Introduction to Beam Instrumentation & Beam Diagnostics

Rhodri Jones & Hermann Schmickler (CERN)

An accelerator can never be better than the instruments measuring its performance!

A Beam Diagnostics and Instrumentation activity shall design, build, maintain and improve the diagnostic instruments that allow the observation of particle beams with the precision required to diagnose, tune, operate and improve the accelerators and associated transfer lines.

This means that Beam Instrumentation combines the disciplines of accelerator physics, mechanical engineering, electronic engineering and software engineering.

In Short: One of the most fascinating fields of work I can imagine

Introduction to Beam Instrumentation

Today we Focus on "What and How we Measure" & the technologies involved

- Introduction
 - \rightarrow What do we mean by "Beam Instrumentation"
 - \rightarrow What instruments are involved
- Beam Instrumentation Selection
 - → Beam Position Measurement
 - → Beam Intensity Measurement
 - \rightarrow Beam Profile Measurement

Introduction

- What do we mean by beam instrumentation?
 - \rightarrow The "eyes" of the machine operators
 - i.e. the instruments that observe beam behaviour
- What beam parameters do we measure?
 - \rightarrow Beam Position
 - Horizontal and vertical all around the ring
 - Corrected using orbit corrector magnets (dipoles)
 - \rightarrow Beam Intensity (& lifetime measurement for a collider)
 - Circulating current and bunch-by-bunch charge
 - \rightarrow Beam Loss all around the ring
 - Especially important for superconducting machines
 - \rightarrow Beam profiles
 - Transverse and longitudinal distribution
 - \rightarrow Collision rate / Luminosity (for colliders)

More Measurements

Machine Tune

Lens

[Quadrupole]

Characteristic Frequency of the Magnet Lattice Given by the strength of the Quadrupole magnets

Machine Chromaticity

Achromatic incident light [Spread in particle energy]

Optics Analogy:

Spread in the Machine Tune due to Particle Energy Spread Controlled by Sextupole magnets

Focal length is energy dependent

The Typical Instruments

Beam Position

 \rightarrow electrostatic or electromagnetic pick-ups and related electronics

Beam Intensity

 \rightarrow beam current transformers

Beam Profile

- \rightarrow secondary emission grids and screens
- \rightarrow wire scanners
- \rightarrow synchrotron light monitors
- \rightarrow ionisation and luminescence monitors
- Beam Loss

 \rightarrow ionisation chambers or pin diodes

- Luminosity
 - \rightarrow ionisation chambers or semiconductors
 - \rightarrow in diagnostics section of tomorrow
- Machine Tunes and Chromacitities
 - \rightarrow in diagnostics section of tomorrow

Shoebox pick-up

Same principle applied to a cylindrical pick-up

- The cuts can be made by photo-chemical or mechanical means
 - \rightarrow Here done with a sand-blasting device

Introduction to Beam Instrumentation - Rhodri Jones (CERN)

U_R

Electrostatic PU (Button)

- ✓ Variant of electrostatic PU
 ✓ Low cost ⇒ most popular
 × Non-linear
 requires correction algorithm
 - when beam is off-centre

 $Z_{t\infty} = A / (2\pi r \times c \times C_e)$

Low frequency cut-off $T = R_1 C_e$ (few hundreds MHz)

Button Frequency & Time Response

Frequency domain:

 → Impedance transformers improve the low frequency levels at the expense of the high frequency

• Time domain:

- \rightarrow Differentiated pulse
- → Exponential dependence of amplitude on bunch length

What does a real (LHC) electrostatic button monitor look like?

Electromagnetic (Directional) coupler

- Is a transmission line (strip line) which couples to the transverse electromagnetic (TEM) beam field
 - $Z_{t\infty} = 60 \ln[(r+h)/r] \equiv Z_0^*[a/2\pi(r+h)]$
 - Z₀ is the characteristic impedance
 - a, r, h, l are the mechanical dimensions
 - t = l/c is the propagation time in the coupler

- Two termination ports
 - \rightarrow Upstream: usually used to acquire signal.
 - Same signal seen whether Downstream port is open, shorted or terminated by Z_0
 - \rightarrow Downstream: 2 cases
 - Upstream terminated by $Z_0 \Rightarrow$ no signal
 - Upstream short circuit \Rightarrow delayed & inverted signal

Directivity!

Coupler frequency & time response

- Sinusoidal amplitude response \rightarrow Maximum signal for f = 1/4*t \rightarrow Zero signal for f = 1/2*t
- Time domain:
 - •Bipolar pulse

Processing system families

Criteria for Electronics Choice so called "Processor Electronics"

- Accuracy
 - \rightarrow mechanical and electromagnetic errors
 - \rightarrow electronic components
- Resolution
- Stability over time
- Sensitivity and Dynamic Range
- Acquisition Time
 - \rightarrow measurement time
 - \rightarrow repetition time
- Linearity
 - \rightarrow aperture & intensity
- Radiation tolerance

LINEARITY Comparison

WIDE BAND TIME NORMALISER PRINCIPLE (WBTN)

The Wide Band Time Normaliser

The Wide Band Time Normaliser

The Wide Band Time Normaliser

Amplitude to Time Normaliser Evaluation

<u>Advantages</u>

- Fast normalisation (< 25ns)
 - \rightarrow bunch to bunch measurement
- Reduced number of channels (x2)
 → normalisation at the front-end
- Signal dynamic independent of the number of bunches
 - \rightarrow Input dynamic ~ 40 dB
 - \rightarrow No need for gain selection
- ~10 dB compression of the position dynamic due to the recombination of signals
- Independent of external timing

Limitations

- Reserved for beams with empty RF buckets between bunches
- Tight time adjustment
- No Intensity information
- Propagation delay stability and switching time uncertainty are the limiting performance factors

'LHC' BEAM POSITION MEASUREMENT

What one can do with such a System

Used extensively in CERN-SPS for electron cloud & instability studies.

The Typical Instruments

Beam Position

 \rightarrow electrostatic or electromagnetic pick-ups and related electronics

Beam Intensity

 \rightarrow beam current transformers

Beam Profile

- \rightarrow secondary emission grids and screens
- \rightarrow wire scanners
- \rightarrow synchrotron light monitors
- \rightarrow ionisation and luminescence monitors
- Beam Loss

 \rightarrow ionisation chambers or pin diodes

- Luminosity
 - \rightarrow ionisation chambers or semiconductors
 - \rightarrow in diagnostics section of tomorrow
- Machine Tunes and Chromacitities
 - \rightarrow in diagnostics section of tomorrow

Current Transformers

Magnetic field

Fields are very low

Capture magnetic field lines with cores of high relative permeability

(CoFe based amorphous alloy Vitrovac: $\mu_r = 10^5$)

Beam current

$$I_{\text{beam}} = \frac{qeN}{t} = \frac{qeN\beta c}{1}$$

Transformer Inductance

$$L = \frac{\mu_0 \mu_r}{2\pi} l N^2 \ln \frac{r_0}{r_i}$$

The Active AC transformer

Fast Beam Current Transformer

- 500MHz Bandwidth
- Low droop (< 0.2%/μs)

Acquisition Electronics

Data taken on LHC type beams at the CERN-SPS

Results from the CERN-SPS

Bad RF Capture of a single SPS LHC Batch (72 bunches)

The DC current transformer

- AC current transformer can be extended to very long droop times but not to DC
- Measuring DC currents is needed in storage rings
- To do this:
 - \rightarrow Take advantage of non-linear magnetisation curve
 - \rightarrow Apply a modulation frequency to 2 identical cores

DCCT Principle – Case 1: no beam

Zero Flux DCCT Schematic

The Typical Instruments

Beam Position

 \rightarrow electrostatic or electromagnetic pick-ups and related electronics

Beam Intensity

- \rightarrow beam current transformers
- **Beam Profile**
 - \rightarrow secondary emission grids and screens
 - \rightarrow wire scanners
 - \rightarrow synchrotron light monitors
 - \rightarrow ionisation and luminescence monitors
- Beam Loss
 - \rightarrow ionisation chambers or pin diodes
- Luminosity
 - \rightarrow ionisation chambers or semiconductors
 - \rightarrow in diagnostics section of tomorrow
- Machine Tunes and Chromacitities
 - \rightarrow in diagnostics section of tomorrow

Measuring Beam Size

- Beam Profile Measurement Methods
 - \rightarrow Secondary emission (SEM) grids
 - \rightarrow Wire Scanners
 - \rightarrow Beam interaction with a screen
 - semi or fully destructive
 - → Monitors based on interaction of beam with gas (residual or injected) in vacuum chamber
 - → Synchrotron light monitors

Secondary Emission (SEM) Grids

- When the beam passes through secondary electrons are ejected from the wires
- The current flowing back onto the wires is measured
- The liberated electrons are removed using a polarisation voltage
- One amplifier/ADC chain is used for each wire

Profiles from SEM grids

- Charge density measured from each wire gives a projection of the beam profile in either horizontal or vertical plane
- Resolution is given by distance between wires
- Used only in transfer lines as heating is too great for circulating beams

Measuring Beam Size

- Beam Profile Measurement Methods
 - \rightarrow Secondary emission (SEM) grids
 - \rightarrow Wire Scanners
 - \rightarrow Beam interaction with a screen
 - semi or fully destructive
 - → Monitors based on interaction of beam with gas (residual or injected) in vacuum chamber
 - → Synchrotron light monitors

Wire Scanners

- For circulating beams a thin wire is moved across the beam
 - \rightarrow has to move fast to avoid excessive heating of the wire
- Detection
 - → secondary particle shower detected outside the vacuum chamber using a scintillator/photo-multiplier assembly
 - \rightarrow Secondary emission current detected as for SEM grids
- Correlating wire position with detected signal gives the beam profile

Linear wire scanner

Measurement Results

Measuring Beam Size

- Beam Profile Measurement Methods
 - \rightarrow Secondary emission (SEM) grids
 - \rightarrow Wire Scanners
 - \rightarrow Beam interaction with a screen
 - semi or fully destructive
 - → Monitors based on interaction of beam with gas (residual or injected) in vacuum chamber
 - → Synchrotron light monitors

Beam Profile Monitoring using Screens

- Screen Types
 - \rightarrow Luminescence Screens
 - destructive (thick) but work during setting-up with low intensities
 - \rightarrow Optical Transition Radiation (OTR) screens
 - much less destructive (thin) but require high intensity

Sensitivities measured with protons with previous screen holder,

Туре	Material	Activator	Sensitivity
Luminesc.	CsI	T1	6 10 ⁵
"	Al_2O_3	0.5%Cr	3 107
**	Glass	Ce	3 109
**	Quartz	none	6 10 ⁹
OTR [bwd]	Al		2 1010
**	Ti		2 1011
~~	С		2 1012
Luminesc. GSI	P43: Gd ₂ O ₂ S	Tb	2 107

normalised for 7 px/ σ

OTR – The Principle

Radiation emitted when a charged particle beam goes through the interface of 2 media with different dielectric constants
 → surface phenomenon allows the use of very thin screens (~10µm)

Beam Profile Monitoring using Screens

• Usual configuration

- → Combine several screens in one housing e.g.
 - Al₂O₃ luminescent screen for setting-up with low intensity
 - Thin (~10um) Ti OTR screen for high intensity measurements
 - Carbon OTR screen for very high intensity operation

• Advantages compared to SEM grids

- \rightarrow allows analogue camera or CCD acquisition
- \rightarrow gives two dimensional information
- \rightarrow high resolution: ~ 400 x 300 = 120'000 pixels for standard CCD
- \rightarrow more economical
 - Simpler mechanics & readout electronics
- \rightarrow Time resolution depends on choice of image capture device
 - From CCD in video mode at 50Hz to Streak camera in the GHz range

Measuring Beam Size

- Beam Profile Measurement Methods
 - \rightarrow Secondary emission (SEM) grids
 - \rightarrow Wire Scanners
 - \rightarrow Beam interaction with a screen
 - semi or fully destructive
 - → Monitors based on interaction of beam with gas (residual or injected) in vacuum chamber
 - → Synchrotron light monitors

Luminescence Profile Monitor

Luminescence Profile Monitor

CERN-SPS Measurements

- Profile Collected every 20ms
- Local Pressure at ~5×10⁻⁷ Torr

(Rest Gas) Ionisation Profile Monitor - IPM

IPM Single Bunch Measurements (CCD - 870 SPS turns (20 ms) per profile)

6×10¹⁰ p/bunch

108 profiles - 22th profiles at 1170 -- SC Nb: 64002 04/12/00 11:04:35 IPMP41696 Single H profile 156.5 Sigma H 1178 microns Ampl H 11862 bits Norm H 200371 Calib H 182 mic/pix -610.0

Measuring Beam Size

- Beam Profile Measurement Methods
 - \rightarrow Secondary emission (SEM) grids
 - \rightarrow Wire Scanners
 - \rightarrow Beam interaction with a screen
 - semi or fully destructive
 - → Monitors based on interaction of beam with gas (residual or injected) in vacuum chamber
 - → Synchrotron light monitors

The Synchrotron Light Monitor

The Synchrotron Light Monitor

LEP X-Ray Monitor (BEXE system)

X-ray Beam Intercepting Strip Line Detector (Cd-Te photo-conductors)

The detector is made from a 4 micrometer layer of photoconductive CdTe deposited on a 20 X 50 mm ceramic substrate

of

Online Display in LEP Control Room (e⁺ & e⁻ vertical beam size versus time)

Summary

We have seen a wide variety of instruments using many different technologies

Tomorrow you will see how to use these instruments to run and optimise accelerators

Accelerator Diagnostics

Correction to Beam Instrumentation & Diagnostics Course Abstract

- Electromagnetic Monitors
 - \rightarrow position pick-ups & acquisition systems
- Profile Monitoring and Emittance Measurements
- Transverse Diagnostics
 - \rightarrow tune, chromaticity and coupling
- Beam Loss Monitoring
- Advanced Instrumentation
 - \rightarrow head-tail chromaticity measurement
 - \rightarrow injection matching