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Non−Linear Imperfections

tune diagram and fixed points

fixed points and slow extraction

amplitude growth and detuning

Hamiltonian dynamics and variable transformations 

pendulum model and
resonance overlap

sine and cosine like solutions + one turn map
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resonances!

stability:

the rational numbers

lie ’dense’ in the

real numbers

there are resonances 

everywhere!

avoid low order resonances
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Resonances I

tune diagram with linear resonances:
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example: n = 4
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sources for resonance driving terms?
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every point is mapped on itself

Q = N + 1 / n

after n turns!

resonances are not driven

motion remains stable if the

every point is a ’fixed point’

Resonances II

fixed points in the Poincare section:



Non−Linear Resonances I

Magnet errors:

pole face accuracy

geometry errors

eddy currents

edge effects

Vacuum chamber:

LEP I welding

Beam−beam interaction

careful analysis of all 
components

Sextupoles + octupoles
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increase in ’r’

increase in ’Q’
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avoid integer and
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let us assume:
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fixed point
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Jacobin matrix for single sextupole kick:
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Poincare section in normalized coordinates:

x

Perturbation XIII

φ−π +π

r

φ

hyperbolic fixed points
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stable fixed point

Poincare Section for ’r’ and ’   ’:



������

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

x

fixed point position:

septum magnet

Perturbation XIV

fixed point
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x

during extraction!

changing the tune
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slow extraction:
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sum over many turns (unless:
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Perturbation XV

octupole perturbation:
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tune spread for particle distribution

Δ
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stabilization of collective instabilities

install octupoles in the storage ring

distribution covers more resonances

in the tune diagram

avoid octupoles in the storage ring

requires a delicate compromise
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detuning with amplitude:

Perturbation XVI

particle tune depends on particle amplitude

 and apply method of averaging

Poincare section topology:
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Perturbation XVII
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turn =      p
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Perturbation XVIII

fixed point stability for single octupole kick:



island structure

φ

Perturbation XIX

Poincare section in normalized coordinates:
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Poincare Section for ’r’ and ’   ’:
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fixed points

fixed points
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elliptical

x
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dr
ds

φ= −F   sin(    )

res/maxΔ

ω
island

=   F  G/n

r           = 4   F / nG

expand equation of motion around
resonance amplitude

ds
dφ

= G   r

generic equation of motion near resonances

chain of resonance islands

libration: 

rotation: 

separatrix: 

oscillation around stable fixed point

continous increase of phase variable

separation between the two types

resonance width:

island oscillation frequency:

generic signature of non−linear resonances:

pendulum dynamics:

pendulum motion:

Perturbation XX



deterministic system

Poincare section for two degrees of freedom:

motion lies on closed curves 

indication of integrability 

integrable systems:
all trajectories lie on invariant surfaces

n degrees of freedom

n dimensional surfaces

x

x

two degrees of freedom:

x, s motion lies on a torus 

Integrable Systems

trajectories in phase space do not intersect



generation of a layer of ’chaotic motion’

predictable

the separatrix motion 

re−introduction of the other resonances ’perturbs’ 

motion can ’change’ from libration to rotation

so far we removed all but one resonance

(method of averaging)

dynamics is integrable and therefore

Perturbation XXI

’chaos’ and non−integrability:

no hope for exact deterministic solution in this area!



not true for more than one degree of freedom

fast particle losses and dynamic aperture

’global chaos’

particles can stream along the ’stochastic layer’

for 1 degree of freedom (plus ’s’ dependence)

the particle amplitude is bound by neighboring

integrable lines

if more than one resonance are present their

resonance islands can overlap

the particle motion can jump from one

resonance to the other

global ’chaos’ and fast particle losses:

Perturbation XXII
slow particle loss:



perturbation theory

Complex dynamics:

Long Term Stability

Non−linear Perturbation:

amplitude growth 

detuning with amplitude 

coupling 

3 degrees of freedom

+ 1 invariant of the motion

non−linear dynamics+

no global analytical solution!

analytical analysis relies on



ds
dφ

the pendulum approximation requires

an amplitude dependent tune!

higher order perturbation calculation

= G   r

φ−π +π

r

hyperbolic fixed points

unstable

second order of the kick strength

Perturbation XXIII

the sextupole detuning term appears only in

why did we not find islands for a sextupole?
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this provides only first order solutions
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ε

Perturbation XXIV
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constant along the machine

so far we assumed on the right−hand side:

second order perturbation:

smooth approximation:
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single sextupole kick:
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φf =        [sin(3     ) + 3 sin(   )] / 8
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Perturbation XXV

expand equation of motion into a Taylor series

around zero order solution

φ



first order:

ε  :

s +
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cos(                       )/3 +s +
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substitute into equation of motion 
and solve for             and 
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match powers of

2πν φ 0
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0 0
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Perturbation XXVI

zero order:

6πν

φ 0

φ
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second order:

substitute            and            into equation

of motion and order powers of 

higher order resonances:

a single perturbation generates ALL resonances

avoid low order resonances!

driving term strength and resonance width

decrease with increasing  order!

you get terms of the form: =  2
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Perturbation XXVII
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