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Non-Linear Imperfections

B equation of motion

—= Hills equation
—= sine and cosine like solutions + one turn map
B Poincare section

— normalized coordinates

BN resonances
—= tune diagram and fixed points

I non-linear resonances
— driving terms
B perturbation treatment of non—linear resonances
— amplitude growth and detuning guadrupole

—= fixed points and slow extraction sextupole

—= pendulum model and octupole
resonance overlap

B Hamiltonian dynamics and variable transformations
— Hamilton function

— (enerating functions

— Equations of motion for action angel variables



Poincare Section |

X

I Display coordinates |
after each turn:

Y
X

I Linear B — motion:

X = BGS) * Sin 2nQ i+ ¢,)
x'=[cos Qm Q i ¢y )+a(s) «sin( 2 Q i+ )1/ [BG)

2
Py x% 20x.X; + B X = const X

s |
—> ellipse &‘/

I the ellipse orientation and the half axis length

vary along the machine



Poincare Section 11

B for the sake of simplicity assume o =0

at the location of the Poincare Section

»
X=VBpr-cos(2nQ i+ ¢,)
X=r-sin(2r Qi +®,)/Vp

2 12 |
X 4+ X = ¥’= const. X

[ann

— horizontal ellipse

mm for oo 0

one can define a new set of coordinates via
linear combination of x and x' such

that one axis of the ellipse is parallel to x—axis



Poincare Section 111

B Display normalized coordinates:

i

=<
N
\

_ XIB
B nhormalized coordinates:
x/VB =r-cos(2nQ i+ ;)
(Bex'=-r-sin2rQi+9,)
Xs\VB

@ XI B~
—> circles in the k

Poincare Section




Resonances |

I tune diagram with linear resonances:

e
stability: N+l
avolid integer and
half integer n+05
resonances!
n n+0.5 n+1
| x
I higher order resonances:
— 1/5 1/3
n +mQ,=r
Qs Qy Ys R
] 1.45 t — |
the rational numbers y
lie ’dense’ in the 135 | N
13 F

real numbers -

Y
there are resonances 1'11_: ?
everywhere! \‘ 105 |

1

1 105 11 115 1.2 1.2f 13 135 1.4# 145 15

L

avold low order resonances | _ Ox
1/4 1/5




Resonances ||

mm fixed points in the Poincare section:

Q=N+1/n

example: n = 4 /ﬁ)

(&

— every point is mapped on itself
after n turns!

— every point is a 'fixed point’

—= Mmotion remains stable if the

resonances are not driven

— sources for resonance driving terms?



Non—-Linear Resonances |

EE Sextupoles + octupoles

mm Magnet errors:

pole face accuracy
geometry errors

eddy currents

edge effects

Bl VVacuum chamber:

LEP I welding

Bl Beam-beam interaction

= careful analysis of all
components



Non—-Linear Resonances ||

B Taylor expansion for upright multipoles:

i 1 :

n

n=0
n+1
B
with: f :: Xn+1y
multipole |order | B x By
dipole 0 0 Bo
quadrupole| 1 fy f, X
sextupole |2 | T, Xy =3 (¢ -¥)
2
octupole |3 | = fr(By X -y) = fp (x°-3x y°)

B skew multipoles:
rotation of the magnetic field by 1/2 of the
azimuthal magnet symmetry: 90° for dipole

45’ for quadrupole

30°for sextupole; etc



Perturbation |

Bl perturbed equation of motion:

2 2
d’x +<2n. Q>.X: F (X.Y)
ds® \ L Vv p

2
dy f2T, o).y =P ()
dSZ L Q/ Vop

Bl assume motion in one degree only:

y= 0 Is a solution of the vertical equation of motion

B perturbed horizontal equation of motion:
d* ©

X 2T - n
ds® +<T . QX>.X =t Ka(S) e X

B normalized strength:

n
K =03 » _nlT/M ]; k] =1/m"™

; p [GeV/c]




Perturbation |1

B perturbation just infront of Poincare Section:

| _ F& _ o Y
AX_fvopdS —>_2_ Ko X
where ’l ’ Is the length of the perturbation

B perturbed Poincare Map:

x'.\/B kn> 0
21nQ .
r X/ p Increase In ’r’
21tAQ
Increase in ’Q’
AT

I stability of particle motion over many turns?



Perturbation 111

B coordinates after ’i’ itteration and before kick:

1)  X/Up=r-cos(d;) x-Vp=-r-sin(P,)

(2)
with: 0. = 0. +21Q

I coordinates after the perturbation kick:
(3) |+k|ck r_ X/ r

(4) r— r+— k X r

|+k|ck

B write new coordinates in circular coordinates
(5) Xino! VB = (r+A ). cOS(O;+Ad;)

(6) X'i+kic'k (B =—(r+Ar)-sin(¢;+A0; )



Perturbation IV

B solve for 'Ar} and 'A¢ ;’:
—>  substitute (1) and (2) into (3) and (4)
—> set new expression equal to (5) and (6)
— use: sin(a+b) =sin(a) cos(b) + cos(a) sin(b)
cos(a+b) = cos(a) cos(b) — sin(a) sin(b)
and: Sin(A¢ ) =A0¢ ; cos(Ad ) =1
to solve for A r7 and "A¢.”:
= Ar,=—AXie VB esin(Q;)

—AX;+\ B+ cos(O;)
T +A X B+ sin(9;)]

B substitute the kick expression:

AG =

(7) AT = —_-kn-xi”- (Besin(d.)

——<keX;+ {Bcos(0;)
[r +Ar]

®)  A0=




Perturbation V

B guadrupole perturbation:
Ar= 1 ke xe (B sin(0;)

with: x = (B r-cos(0,)

Ar= l+kprepesin2¢.)

sum over many turns with: ~ 0,= 21Q-i

—= | 2> Ar=0 unless: Q =p/2

(half integer resonance)
B tune change (first order Iin the perturbation):

AQ, =1« kp Be [1+cos(2¢.)]/2

average change per turn;  ¢,=2nQ-I

<AQi>: |ok10[3/47'l: ] — Q:QO+<A Q>




Perturbation VI

B resonance stop band: Q = p/2

the map perturbation generates a tune oscillation

6 Q= I+ KB+ cos@m Qi +20,)/4r

—= particles will experience the half integer
resonance If their tune satisfies:

| (012~ <AQ>) < (Q <A Q) < (2 +<AQ>)

A
Qy

B tune diagram: T ANANAWAWANA
SAVAVIRCSIVEVA )Y
avoid Integer anc - .<> C)

C C C

' " AW A=A

half integer n o.s(b VAY VAV

resonances and stay - C C
B D D

q a C
away from the N A 7>

VEVEVEVIAV/
resonance ’stop band’ n n+0.5 n+1

QY
X



Perturbation VlilI

B sextupole perturbation:

Ar= | <ks X (B sin(0; )/2
with: x.= /B +r-cos(0;)

Ar=1-Ks s g2 [3 sin(®, ) +sin(30.)1/8

sum over many turns: 0.=21Q-i

— r =0 unless: Q:porQ:p/S}

B tune change (first order in the perturbation):

2mAQ= l+ks rs Br [305(2MQi + Oy)
+ cosm Qi +30,)]/8

sum over many turns:
(unless: Q =por Q = p/3

—  stop band increases with amplitude!

<AQ>=0 ]




Perturbation VIII
B what happens for Q =p; p/3 ?

Ar= 1k ri% 33-/2([3 Sin2r Qi+ ¢,)

+
23
>
~~
N
&
QO
+
w
—
o
N
el
~~
oo

s mmm——m—_——_—E—_E—_E—_E_-_—_E—_E—_—_-—- 1

3/2

2 AQ= 1+ ks re B+"i[3cos(2mQi + Oy)
'+ cosm Qi +30,)]/8

s - s s - -

amplitude ’r’ increases every turn — instability

— (dephasing and tune change

—>= Mmotion moves off resonance

— stop of the instability

— What happens in the long run?



Perturbation I X

B let us assume: Q =p/3

—_—— — — —_— — =

[3 sin(@. )+sm(3(l) )]/ 8

23/

Ar=1l-Ksre

Ap = 1Kzt B [3005((1) |+cos(3(1) )]/ 8

the first terms change rapidly for each turn

—= the contribution of these terms are small
and we omit these terms in the following
(method of averaging)

—> Ar= l-ksripe sin(30,)/8

A = | <Kpre [33-/2 cos(3¢; )/8+2nQ



Perturbation X

B fixed point conditions: Q < p/3;k >0

Ar/turn=0 and  A¢p/turn= 2mp/3

with: AT= Loksri g sin@0,)/8

Ad. =2mQ + |- ks ri-B?’f2 cos(30.)/8

e O e n/3; m; Sm/3;

16w (Qo—p/3)

r =
fixed point 3/2
1 k, B

— 1 =0 also provides a fixed point in the

X; X (infinit set in the r, ¢ plane)



Perturbation XI

B fixed point stability:
linearize the equation of motion around the

fixed points:

Poincare map:  r =T, 0))

(I)i+l:¢i t g(ri’q)i)
single sextupole kick:
—> f= lksripe sin(30;)/8

g= 1+ks re g+’ cos(39; )/8

— linearized map around fixed points:

I T CAI [
! — olr, 90 i o
| 90 i+1 90 j4+1 0}
i+1 ar. 3 (l)i i

fixed point



Perturbation XllI

B Jacobin matrix for single sextupole kick:

Jacobian matrix

My = . Bl _ 32 2
eril_l’ 3(|)i1__3|. ki B rfixedpoint/8
e(I)i+1__ o It o 312 . e(l)i+1 =1
ar, o ks B 18; 20,
_ =m/3;m; 5m/3; andr Z0
fixed point fixed point
3/2
—— Ari+1:_3|. kEB. szixedpoint/S.A(‘)i
3/2 e
Ad  =—1ks B /8 AT, stability?
ATl AT A
NS \&//
4 | . A | -
B
PR N //x

hyperbolic fixed point



Perturbation Xll1l

I Poincare Section for ’r’ and¢ ’:

unstable

hyperbolic fixed points -

unstable

hyperbolic |

fixed points X
\!/ﬂ

/

stable fixed point




Perturbation XIV

B slow extraction:

septum magnet J [/

)

X

&

\

v

)

N
\:§

I fixed point position:
167 (Q - %)

I =
fixed point - k2'B3/2

— changing the tune
during extraction!



Perturbation XV

B octupole perturbation:
Ar= 1 ks % VB= sin(9; )6

with: x = (B er-cos(0;)
Ar= leke 12 ge [4sinQ0,) + sindo, )] / 48

sum over many turns: 0.=21Q-i +

e r =0 unless: Q=p,p/2, p/d

B tune change (first order in the perturbation):

2mAQ= |+ ks rf g+ [4cos(nQi+20,)
+3+cos(8n Qi +4 ¢ )]/48

sum over many turns (unless: Q = p or Q = p/4):

—>| <AQ>=l+ks r» 3°/ 16/ 2m




Perturbation XVI

B detuning with amplitude:
particle tune depends on particle amplitude

— tune spread for particle distribution

— Stabilization of collective instabilities

— |nstall octupoles in the storage ring

—>= distribution covers more resonances
In the tune diagram

— avoid octupoles in the storage ring

— requires a delicate compromise

B Poincare section topology:

Q = p/4 and apply method of averaging
—>  Ar= lekgre e sin(40;)/48

Ad = |+Kkg riZ- BZ- [3 + cos(49. )]/ 48+ 2nQ



Perturbation XVII

B fixed point conditions: Q s p/4; k,>0

Ar/turn=0 and  A¢p/turn= 2mp/4

with: AT= 1ekgripe sin40,)/48

Ap =2mQ_+ |+ksre B [3+cos(40;)]/48

: (l)ﬁxed o Tt/2; T, 3T/2; 21

fixed point | k3 Bz (3+1)

> () =m/4; 3nt/4; S1/4; Trt/4

fixed point

r — 96T (p/l4d - Q)
fixed point | kg Bz (3_1)




Perturbation XVIlIlI

B fixed point stability for single octupole Kick:

Jacobian matrix

er'+ . ar'+ - 2

el’li1:1’ a(l)lil_-l__4|.k3. p .rs;‘ixedpoint
0it= 4| uks Be 1 (311)/ 24 i1 g
eri - 3 B - y eq)l

— Ari+1: -l—_4| ’ k3. BZ.rf:i%xedpoint /48° Aq)i
AD . = loks B (3L1)/ 24+ AT,

Stability for > =’ sign andé< > 07

AT A AT A
A NN s N
A | ~ ﬂ\ |
+ ae P
N N4 N I

elliptical fixed point



Perturbation XIX

B Poincare Section for ’r’ and¢ ’:

unstable
hyperbolic

fixed points

stable »
elliptical -~
fixed points

Island structure

I Poincare section in normalized coordinates:




Perturbation XX

B generic signature of non—linear resonances:

—>= chain of resonance islands

m pendulum dynamics:

expand equation of motion around
resonance amplitude

dr : do
— =-=F* sIn — =G
ds @) ds

— = Qeneric equation of motion near resonances

—= resonance width: AT = A:\/ F/nG

res/max

island oscillation frequency: (Disland:NF‘ G/n

I pendulum motion:
libration: oscillation around stable fixed point

rotation:. continous Increase of phase variable

separatrix.  separation between the two types



Integrable Systems

I trajectories in phase space do not intersect

deterministic system

B integrable systems:
all trajectories lie on invariant surfaces

n degrees of freedom

= N dimensional surfaces

I two degrees of freedom:

X, S —=  motion lies on a torus

I Poincare section for two degrees of freedom:
= motion lies on closed curves

S Indication of integrability




Perturbation XXI

B ’chaos’ and non—integrability:

so far we removed all but one resonance
(method of averaging)

— dynamics Is integrable and therefore
predictable

re—introduction of the other resonances ’perturbs’
the separatrix motion

—= motion can ’change’ from libration to rotation

—>= (Qeneration of a layer of "chaotic motion’

N

no hope for exact deterministic solution in this areal!



Perturbation XXII

B slow particle loss:

particles can stream along the ’stochastic layer

for 1 degree of freedom (plus ’s’ dependence)

the particle amplitude is bound by neighboring

Integrable lines
not true for more than one degree of freedom

B global ’chaos’ and fast particle losses:

If more than one resonance are present their
resonance islands can overlap

——>= the particle motion can jump from one

resonance to the other
——= ’global chaos’

——= fast particle losses and dynamic aperture



Long Term Stability

() Non-linear Perturbation:

Bl amplitude growth

EmE detuning with amplitude

mEm coupling

>  Complex dynamics:

3 degrees of freedom

+ 1 invariant of the motion

+ non-linear dynamics

——> no global analytical solution!

= analytical analysis relies on

perturbation theory



Perturbation XXII1I

B why did we not find islands for a sextupole?

—= the pendulum approximation requires

an amplitude dependent tune!

— @:G.r
ds

unstable
hyperbolic fixed points -

B the sextupole detuning term appears only In
second order of the kick strength

— higher order perturbation calculation



Perturbation XXIV

B so far we assumed on the right—hand side:

(l)i=2RQ6i+(l)o

this provides only first order solutions

B second order perturbation:

r(s)=r(s) +er (s)+e°r,(s)+O(’)

0 (5)= 0y(5)+ € §,(8)+ €,(5) +O (€))

3/2

with: e=f 1.1 K

0 2

B smooth approximation:

dr _ Ar do A
ds L and ds L
and assume:

B = constant along the machine



Perturbation XXV

B expand equation of motion into a Taylor series

around zero order solution

dr _ dao
d_g _f(r, (1)) ds g(r1 q))

—= SIngle sextupole kick:

f=L". [sin(3 ¢ ) +3sin(¢)] /8

g =I. [cos(3¢ ) + 3 cos(()]/ 8

dar _ _ of A L2 3

—— g =ef[Trnr o] et o)
o

do _ 2mQ +8,g+9_? r1+e—g-q>] e+ O(e?)




Perturbation XXVI

I match powers of € and solve equation of motion

in ascending order of £":

B zero order: (]) (s)= 27tp S+23LIY'S+ O

©) =1, Q=p+v)

— substitute into equation of motion
and solve for ¢, (s) and (S)

B first order:

.1
(‘) 5) = 275\/ 3

. | sin 6’EV s+ 0,)3+

sin(-21-+s+ 0,)]

—_ I ., 1 oTV
) =2 g-[cos( ™S+ 0,)/3+

cos(-H- 5+ 0, )]



Perturbation XXVIlI

I second order:

— = substitute ¢,(s) and r,(S) into equation
of motion and order powers of €

you get terms of the form: drz - [ 31 -9, ]

ds ar
do _ ® 99,
@ [e_?‘r”w o]
e
cos(3 @ )+ cos(3 ¢); cos(3 ¢) cos(@®); cos( ) *cos(P)

— g; o< cos(60 ); cos(4 ); cos(2 ); 1

I higher order resonances: €"

a single perturbation generates ALL resonances
driving term strength and resonance width

decrease with increasing order!

— avold low order resonances!



