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1.) Reminder:1.) Reminder:

equation of motion

single particle trajectory

e.g. matrix for a quadrupole lens:
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momentum error:
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2.) Dispersion2.) Dispersion

general solution:
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Dispersion:

the dispersion function D(s) is (...obviously) defined by the focusing properties of the
lattice and is given by: 
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!  weak dipoles � large bending radius � small dispersion

Example: Drift
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...in similar way for quadrupole matrices,
!!! in a quite different way for dipole matrix (see appendix)



Dispersion in a Dispersion in a FoDoFoDo CellCell::

QF

in analogy to the derivations of ˆ,β β
∨

* thin lens approximation:
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* length of quad negligible

* start at half quadrupole

1.) calculate the matrix of the FoDo half cell in thin lens approximation:

llDD

!! we have now introduced dipole magnets in the FoDo:
� we still neglect the weak focusing contribution 1/ρ2

� but take into account 1/ρ for the dispersion effect
assume: length of the dipole = lD

L

QD
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calculate the dispersion terms D, D´ from the matrix elements
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and we get the complete matrix including
the dispersion terms D, D´ 

boundary conditions for the transfer from
the center of the foc. to the center of the
defoc. quadrupole

1/ 2

ˆ

0 * 0

1 1

D D

M

∨ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠



Dispersion in a Dispersion in a FoDoFoDo CellCell 2
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where µ denotes the phase 
advance of the full cell
and l/f = sin(µ/2)
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Nota bene:

!  small dispersion needs strong focusing
→ large phase advance

!! ↔ there is an optimum phase for small β

!!! ...do you remember the stability criterion?
½ trace = cos µ ↔ µ < 180°

!!!! … life is not easy



3.) 3.) LatticeLattice Design: Design: InsertionsInsertions

... the most complicated one: the drift space

Question to the auditorium: what will happen to the beam parameters α, β, γ if we
stop focusing for a while …?
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locationlocation of of thethe waistwaist::

given the initial conditions α0, β0, γ0 : where is the point of smallest beam   
dimension in the drift … or at which location occurs the beam waist ?

beam waist:
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ββ--Function in a Drift:Function in a Drift:

let‘s assume we are at a symmetry point in the center of a drift.
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and we get for the β function in the neighborhood of the symmetry point

Nota bene: 
1.) this is very bad !!!
2.) this is a direct consequence of the

conservation of phase space density
(... in our words: ε = const) … and 
there is no way out.

3.) Thank you, Mr. Liouville !!!

! ! !! ! !

Joseph Liouville,
1809-1882
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Optimisation of the beam dimension:
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Find the β at the center of the drift that leads to the lowest maximum β at the end:

If we cannot fight against Liouvuille theorem ... at least we can optimise
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If we choose β0 = ℓ we get the smallest β at the end of the drift and the 
maximum β is just twice the distance ℓ
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ββ--Function in a Drift:Function in a Drift:



... ... clearlyclearly therethere isis anotheranother problemproblem !!!!!!

Example: Luminosity optics at HERA: β* = 18 cm
for smallest βmax we have to limit the overall length 
of the drift to L = 2*ℓ
L = 36 cm

But: ... unfortunately ... in general
high energy detectors that are
installed in that drift spaces
are a little bit bigger ...



ZEUS detector: inelastic
scattering event of e+/p

react.
R L*= Σ

production rate of (scattering) events
is determined by the
cross section Σreact

and a parameter L that is given 
by the design of the accelerator:
… the luminosity

TheThe MiniMini--ββ Insertion:Insertion:



TheThe MiniMini--ββ Insertion:Insertion:

Event rate of a collider ring: *RR Lσ=

Luminosity: given by the total stored beam currents and the beam size at the
collision point (IP)
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How to create a mini β insertion:

* symmetric drift space (length adequate for the experiment)
* quadrupole doublet on each side (as close as possible)
* additional quadrupole lenses to match twiss parameters to 

the periodic cell in the arc



MiniMini--ββ Insertions: Insertions: BetafunctionsBetafunctions

A mini-β insertion is always a kind of special symmetric drift space.
�greetings from Liouville

at a symmetry point β is just the ratio of beam dimension and beam divergence.
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size of β at the second quadrupole lens (in thin lens approx):
… after some transformations and a couple of beer …

IPIP
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Now in a mini β insertion:

MiniMini--ββ Insertions: Insertions: Phase Phase advanceadvance

By definition the phase advance is given by:
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Consider the drift spaces on both
sides of the IP:  the phase advance
of a mini β insertion is 
approximately π, 
in other words: the tune will increase
by half an integer.
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Are there any problems ??

sure there are...

* large β values at the doublet quadrupoles � large contribution to 
chromaticity ξ … and no local correction

* aperture of mini β quadrupoles
limit the luminosity

* field quality and magnet stability most critical at the high β sections
effect of a quad error:

beam envelope at the first
mini β quadrupole lens in 
the HERA proton storage ring

� keep distance „s“ to the first mini β quadrupole as small as possible
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Mini-β Insertions: some guide lines

* calculate the periodic solution in the arc

* introduce the drift space needed for the insertion device (detector ...)

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters
to the values at the beginning of the arc structure

parameters to be optimised & matched to the periodic solution:
, ,

, ,
x x x x

y y x y

D D

Q Q

α β
α β

′

8 individually
powered quad
magnets are
needed to match
the insertion
( ... at least)



Dispersion Suppressors

There are two comments of paramount importance about dispersion:

remember: oscillation amplitude for a particle
with momentum deviation
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!  it is nasty
!! it is not easy to get rid of it.

beam size at the IP

dispersion trajectory
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Dispersion Suppressors

optical functions of a FoDo cell without
dipoles: D=0

Remember: Dispersion in a FoDo cell including dipoles



I.) The straight forward one: use additional quadrupole lenses to 
match the optical parameters ... including the D(s), D´(s) terms

* Dispersion suppressed by 2 quadrupole lenses,

* β and α restored to the values of  the periodic solution by 4  
additional  quadrupoles

→
⎪
⎭

⎪
⎬

⎫

)s(),s(

)s(),s(

)s('D),s(D

yy

xx

αβ
αβ 6 additional quadrupole

lenses required

FoDo cell including the effect of 
the bending magnets

Dispersion Suppressor Schemes



periodic FoDo
structure

matching section
including 6 additional
quadrupoles

dispersion free
section, regular
FoDo without dipoles

Advantage:  

! easy, 
! flexible: it works for any phase

advance per cell
! does not change the geometry

of the storage ring, 
! can be used to match between different lattice

structures (i.e. phase advances)

Dispersion Suppressors

Disadvantage:

! additional power supplies needed
(→ expensive)

! requires stronger quadrupoles
! due to higher β values: more aperture 

required



II.)The Half Bend Dispersion Suppressor
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* , 1,3, ...Cn k kπ→ Φ = =

strength of suppressor dipoles is half as strong
as that of arc dipoles, δ = ldipole /ρ

in the n suppressor cells the phase advance
has to accumulate to a odd multiple of π

Example: phase advance in the arc ΦC = 60°
number of suppr. cells n = 3 
δsuppr = 1/2 δarc

Create dispersion in such a way, that it fits exactly the conditions at the centre of 
the first regular quadrupoles: ˆ( ) , ( ) 0D s D D s′= =



at the end of the arc: add m cells without dipoles followed by n regular arc cells.
condition for dispersion suppression:

2
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2 2

C
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n
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n
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Example:

phase advance in the arc ΦC = 60°
number of suppr. cells m = 1 
number of regular cells n = 1

II.)The Missing Bend Dispersion Suppressor



ResumeResume‘‘

1.) Dispersion in a FoDo cell: 
small dispersion ↔ large bending radius

short cells
strong focusing
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2.) Chromaticity of a cell: 
small ξ ↔ weak focusing

small β
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3.) Position of a waist at the cell end: 
α0 β0 = values at the end of the cell
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,
α
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5.) Mini β insertion
small β↔ short drift space required
phase advance ≈ 180 °
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4.) β function in a drift 2
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Dispersion Dispersion SuppressorsSuppressors
... the calculation in full detail (for purists only)

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres) 

* periodic solution of the arc periodic β, periodic dispersion D
* section of the dispersion suppressor periodic β, dispersion vanishes
* FoDo cells without dispersion periodic β, D = D´ = 0



2.) calculate the dispersion D in the periodic part of the lattice

transfer matrix of a periodic cell:
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for the transformation from one symmetriy point to the next (i.e. one cell) we have: 
ΦC = phase advance of the cell, α = 0 at a symmetry point. The index “c” refers to the periodic 
solution of one cell. 
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The matrix elements D and D‘ are given by the C and S elements in the usual way:
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here the values C(l) and S(l) refer to the symmetry point of the cell (middle of the quadrupole) and the
integral is to be taken over the dipole magnet where ρ ≠ 0. For ρ = const the integral over C(s) and S(s) is 
approximated by the values in the middle of the dipole magnet.
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ΦC /2

-φm
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Transformation of C(s) from the symmetry point to the center of the dipole:
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where βC is the periodic β function at the beginning and end of the cell, βm its value at the middle of 
the dipole and φm the phase advance from the quadrupole lens to the dipole center.

Now we can solve the intergal for D and D’: 
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I have put δ = L/ρ for the strength of the dipole 
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in full analogy one derives the expression for D‘:
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As we refer the expression for D and D‘ to a periodic struture, namly a FoDo cell we require
periodicity conditons:
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With these boundary conditions the Dispersion in the FoDo is determined:
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This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets.

3.) Calculate the dispersion in the suppressor part:

We will now move to the second part of the dispersion suppressor: The section where ... starting
from D=D‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is
reduced to zero.
The goal will be to generate the dispersion in this section in a way that the values of the periodic cell
that have been calculated above are obtained.
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The relation for D, generated in a cell still holds in the same way:

(A1)
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as the dispersion is generated in a number of n cells the matrix for these n cells is
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set for more convenience x = nΦC/2
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and in similar calculations: 
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This expression gives the dispersion generated in a certain number of n cells as a function of the dipole
kick δ in these cells.
At the end of the dispersion generating section the value obtained for D(s) and D‘(s) has to be equal
to the value of the periodic solution: 

�equating (A1) and (A2) gives the conditions for the matching of the periodic dispersion in the arc
to the values D = D‘= 0 afte the suppressor.  
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and at the same time the phase advance in the arc cell has to obey the relation:

* , 1,3, ...Cn k kπΦ = =


