
E Ωs ∝ VRF

 στ ∝ 1 VRF
1 VRF

 στ ∝ α
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Excitation of betatron oscillations

εβ xxx +=

0=Δ+Δ=Δ εβ xxx

εβ xxx ′+′=′E
Dx ε

ε ⋅=

E
Dx γ

β

ε
⋅−=Δ

E
Dx γ

β

ε
⋅′−=′ΔCourant Snyder invariant

[ ]
2

2222 22 ⎟
⎠

⎞
⎜
⎝

⎛⋅′+′+=′Δ+′ΔΔ+Δ=Δ
E

DDDDxxxx γ
ββββ

ε
βαγβαγε
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Excitation of betatron oscillations

Electron emitting a photon 
• at a place with non-zero dispersion
• starts a betatron oscillation around a new 

reference orbit

E
Dx γ

β
ε

⋅≈



Horizontal oscillations: equilibrium

Emission of photons is a random process
Again we have random walk, now in x. How far particle 

will wander away is limited by the radiation damping
The balance is achieved on the time scale of the damping 

time τx = 2 τε

Typical horizontal beam size ~ 1 mm

Vertical size - determined by coupling

Quantum effect visible to the naked eye!

E
D

E
Dxx

εγ
β

σε
τσ ⋅⋅=⋅⋅⋅≈ 2N



Betatron oscillations
• Particles in the beam execute betatron oscillations with 

different amplitudes.

Transverse beam distribution
• Gaussian (electrons)
• “Typical” particle: 1 - σ ellipse

(in a place where  α = β’ = 0)

Beam emittance

x

x’

σx

σx’

 Area = π ⋅ε

 Units of ε m ⋅ rad   
Emittance ≡

σx
2

β  σx = ε β
σx′ = ε /β

 ε = σx ⋅ σx′

 
β = σx

σ x′



Detailed calculations for isomagnetic lattice 

where

and                 is average value in the bending magnets

Equilibrium horizontal emittance

    
εx0 ≡

σxβ
2

β =
CqE 2

Jx
⋅

H mag
ρ

  
H = γD 2 + 2αDD′ + βD′ 2

= 1
β D 2 + βD′ + αD 2

  H mag



Dynamics with Radiation, L. Rivkin, PSI, CAS Trieste, October 2005

Ionization cooling

absorber acceleration

E

p||

p⊥
similar to radiation 
damping, but there is 
multiple scattering 
in the absorber that 
blows up the 
emittance

σ0

σ′0

to minimize the 
blow up due to 
multiple 
scattering in the 
absorber we can 
focus the beam  

σ′ = σ′0
2 + σ′MS

2  σ′0 >> σ′MS
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H calculus
Derivatives of the Twiss parameters

and the equation for dispersion

Derivative of the H function

H changes only in the bending magnets

 
′ = d

ds

G s = 1
ρ s

   β′ = – 2α
α′ = k + G2 β – γ
γ′ = 2α k + G2

 D′′ = – k + G2 D + G

  H = γD2 + 2αDD′ + βD′2

H ′ =2G γD + αD′
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Summary of radiation integrals
  

I1 = D
ρ ds

I2 = ds
ρ 2

I3 = ds
ρ 3

I4 = D
ρ 2k + 1

ρ 2 ds

I5 = H
ρ 3 ds

Momentum compaction factor

Energy loss per turn

   
α = I1

2πR

   
U0 = 1

2πCγE 4 ⋅ I2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10 – 5 m
GeV 3
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Summary of radiation integrals (2)
  

I1 = D
ρ ds

I2 = ds
ρ 2

I3 = ds
ρ 3

I4 = D
ρ 2k + 1

ρ 2 ds

I5 = H
ρ 3 ds

Damping parameter

Damping times, partition numbers

Equilibrium energy spread

Equilibrium emittance

 
D =

I4

I2

    Jε = 2 + D , Jx = 1 – D , Jy = 1
   

τ i = τ0
Ji

 
τ 0 = 2ET0

U0

   σε

E
2

=
Cq E 2

Jε

⋅
I3

I2

   
εx 0 =

σxβ
2

β =
CqE 2

Jx
⋅

I5

I2
  H = γD 2 + 2αDD ′ + βD ′ 2

 
Cq = 55

32 3
hc

mec 2 3 = 1.468 ⋅ 10 – 6 m
GeV 2
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Increase the radiation loss per turn U0 with WIGGLERS

reduce damping time

emittance control

wigglers at high dispersion: blow-up emittance
e.g. storage ring colliders for high energy physics

wigglers at zero dispersion: decrease emittance

e.g. damping rings for linear colliders
e.g. synchrotron light sources (PETRAIII, 1 nm.rad)

Damping wigglers

wigPP
E
+

=
γ

τ
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