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Code examples

Code examples require the following.
Install ( has it by default)

Install plotting and numerical libraries:
1 python −m p i p i n s t a l l −−u s e r numpy s c i p y m a t p l o t l i b i p y t h o n j u p y t e r pandas

sympy nose s c i k i t −l e a r n
2

Or download which is a very

complete Python free distribution with scientific
packages.

https://www.python.org/
https://www.ubuntu.com/
https://www.anaconda.com/download/#linux


β function in a triplet lattice
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Quadrupole strength error & β-beating
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β =

βpert−β0
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).

Tunes change too (∆Q).



E.D. Courant and H.S. Snyder 1957

Theory of the Alternating-Gradient Synchrotron [1]:

(
∆β

β

)

max

= 4.0

(
∆k

k

)

rms

“Thus if the variation in k from magnet to magnet
were 1% (...) we would have a β-beating of 4%.
Any particular machine (...) would be unlikely to be
worse by more than factor of 2.”

→ Expected β-beating below 8% for any machine
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120% in LHC, commissioning 2016
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The LHC Interaction Region (IR)
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≈400% in PEP-II, commissioning 2005

BETA-BEAT CORRECTION USING STRONG SEXTUPOLE BUMPS IN 

PEP-II* 

G. Yocky
#
, SLAC, Menlo Park, CA94025, USA

Abstract 
A method for correcting lattice beta mismatches has 

been developed for the PEP-II collider using orbit offsets 

in strong sextupoles.  The solution is first predicted in the 

MAD program by modelling closed orbit bumps in the 

plane of correction at the sextupoles strongest in that 

plane.  The derived solution is then tested in the machine 

to confirm prediction, and finally dialled into the machine 

under high-current conditions.  

INTRODUCTION 

During PEP Run 5, a large horizontal beta-beat 

developed in the LER (Fig 1) of approximately four to 

one.  The vertical beta-beat of about 1.4:1 (Fig 2) was less 

a worry.  Concern for the dynamic aperture of the 

machine as well as the desire to have a machine that 

matches the design lattice for future optics work led to the 

search for a fix. 

Several constraints limited the approach, however.  The 

most prominent of which was delivering luminosity to 

BaBar.  Given that any quadrupole magnet perturbed 

would require a full machine standardize, a process which 

takes 30 minutes, a beta-fix solution that includes 

electromagnets is less likely to find machine development 

time to test. 

 

Fig. 1:  LER horizontal beta-beat from 16-Aug-2005. 

Since the LER lattice has relatively few, strong 

sextupoles segregated into focussing and defocussing 

arcs, a closed orbit bump in a sextupole of the proper 

phase can be made that creates a beta-wave that cancels 

the beta deviation from design. 

By using the MAD program iteratively, it is possible to 

find a solution of closed orbit bumps in the sextupoles to 

find such a solution. 

 
Fig. 2:  LER vertical beta-beat from 16-Aug-2005. 

SOFTWARE 

In order to model the solution, two tools were used.  

Primarily, an OSX port of MAD 8.51 [1] was used 

iteratively with Matlab R14 to produce and analyze 

potential solutions.  A Matlab script was created that 

auto-generated the MAD input files for ease of use and to 

allow a looping mechanism that determined whether or 

not a potential solution was of the desired class or not. 

 

Figure 3:  LER horizontal beta-beat, MAD-derived 

modelled solution. 

_____________________ 

*This work was supported by the U.S. Department of 

Energy, under Contract No. DE-AC02-76SF00515 
   #yocky@slac.stanford.edu 

SLAC-PUB-12523

Contributed to European Particle Accelerator Conference (EPAC 06), 06/26/2006--6/30/2006, Edinburgh, Scotland

G. Yocky,
SLAC-PUB-12523

Even ∆β/β ≈ 700% was reached when LER tune
was pushed closer to the half integer



β-beating versus time
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Dipole magnetic field

x

y

Lorentz force:
~F = q~v × ~B
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Dipole errors

F An error in the strength of a main dipole causes
a perturbation on the horizontal closed orbit.

F A tilt error in a main dipole causes a
perturbation on the vertical closed orbit.

x

y



Orbit perturbation formula

From distributed angular kicks θi the closed orbit
results in:

CO(s) =

√
β(s)

2 sinπQ

∑

i

√
βiθi cos(πQ − |φ(s)− φi |)

Attention to the denominator sin(πQ) that makes
closed orbit to diverge at the integer resonance
Q ∈ N.
Another source of orbit errors is offset quadrupoles.



Quadrupole field and force on the beam

x

y

~B

x

y

~F

Note that Fx = −kx and Fy = ky making horizontal
dynamics totally decoupled from vertical.

R. Tomás Linear imperfections 13/117

http://rtomas.web.cern.ch/rtomas/


Offset quadrupole - Feed-down

x

y

An offset quadrupole is seen as a centered
quadrupole plus a dipole. This is called feed-down.

R. Tomás Linear imperfections 14/117

http://rtomas.web.cern.ch/rtomas/


Quadrupole strength error - Formulae

Tune change (single source):

∆Qx ≈
1

4π
βx∆kiLi , ∆Qy ≈ −

1

4π
βy∆kiLi

β-beating from many sources:

∆β

β
(s) ≈ ±

∑

i

∆kiLiβi
2 sin(2πQ)

cos(2πQ − 2|φ(s)− φi |)

Attention to the denominator sin(2πQ) that makes
β-beating diverge at the integer and half integer
resonances, 2Q ∈ N .



Phase beating and higher orders

∆φ(s0, s) =

∫ s

s0

ds ′

β(s ′)

(
1

1 + ∆β
β (s ′)

− 1

)

For first and higher order expansions see [3, 4, 5].
β-beating from RDT:

f2000 =

∑
∆kLβxe

2iφx

1− e4iπQx
+O(∆k2)

∆β

β
(s) = 2 sinh |f2000|

(
sinh |f2000|+cosh |f2000| sinφ2000

)



Average beta function in a quad (β)

quadrupole (k ,L)

β1

β2
β

β ≈ 1

3

(
β1 + β2 +

√
β1β2 − L2

)

A. Hofmann and B. Zotter [6]. Exact β depends also on
the quadrupole strength k [7].

https://cds.cern.ch/record/1131122/files/CM-P00072144.pdf


Tilted quadrupole

x

y

A tilted quadrupole is seen as a normal quadrupole
plus another quadrupole tilted by 45◦ ( this is called
a skew quadrupole).
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Skew quadrupole → x-y Coupling

x

y

~B

x

y

~F

Note that Fx = ksy and Fy = ksx making horizontal
and vertical dynamics to couple.
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Transverse coupling in the 1-turn map

In the ideal uncoupled case:




x
x ′

y
y ′




f

=




M11 M12 0 0
M21 M22 0 0

0 0 M33 M34

0 0 M43 M44







x
x ′

y
y ′




i

In presence of coupling:




x
x ′

y
y ′




f

=




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44







x
x ′

y
y ′




i



Motion with coupling

To first order in the coupling the transverse motion
can be approximated as [8, 9]

x(N , s) ≈
√
βx(s)<

{√
εxe

i(2πQxN+φx(s)+φx0)

−2if1010
√
εye
−i(2πQyN+φy (s)+φy0)

−2if1001
√
εye

i(2πQyN+φy (s)+φy0)
}

f 1010
1001

=

∮ s+C

s ds ′ks
√
βxβye

i(φx±φy )

4(1− e2πi(Qx±Qy ))

f1001 drives the difference resonance Qx − Qy = N
and f1010 the sum resonance Qx + Qy = N



Bothering effects of coupling
Lepton machines: increases the vertical
equilibrium emittance.
Hadron machines: makes it impossible to
approach tunes below ∆Qmin
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Example of mode veering

Simply supported plate with an attached oscillator:

where ,p j  is the jth eigenvalue of the plate alone. The uncoupled-blocked eigenvalue of the oscillator is 

  0
o

p

m

 
  (18) 

When coupled, the mass matrix is diagonal but there are small off-diagonal terms 0 0 0 0( , ) ( , )i jx y x y   

which couple blocked modes i and j in the plate. 

Figure 7 shows the loci of the natural frequencies of the uncoupled-blocked and coupled systems 
as functions of p. The non-dimensional parameters 

Figure 7: Veering in a simply supported plate with an attached oscillator: 
1.5; 0.008; 20; ( , ) (0.43,0.22).y x a aL L m x y          

m 

p 



Figure 6: Simply supported plate with an attached oscillator. 
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http://past.isma-

isaac.be/downloads/isma2012/papers/isma2012 0137.pdf
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∆Qmin formula

∆Qmin =

∣∣∣∣∣∣
1

2π

∑

j

ks,jLj
√
βxβye

−i(φx−φy )+is(Q̂x−Q̂y )/R

∣∣∣∣∣∣

∆Qmin =

∣∣∣∣∣
4(Q̂x − Q̂y)

2πR

∮
dsf1001e

−i(φx−φy )+is(Q̂x−Q̂y )/R

∣∣∣∣∣
. 4|Q̂x − Q̂y ||f1001|

f1001 defines phase space and the stopband.
See [10, 11, 12] for further details.



∆Qmin limits the resonance-free space

LHC beam-beam tune footprint and a hypothetical
large coupling:
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Coupling control versus time
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Sextupole field and force

x

y
~B

x

y
~F

Fx =
1

2
K2(x2 − y 2) , Fy = −K2xy

Sextupoles are needed to compensate chromaticity:
Q’=dQ/dδ, with δ = (p − p0)/p0



Offset sextupole

A sextupole horizontally (vertically) displaced is seen
as a centered sextupole plus an offset quadrupole
(skew quadrupole). Offset sextupoles are also
sources of quadrupole and skew quadrupole errors.
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Longitudinal misalignments

s
k-k +kbeam

Longitudinal misalignments can be seen as
perturbations at both ends of the magnet with
opposite signs. Tolerances are generally larger for
longitudinal misalignments.
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Phase-space turn-by-turn motion

x(N) =
√
εβ cos(2πQN)

x ′(N) = −α
√
ε/β cos(2πQN) +

√
ε/β sin(2πQN)

or equivalently(
x(N)
x ′(N)

)
=
√
ε

( √
β 0

−α/√β 1/
√
β

)(
cos(2πQN)
sin(2πQN)

)

Floquet Normal Form



Phase-space ellipse

F

F 2 = ε (γ2+β2−2+2α2)(1−tan4 ϕ)
(γ−β)[tan2 ϕ(γ2+β2)+(1−α2)(tan4 ϕ+1)]

eccentricity
2

=
α

tan
ϕ

(1+
tan

2
ϕ

)
2

γ
+

2α
tan

ϕ
+
β

tan
2
ϕ

ϕ
√
εβ

√
εγ

−α
√
ε/β

−α
√
ε/γ

√
ε

γ
+

2α
tan

ϕ
+
β

tan
2
ϕ

√
ε

tan
2
ϕ

γ
tan

2
ϕ−

2α
tan

ϕ
+
β

tanϕ =
sign(γ−β)

√
1+tan2 2ϕ−1

tan 2ϕ

tan 2ϕ = 2α
γ−β

−
√
ε/β

−
√
ε/γ

γ = 1+α2

β

ε = γx2 + 2αxx′ + βx′2



Ellipse eccentricity vs. α and β
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α, β, ε from turn-by-turn data & SVD
SVD of x , x ′ turn-by-turn data:
(
x(1) x(2) x(3) . . . x(n)
x ′(1) x ′(2) x ′(3) . . . x ′(n)

)

2×n
= U2×2S2×2V

T
2×n

U and V are unitary, S is diagonal. V2×n is
turn-by-turn motion in a circle (like normal form) in
an arbitrary phase origin. There must be a rotation
R(θ), USV T = USRR−1V T , that brings R−1V T to
the Floquet Normal Form:

1√
det(S)

USR(θ) =

( √
β 0

−α/√β 1/
√
β

)

θ is determined to make zero the element (1,2).



Looking at x , x ′, V and ε
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√
2
n
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x, x’

n is the number of turns, ε =
det(S)

n/2



α, β, ε from turn-by-turn data – code

1 i m p o r t numpy as np
2
3 d e f g e t b e t a ( x , px ) :
4 U, s , V = np . l i n a l g . svd ( [ x , px ] ) # SVD
5 N = np . dot (U, np . d i a g ( s ) )
6 t h e t a = np . a r c t a n(−N[ 0 , 1 ] /N[ 0 , 0 ] ) # Angle o f r o t a t i o n o f m a t r i x
7 c = np . cos ( t h e t a ) ; s = np . s i n ( t h e t a )
8 R = [ [ c , s ] , [−s , c ] ]
9 X = np . dot (N, R) # F l o q u e t up to 1/ d e t (USR)

10 b e t x = np . abs (X [ 0 , 0 ] / X [ 1 , 1 ] )
11 a l f x = X [ 1 , 0 ] / X [ 1 , 1 ]
12 ex=s [ 0 ]∗ s [ 1 ] / ( l e n ( x ) / 2 . ) # emit = d e t ( S ) /( n /2)
13 r e t u r n betx , a l f x , ex
14
15 a l p h a = 0 . 2
16 b e t a = 1 .
17 ex = 2e−3
18 Q = 0 . 3 1
19 Nturns = 600
20 x = np . s q r t ( b e t a∗ex )∗np . cos (2∗np . p i∗Q∗np . a r a n g e ( 0 , Nturns ) ) #e a s y t r a c k i n g
21 px = −a l p h a∗x / b e t a + np . s q r t ( ex / b e t a )∗np . s i n (2∗np . p i∗Q∗np . a r a n g e ( 0 , Nturns ) )
22 betx , a l f x , exc = g e t b e t a ( x , px )

1st version of the code: P. Gonçalves Jorge and X. Buffat, CERN-THESIS-2016-317.

R. Tomás Linear imperfections 35/117

http://rtomas.web.cern.ch/rtomas/


How to compute β from beam data?

F Beam Position Monitors (BPMs) measure
transverse beam centroid position turn-by-turn

F Excited betatron motion is required either via a
single kick or via a resonant excitation

x(N , s) =
√
βx(s)εx cos(2πQxN + φx(s)) + CO(s)

β and φ are related by:

φ0→1 = φ(s1)− φ(s0) =

∫ s1

s0

ds

β(s)

so β and φ carry the same information, φ being a
BPM calibration independent observable.



Turn-by-turn data from single kick

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600  700  800  900  1000

x
 [
m

m
]

Turn number

Fake LHC BPM data (pilot bunch)

σbpm=0.2mm

Decoherence due to ∆Q

3mm kick

[movie]

R. Tomás Linear imperfections 37/117

http://rtomas.web.cern.ch/rtomas/movie.gif
http://rtomas.web.cern.ch/rtomas/


Decoherence



Decoherence



Decoherence



Decoherence
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Forced oscillations with AC dipole

F An AC dipole forces betatron oscillations

F If addiabatically ramped up & down causes no
emittance blow up (contrary to kick)

F Can be used as many times as needed with the
same beam

R. Tomás Linear imperfections 46/117

http://rtomas.web.cern.ch/rtomas/


Simulate your own AC dipole
1 from numpy i m p o r t ∗
2 i m p o r t m a t p l o t l i b . p y p l o t as p l t
3
4 Q = 0 . 3 1 # Machine tune ( f r a c t i o n a l p a r t )
5 Qac = Q + 0 . 0 2 # AC d i p o l e tune
6 q = 2∗ p i∗Q
7 R = a r r a y ( [ [ cos ( q ) , −s i n ( q ) ] , [ s i n ( q ) , cos ( q ) ] ] ) #1 t u r n map
8 x = [ [ 0 . , 0 . ] ] # i n i t i a l x , px
9 Nramp = 1000 # Number o f t u r n s to ramp up AC d i p o l e s t r e n g t h

10 Nturn = 2048 # Number o f t u r n s to t r a c k
11
12 d e f ramp ( j ) : # d e f i n e t h e l i n e a r ramp
13 r e t u r n min ( 1 , j ∗1.0/ Nramp )
14
15 f o r i i n r a n g e ( Nturn ) : # t r a c k i n g l o o p R x + cos (QacN)
16 x . append ( dot (R , x [ −1]) + ramp ( i )∗ a r r a y ( [ 0 , 0.1∗ cos ( Qac∗ i ∗2∗ p i ) ] ) )
17
18 F = np . f f t . f f t ( a r r a y ( x ) [ Nramp : ] . T [ 0 ] ) # FFT data a f t e r AC ramp
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FFT after AC ramp (adiabaticity check)
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Q Qac

Seeing Q in the particle motion means that the AC
dipole transferred energy to the particle, so AC
dipole ramp was not adiabatic.
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...and check phase space (free Vs AC dip)

0.4 0.2 0.0 0.2 0.4
0.4
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0.3

0.4

AC dipole

No AC dipole

1 xnoac = [ [ 0 . 4 , 0 . ] ]
2 f o r i i n r a n g e (2048) :
3 xnoac . append ( dot (R , xnoac [ −1]) )

What is happening?



Forced oscillation 6= Free oscillation

F β functions differ as if there was a quadrupole
at the location of the AC dipole [3]

F Non-linear dynamics also deviate from free
motion [18, 19],

F including Dynamic Aperture [20].

F Free optics have to be reconstructed from
measurements with forced oscillations.



Denoising via SVD

R = U




σ1 0 0
0 σ2 0
0 0 σ3

0 0 0


V T

Imagine σ3 � σ2 ≤ σ1, then just neglect σ3 and
reconstruct R:

Rdenoised = U




σ1 0 0
0 σ2 0
0 0 0
0 0 0


V T
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SLC: Cleaning with SVD, 1999
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FIG. 1. E�ect of cutting noise

Figure 1 demonstrates the e�ect of the noise-cut. 5000
pulses over 125 BPMs were generated to simulate various
signals in SLC. Then random noise, 1 �m for the �rst 7
and 10 �m for the rest BPMs, was added. After cutting
the noise, the residual noise was obtained by subtracting
the signals from the noise-reduced matrix. Figure 1 plots
the added noise in circles and residual noise in dots for
the �rst pulse. Results for all other pulses are similar.
It is remarkable that this simple procedure can signi�-
cantly reduce the random noise of each individual BPM
reading. In other words, we can improve BPM resolu-
tion individually by using a large number of BPMs and
su�ciently large number of pulses. Though simple and
powerful, this method seems not to have been used before
for beam dynamics analysis. However, a similar method
( i.e. setting signal instead of noise singular values to
zero) has been used for estimating BPM resolutions [8].

V. SINGULAR VALUE DECOMPOSITION

In this section we focus on the physical and statistical
meaning of the SVD results in order to illustrate their
usefulness and limitations for beam dynamics analysis.
Mathematically, an SVD of the matrix B yields

B = USV T =

dX
i=1

�iuiv
T
i (11)

where UP�P = [u1; � � � ; uP ] and VM�M = [v1; � � � ; vM ]
are orthogonal matrices, SP�M is a diagonal matrix with
nonnegative �i along the diagonal in nonincreasing order.
d = rank(B) is the number of nonzero singular values. �i
is the i-th largest singular value of B and the vector ui
(vi) is the i-th left (right) singular vector. Often (assum-
ing M < P since we are interested in overdetermined
system only) a trimmed down version is used, in which
only the �rst M columns of U and the �rst M rows of
S are kept. The singular values are uniquely determined
and the singular vectors corresponding to the distinct sin-
gular values are determined up to a sign. The singular
values reveal information of the matrix rank while each
set of singular vectors form an orthogonal basis of the
various spaces of the matrix. These properties make the
SVD extremely useful. There are direct relationships be-
tween SVD and the eigenvalue problem of real symmetric
matrices, which can be seen from

BTB = V S2V T and BBT = US2UT ; (12)

i.e. the column vectors of V (U ) are eigenvectors of
the real symmetric matrix BTB (BBT ) with eigenvalues
given by the corresponding diagonal term �2i 's.
Since BTB is the covariance matrix of BPM readings,

SVD in fact accomplishes the principal components anal-
ysis of BPM readings. Unlike the physical base decompo-
sition given in Eq.(6), the orthogonal base decomposition
in Eq.(12) is uniquely determined by B. From this we
can conclude that both the singular values (in S) and the
right singular vectors (in V ) should be repeatable for dif-
ferent ensembles of pulses, providing that the machine is
stable (i.e. all machine conditions are the same). On the
other hand, the U matrix will change from one ensemble
to another because BBT does not represent a stationary
statistical property of the system.
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FIG. 2. Singular-vector plot
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Good and bad BPM signals (SPS)
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BPM issues required bad BPM detection techniques.
The RMS in a FFT window is a good indicator.
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Denoising data with SVD

1 i m p o r t m a t p l o t l i b . p y p l o t as p l t
2 from s c i p y i m p o r t misc , ndimage
3 i m p o r t numpy as np
4 from numpy . l i n a l g i m p o r t svd
5
6 #G e n e r a t i n g i d e a l ( f a k e ) Beam P o s i t i o n data
7 im = np . z e r o s ( ( 5 0 0 , 500) )
8 f o r i i n r a n g e ( 5 0 0 ) :
9 f o r j i n r a n g e ( 5 0 0 ) :

10 im [ i , j ]=np . cos ( i ∗0.0137∗2∗np . p i ) ∗( np . cos (0 .00678∗ j ∗2∗np . p i )∗∗2+1)
11
12 #Adding n o i s e l i k e measurement e r r o r
13 im = im + 0 . 2 ∗ np . random . randn (∗ im . shape )
14
15 #D e n o i s i n g w i t h S i n g u l a r Value Decompos i t ion
16 k=2
17 U, s , V=svd ( im , f u l l m a t r i c e s=F a l s e )
18 r im = np . dot (U [ : , : k ] , np . dot ( np . d i a g ( s [ : k ] ) ,V [ : k , : ] ) )
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Ideal (fake) BPM Data
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Adding noise to BPM data
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Denoised data with SVD – Magic!
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Outlayer detection: Isolation forest (IF)

Principle: By applying random divisions to a data
set, outlayers are identified
by needing fewer divisions for isolation than core data.

Hybrid Isolation Forest - Application to Intrusion Detection 3

We detail the IF algorithm in the second section of this paper, and give some highlights about the occurrence of the
so-called ’blind spots’ by using a synthetic dataset. The third section presents the extension of the IF algorithm that we
propose and shows, on the previous synthetic dataset, how this extension can be used to get rid of blind spots. The
supervised functionality that we add to the IF is also described by the end of this section. The fourth section addresses
an application in the domain of intrusion detection that assesses in a close to real-life situation the benefits brought by
the HIF algorithm. Our results show that the proposed HIF algorithm compares advantageously with the state of the art
baselines in anomaly detection that we have considered, namely one-class and two-classes SVM.

2 ISOLATION FOREST AND ITS ’BLIND SPOT’

The simple idea behind the isolation forest approach, is that it is (in general) much simpler to isolate an ’outlier’ from
the rest of the data than to isolate an ’inlier’ from the rest of the data.

This leads, in the context of a binary tree partitioning algorithm, to expect a shorter path to locate an ’outlier’ and a
longer path to locate an ’inlier’. This is exemplified in Fig.1, which shows that, for a 2D normally distributed dataset,
more separating lines are needed to separate the ’inlier’ xi from the rest of the data comparatively to the number of
separating lines needed to isolate the ’outlier’ x0.

Fig. 1. Principle of the IF algorithm (Figure is from [22]). xi is an ’inlier’, while xo is an ’outlier’ (anomaly).

2.1 The Isolation Forest algorithm

We reproduce hereinafter the description of the isolation forest algorithm as presented in [22].

2.1.1 Building the isolation forest: Let X ⊂ Rd be the set of instances. The IF algorithm is an ensemble based
approach that builds a forest of random binary trees. Given a sample S randomly drawn from X , an isolation tree iT (S)
is recursively built according to the (iTree) algorithm 1:

Manuscript submitted to ACM



Outlayer detection: Isolation forest

1 i m p o r t numpy as np
2 from s k l e a r n . ensemble i m p o r t I s o l a t i o n F o r e s t
3
4 N TURNS = 500
5 N BPMS = 500
6 # g e n e r a t e bpm data w i t h some bad s i g n a l − d i f f e r e n t tune , a d d i t i o n a l n o i s e
7 bad bpms idx = [ 1 , 10 , 20 , 30 , 4 0 ]
8 im = np . z e r o s ( ( N TURNS , N BPMS) )
9 f o r bpm i n r a n g e (N BPMS) :

10 e r r= 0 . 0 5 ∗ np . random . randn ( )
11 amp=(np . cos ( 0 . 0 0 6 7 8 ∗ bpm ∗ 2 ∗np . p i ) ∗∗ 2 + 1) # s q r t ( b e t a e )
12 f o r t u r n i n r a n g e (N TURNS) :
13 i f bpm i n bad bpms idx : # A bad BPM has d i f f e r e n t tune and more n o i s e
14 im [ turn , bpm]=amp∗np . cos ( t u r n ∗(0.32+ e r r )∗2∗np . p i ) +0.3∗np . random . randn ( )
15 e l s e : # Good BPM
16 im [ turn , bpm]=amp∗np . cos ( t u r n ∗(0.32+ e r r /10)∗2∗np . p i ) + 0.1∗ np . random .

randn ( )
17
18 # e x t r a c t f r e q u e n c y and a m p l i t u d e − f e a t u r e s − from bpm s i g n a l
19 a m p l i t u d e s = [ np . max ( x ) f o r x i n np . abs ( np . f f t . r f f t ( im . T) ) /N TURNS ]
20 f r e q u e n c i e s= np . a r r a y ( [ np . argmax ( x ) f o r x i n np . abs ( np . f f t . r f f t ( im . T) ) ] ) ∗1.0/

N TURNS
21 f e a t u r e s = np . v s t a c k ( ( f r e q u e n c i e s , a m p l i t u d e s ) ) . T
22
23 # f i t I s o l a t i o n F o r e s t model to t h e data and d e t e c t a n o m a l i e s ( c o n t a m i n a t i o n i s

t h e f r a c t i o n o f a n o m a l i e s )
24 i f o r e s t = I s o l a t i o n F o r e s t ( n e s t i m a t o r s =10, c o n t a m i n a t i o n =0.01)
25 o u t l i e r d e t e c t i o n = i f o r e s t . f i t ( f e a t u r e s ) . p r e d i c t ( f e a t u r e s ) # Bad BPMs ==−1
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Isolation forest illustration
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Almost ready to measure β

Bad BPMs are discarded and noise is reduced.

x(N , s) =
√
βx(s)ε cos(2πQxN + φx(s)) + CO(s)

In absence of decoherence FFT on x(N,s) should
give us a frequency Qx with amplitude

√
βx(s)ε and

phase φx(s), but how accurate?
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3-point frequency interpolation

IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 6, JUNE 2011 351

A Method For Fine Resolution Frequency
Estimation From Three DFT Samples

Ça�gatay Candan

Abstract�The parameter estimation of a complex exponential
waveform observed under white noise is typically tackled in two
stages. In the �rst stage, a coarse frequency estimate is found by
the application of an N-point DFT to the input of length . In the
second stage, a �ne search around the peak determined in the �rst
stage is conducted. The method proposed in this paper presents a
simpler alternative. The method suggests a nonlinear relation in-
volving three DFT samples already calculated in the �rst stage to
produce a real valued, �ne resolution frequency estimate. The esti-
mator approaches Jacobsen�s estimator for large and presents a
bias correction which is especially important for small andmedium
values of .

Index Terms�Frequency estimation, �ne doppler estimation,
radar signal processing, DFT.

I. INTRODUCTION

T HE parameter estimation of a complex exponential ob-
served under white noise is a fundamental signal pro-

cessing problem which is central to many applications including
spectrum estimation, array signal processing and radar signal
processing. The computational requirements of the estimator are
especially critical in radar signal processing applications where
millions of hypothesis tests involving complex exponentials can
be evaluated every second, [1].
It is well known that when the observation noise is white

and Gaussian, the maximum likelihood frequency estimate of
a single complex exponential waveform is the peak location of
the Discrete-Time Fourier Transform (DTFT) of the received
signal. Since DTFT computation over the continuum of
is a formidable operation, the samples of the DTFT are calcu-
lated using the Discrete Fourier Transform (DFT). Typically an
N-point DFT is calculated for the data length of samples
leading to a resolution of on the frequency estimate.
In many applications, it is desirable to increase the resolution

of the frequency estimate at the cost of some additional com-
putation. As described in [2], a two-stage search can be imple-
mented to improve the frequency estimate. First a coarse search
with an N-point DFT is executed and then a �ne search is im-
plemented around the vicinity of the peak determined in the �rst

Manuscript received February 03, 2011; revised March 14, 2011; accepted
March 24, 2011. Date of publication April 05, 2011; date of current version
April 14, 2011. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Arumugam Nallanathan.
The author is with the Department of Electrical and Electronics Engi-

neering, Middle East Technical University (METU), Ankara, Turkey. (e-mail:
ccandan@metu.edu.tr).
Color versions of one or more of the �gures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identi�er 10.1109/LSP.2011.2136378

Fig. 1. Magnitude spectrum of the complex exponential waveform with fre-
quency radians per sample.

stage. It should be noted that the resolution of a two-stage search
is limited to the spacing of the grid points used in �ne search.
In [3]�[6] an alternative for the second stage is suggested. In-

stead of a grid search, the �ne resolution estimate is produced
through a function on DFT samples already calculated in the
�rst stage. Themethods suggested in [3]�[5] use three DFT sam-
ples, while the method of Provencher uses only two DFT sam-
ples, [6]. These methods require very few operations in com-
parison to the grid search and produce a real valued estimate for
the frequency, instead of a discrete grid point.
In [7], Jacobsen has suggested a simple relation for DFT do-

main �ne frequency estimation. The suggestion is based on em-
pirical observations and presented without a proof. In this paper,
we present a derivation for the Jacobsen formula and present a
bias correction. The correction term is effective for high SNR
values, but it comes at almost no additional computational cost
and therefore can be used at any SNR level.

II. PROBLEM DESCRIPTION

A single complex exponential waveform observed under
white Gaussian noise can be modeled as follows:

Here and are unknown parameters which are complex
valued amplitude and real valued frequency with the unit of
radians per sample, respectively.
Fig. 1 shows the magnitude spectrum of for the noiseless

case. The frequency of the complex exponential shown in Fig. 1
is . Our goal in this paper is to estimate ,
where , from three samples around the peak in the
DFT spectrum.
In the �rst stage, an N-point DFT of is calculated,

. Here denotes the complex valued
DFT output. The peak value in the DFTmagnitude spectrum (
in Fig. 1) is expected to be around the true frequency , if the

1070-9908/$26.00 © 2011 IEEE
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3-point frequency interpolation
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TABLE I
METHODS FOR FINE RESOLUTION FREQUENCY ESTIMATION IN DFT DOMAIN

in (10), we can explicitly evaluate the in�nite summations in (8)
as follows:

By ignoring the higher order terms, we get the following relation
for the ratio of �rst two differences:

(11)

Invoking the smallness of with respect to one more time,
we can simplify the last relation as follows:

(12)

In the high SNR regime, that is when , DFT samples
around the peak value, that is , and
in (1), can be taken as and

respectively. Then an estimate for can be produced via the
substitution of and

into (12):

(13)

This concludes the derivation of the proposed estimator. It
should be noted that the estimator proposed approaches the
estimator of Jacobsen, given in Table I, as .

IV. NUMERICAL COMPARISONS

This section presents a numerical comparison of the proposed
estimator with the other estimators given in Table I. We would

Fig. 2. Bias of different estimator in the absence of noise.

like to remind that in the presented �gures, the bias and root
mean square error (RMSE) values describe the error on . This
error can be interpreted as the error normalized to the DFT bin
size. With this normalization, an error of 0.1 units on is equiv-
alent to the frequency error of radians per sample.
Fig. 2 compares the bias of the proposed and other estimators

in the absence of noise for . Frequency estimation is
a nonlinear estimation problem, therefore it is not surprising
that all estimators, including the proposed one, are biased. As
expected, the bias gets smaller as or as SNR increases.
Fig. 2 shows that the least biased estimator is the proposed one.
(This is in general true for any .) The poorest bias belongs to
the parabolic �t estimator which is a fact known in the literature,
[1]. The other estimators by Quinn, Jacobsen, andMacleod have
the exact same bias value in the absence of noise.
Fig. 3 examines the bias in the presence of noise. For this

�gure, the parameter is �xed to a speci�c value, which is
, and SNR is varied. As can be observed from this �gure, the

estimators approach the bias value of the noiseless case, which
is presented in Fig. 2, as SNR increases.
Fig. 4 shows the RMSE of the estimators and the Cramer�Rao

lower bound. We note that the Cramer�Rao bound is not typi-
cally applicable for the biased estimators, but it is still useful if
the bias value is much smaller than the error variance. As can

IEEE Signal processing letters 18, No. 6, JUNE 2011 351

1995

E. Asseo, CERN PS/85–3(1985): |Rk+1|/(|Rk |+ |Rk+1|)
CERN-SL-96-048: 1

πatan{|Rk+1| sin(π/N)/(|Rk |+ |Rk+1| cos(π/N)}

R. Tomás Linear imperfections 63/117

http://rtomas.web.cern.ch/rtomas/


NAFF

F Instead of interpolating, find Q that maximizes
|∑ x(N)e i2πQN |

F then iterate by subtracing the found frequency
component from x(n)

Some codes to do this:

F NAFF: Icarus 88, Issue 2, 1990.
https://pypi.org/project/PyNAFF/

F Sussix: CERN SL/Note 98-017, 1998

F Harpy: IPAC2018-THPAF045 (with Jacobsen

interpolation instead of maximization to speed-up), see next
slide



Harpy

1 i m p o r t numpy as np
2 P I 2 I = 2 ∗ np . p i ∗ complex ( 0 , 1)
3
4 d e f harpy ( samples , num harmonics ) :
5 n = l e n ( s a m p l e s )
6 i n t r a n g e = np . a r a n g e ( n )
7 c o e f f i c i e n t s = [ ]
8 f r e q u e n c i e s = [ ]
9 f o r i n r a n g e ( num harmonics ) :

10 f r e q u e n c y = j a c o b s e n ( np . f f t . f f t ( s a m p l e s ) , n ) # Find dominant f r e q .
11 e x p o n e n t s = np . exp(−P I 2 I ∗ f r e q u e n c y ∗ np . a r a n g e ( n ) )
12 c o e f = np . sum ( e x p o n e n t s∗ s a m p l e s ) /n # compute a m p l i t u d e and phase
13 c o e f f i c i e n t s . append ( c o e f )
14 f r e q u e n c i e s . append ( f r e q u e n c y )
15 n e w s i g n a l = c o e f ∗ np . exp ( P I 2 I ∗ f r e q u e n c y ∗ i n t r a n g e )
16 s a m p l e s = s a m p l e s − n e w s i g n a l # Remove dominant f r e q .
17 c o e f f i c i e n t s , f r e q u e n c i e s = z i p (∗ s o r t e d ( z i p ( c o e f f i c i e n t s , f r e q u e n c i e s ) ,
18 key=lambda t u p l e : np . abs ( t u p l e [ 0 ] ) , r e v e r s e=True ) )
19 r e t u r n f r e q u e n c i e s , c o e f f i c i e n t s
20
21 d e f j a c o b s e n ( d f t , n ) : # I n t e r p o l a t e to f i n d dominant f r e q .
22 k = np . argmax ( np . abs ( d f t ) )
23 d e l t a = np . tan ( np . p i / n ) / ( np . p i / n )
24 kp = ( k + 1) % n
25 km = ( k − 1) % n
26 d e l t a = d e l t a ∗ np . r e a l ( ( d f t [ km]− d f t [ kp ] ) /(2∗ d f t [ k ] − d f t [ km ] − d f t [ kp ] ) )
27 r e t u r n ( k + d e l t a ) / n
28
29 N=4096; i = 2 ∗ np . p i ∗ np . a r a n g e (N)
30 data = np . cos ( 0 . 1 3 4 ∗ i ) + np . cos ( 0 . 2 4 4 ∗ i ) + 0 . 0 1 ∗ np . random . randn (4096)
31 f r e q s , c o e f f s = harpy ( data , 300)

Jaime Coello



Jacobsen interpolation & zero padding
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Zero padding: just add zeros to original signal
1 d a t a z e r o p a d=np . pad ( data , ( 0 , 9∗N) , ’ c o n s t a n t ’ )
2 f z e r o p a d=np . abs ( np . f f t . f f t ( d a t a z e r o p a d ) /(N) )
3



FFT Vs NAFF Vs Sussix with noise

N. Biancacci et al, PRAB 19, 054001 (2016):

IV. MEASUREMENT ACCURACY

The accuracy of the method described in the previous
section is mainly determined by the accuracy of the phase
advance measurements. Estimates of the phase advance
uncertainty are given below for different Fourier decom-
position techniques [25].

A. Uncertainty on phase advance

Let us consider the following sinusoidal signals with
same amplitude A, frequency Q0 and phase advance
Δμ ¼ μ2 − μ1

BPM1ðnÞ ¼ Acosð2πQ0nþ 2πμ1Þ þ n1ðnÞ; ð18Þ

BPM2ðnÞ ¼ Acosð2πQ0nþ 2πμ2Þ þ n2ðnÞ; ð19Þ

with n ∈ f0;…; N − 1g, N the number of sampled turns,
and n1;2ðnÞ additive Gaussian noise of standard deviation
σn. We define the noise to signal Ratio parameter as
NSR ¼ σn=A. Considering a number M of simulations,
we can study how the noise impacts the uncertainty in tune
and phase advance measurements. We define the uncer-
tainty in tune determination σQ as the standard deviation of
the difference between measured and simulated tune
frequencies over the M simulations, and analogously we
define the phase advance uncertainty σΔμ.
In the presence of noise, a classical fast Fourier transform

(FFT) algorithm resolves σQ ∝ 1=N. Other accurate iter-
ative methods like SUSSIX [26] or NAFF [27] give higher
spectral resolution [28] up to σQ ∝ 1=N3=2 (in the noise free
case they get up to σQ ∝ 1=N4). Figure 5 shows the tune
uncertainty for increasing number of turns with a noise
level of NSR ¼ 5%. Fitting the data we can get an
estimation of the uncertainty as a function of the number
of turns

σQ ≃ FQ
NSR
Nα ; ð20Þ

where α ¼ 1.5 and FQ ≃ 0.82 for SUSSIX, α ¼ 1.5 and
FQ ≃ 1.71 for NAFF, α ¼ 1 and FQ ≃ 20 for the FFT.
Concerning the phase advance uncertainty, we can

identify two possible correlated source of error: the direct
impact of noise on the signal phase and the impact of noise
through the window function.
The direct impact of noise on the signal phase was

already studied in [29]. Defining the continuous Fourier
transform (CFT) of a signal xn as

XðQÞ ¼ 1

N

XN
n¼1

e−j2πQðn−1Þxn ð21Þ

the spectrum X1;2 corresponding to the sinusoidal signals of
BPM1;2 is given by

X1;2ðQÞ ¼ A
2
ej2πμ1;2F ðQ −Q0Þ þ A

2
e−j2πμ1;2F ðQþQ0Þ

ð22Þ
where

F�ðQÞ ¼ sinðNπðQ�Q0ÞÞ
N sinðπðQ�Q0ÞÞ e

−jðQ�Q0ÞðN−1Þ=2 ð23Þ

is the CFT of the rectangular window implicitly enclosing
the N signal samples.
An additive Gaussian noise nðnÞ introduces an uncer-

tainty in the phase determination that can be quantified with
the formula

σμ ≃ Fμ
NSRffiffiffiffi
N

p ; ð24Þ

where σμ refers to the standard deviation of the measured
phase of a single sinusoidal signal, and the numerical
coefficient Fμ ¼

ffiffiffi
2

p
=2π. Considering the calculation of a

phase advance between two signals, the error adds in
quadrature

σ2Δμ ¼ 2σ2μ; ð25Þ
leading to

σΔμ ≃ FΔμ
NSRffiffiffiffi
N

p ; ð26Þ

with FΔμ ¼ 1=π.
The impact of noise through the window function is

significant only when measuring phase advances between
two signals. Selecting the first part of Eq. (22), if the tune
frequency at the two BPMs is different due to errors in the
interpolation, there will be a contribution of the noise to the
phase advance estimation through the phase of F given by

∠F−ðQÞ ¼ −ðQ −Q0ÞðN − 1Þ=2: ð27Þ
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FIG. 5. Uncertainty in the tune determination with NAFF, FFT
and SUSSIX versus number of turns calculated up to N ≃ 104

turns considering amplitude Gaussian noise of NSR ¼ 5%. Dots
are the simulated data, lines are the fits. SUSSIX and NAFF both
implement a hanning window.
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Phase advance measurement

The phase advance between 2 BPMs φij = φj − φi
is a fundamental optics observable, it is model and
BPM calibrationi independent.
Care with averaging many measurements is needed,
a safe approach is the circular mean:

α = atan2

(
1

n

n∑

i

sinαi ,
1

n

n∑

i

cosαi

)

1 from s c i p y . s t a t s i m p o r t c i r c m e a n
2 i m p o r t numpy as np
3 c i r c m e a n ( [ 0 . , 2∗np . p i ] )

output: 2π
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Ring average β with random errors

The average β in presence of random errors is well

behaved [14]:
〈

∆β
β

〉
= rms2

(
∆β
β

)
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β from amplitude

x(N , s) =
√
βx(s)ε cos(2πQxN + φx(s)) + CO(s)

F Having enough BPMs around the ring allows to
compute the average and rms of βε from the
square of the FFT amplitude of the tune.

F ε can be computed with

ε ≈ 〈βε〉
〈βmodel〉

(
1− rms2

(
∆β

β

))

F Biggest limitation of this technique is BPM
calibration errors.
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β from phase

The Twiss parameters βi and αi at the positions si can be
obtained with Eqs. (1), (2) where ϕi;j ¼ ϕj − ϕi is the
phase advance andMmnði;jÞ are the transfer matrix elements
from si to sj, cf. Fig. 1. ϵijk is the Levi-Civita symbol which
allows for a compact notation of the three cases of deriving
the Twiss parameters at the different BPMs. No summation
over equal indices is implied.

βi ¼
ϵijk cotðϕi;jÞ þ ϵikj cotðϕi;kÞ

ϵijk
M11ði;jÞ
M12ði;jÞ

þ ϵikj
M11ði;kÞ
M12ði;kÞ

ð1Þ

αi ¼
ϵijk

M11ði;kÞ
M12ði;kÞ

cotðϕi;jÞ þ ϵikj
M11ði;jÞ
M12ði;jÞ

cotðϕi;kÞ
ϵijk

M11ði;jÞ
M12ði;jÞ

þ ϵikj
M11ði;kÞ
M12ði;kÞ

: ð2Þ

The accuracy of this method depends not only on the
knowledge of the optics model and the precision of the
measured phase but also on the value of the phase advances
between the BPMs. From Eq. (1) it can be seen that, for
example, a phase advance between two BPMs should not
be close to a multiple of π as the cotangent becomes infinite
at those points. Figure 2 shows the propagated error of the

β-function, depending on the phase advances between the
three BPMs. From Eq. (1) one can derive two conditions for
the optimal phase advances. The phase advance from the
probed BPM (i) to the other two ðj; kÞ should be

ϕi;j ¼ π
4
þ n1 π

2
;

ϕi;k ¼ π
4
þ ð2n2 þ 1 − n1Þ π2 ;

n1; n2 ∈ Z: ð3Þ

The method that has been used so far takes three
neighboring BPMs for the calculation of the β-functions
at these three BPM positions. In the arcs, where in general
the phase advance between consecutive BPMs is about
π=4, this method is already close to the optimum phase
advances, when probing the middle BPM. However in the
case that the probed BPM is not in the middle of the other
two BPMs, the optimum would be to skip the farther BPM
and use instead the next following BPM, cf. Fig. 3.
In the interaction regions (IRs), the phase advances can

be very different as the optics do not follow the regular
focussing-drift-defocussing-drift structure of the arcs in
order to fulfill other constraints, e.g., collision point
focusing. For example in the ATLAS and CMS IRs, where
the β-function reaches very high values, the phase advances
between consecutive BPMs close to the interaction points
(IPs) may only be a few degrees. If in this case only
neighboring BPMs are used, this results in large uncer-
tainties. This prevented β� measurements at the IPs in
2012 [3].
An improved algorithm is developed here, which allows

us to use more BPM combinations from a larger range of
BPMs. This makes it possible to include BPM combina-
tions with better phase advances and also increases the
amount of information that is used in the measurement of
the β-function. A range of N BPMs is chosen centered at
the probed BPM. To find the best estimate of the measured
β-function from m combinations of three BPMs out of the
N BPMs, a least squares minimization is performed of the
function

SðβÞ ¼
Xm
i¼1

Xm
j¼1

ðβi − βÞV−1
ij ðβj − βÞ; ð4Þ

where βi are the β-functions inferred from different BPM
combinations at the given probed BPM and Vij are the
elements of the covariance matrix for the different βi.

FIG. 1. Illustration of the β-function measurement from phase.
The phase advances ϕi;j in between three positions si are needed
to derive the β-functions at those positions.

FIG. 2. Expected error of a measured β-function at position s1,
depending on the phase advances to the other two BPMs. The six
used phase advances (three BPM combinations each for hori-
zontal and vertical plane) for a BPM position in IR4 from the
neighboring BPM method are indicated by triangles. When an
increased range of 7 BPM is used (N-BPM method), 15 different
combinations of phase advances are possible per plane, including
the ones that are indicated by triangles. Another six better suited
combinations of phase advances from the range of 7-BPMs are
indicated by circles.

FIG. 3. In the arcs the phase advance between two consecutive
BPMs is about π=4. If the blue BPM is probed, it is better to skip
the grey BPM and use the two red BPMs. The resulting phase
advances are approximately ϕ1;2 ¼ π=4 and ϕ1;3 ¼ 3π=4, which
is the optimum according to Eq. (3).
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phase advance andMmnði;jÞ are the transfer matrix elements
from si to sj, cf. Fig. 1. ϵijk is the Levi-Civita symbol which
allows for a compact notation of the three cases of deriving
the Twiss parameters at the different BPMs. No summation
over equal indices is implied.
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ϵijk
M11ði;jÞ
M12ði;jÞ

þ ϵikj
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M12ði;kÞ
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ϵijk
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M12ði;kÞ
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The accuracy of this method depends not only on the
knowledge of the optics model and the precision of the
measured phase but also on the value of the phase advances
between the BPMs. From Eq. (1) it can be seen that, for
example, a phase advance between two BPMs should not
be close to a multiple of π as the cotangent becomes infinite
at those points. Figure 2 shows the propagated error of the

β-function, depending on the phase advances between the
three BPMs. From Eq. (1) one can derive two conditions for
the optimal phase advances. The phase advance from the
probed BPM (i) to the other two ðj; kÞ should be

ϕi;j ¼ π
4
þ n1 π
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;

ϕi;k ¼ π
4
þ ð2n2 þ 1 − n1Þ π2 ;

n1; n2 ∈ Z: ð3Þ

The method that has been used so far takes three
neighboring BPMs for the calculation of the β-functions
at these three BPM positions. In the arcs, where in general
the phase advance between consecutive BPMs is about
π=4, this method is already close to the optimum phase
advances, when probing the middle BPM. However in the
case that the probed BPM is not in the middle of the other
two BPMs, the optimum would be to skip the farther BPM
and use instead the next following BPM, cf. Fig. 3.
In the interaction regions (IRs), the phase advances can

be very different as the optics do not follow the regular
focussing-drift-defocussing-drift structure of the arcs in
order to fulfill other constraints, e.g., collision point
focusing. For example in the ATLAS and CMS IRs, where
the β-function reaches very high values, the phase advances
between consecutive BPMs close to the interaction points
(IPs) may only be a few degrees. If in this case only
neighboring BPMs are used, this results in large uncer-
tainties. This prevented β� measurements at the IPs in
2012 [3].
An improved algorithm is developed here, which allows

us to use more BPM combinations from a larger range of
BPMs. This makes it possible to include BPM combina-
tions with better phase advances and also increases the
amount of information that is used in the measurement of
the β-function. A range of N BPMs is chosen centered at
the probed BPM. To find the best estimate of the measured
β-function from m combinations of three BPMs out of the
N BPMs, a least squares minimization is performed of the
function

SðβÞ ¼
Xm
i¼1

Xm
j¼1

ðβi − βÞV−1
ij ðβj − βÞ; ð4Þ

where βi are the β-functions inferred from different BPM
combinations at the given probed BPM and Vij are the
elements of the covariance matrix for the different βi.

FIG. 1. Illustration of the β-function measurement from phase.
The phase advances ϕi;j in between three positions si are needed
to derive the β-functions at those positions.

FIG. 2. Expected error of a measured β-function at position s1,
depending on the phase advances to the other two BPMs. The six
used phase advances (three BPM combinations each for hori-
zontal and vertical plane) for a BPM position in IR4 from the
neighboring BPM method are indicated by triangles. When an
increased range of 7 BPM is used (N-BPM method), 15 different
combinations of phase advances are possible per plane, including
the ones that are indicated by triangles. Another six better suited
combinations of phase advances from the range of 7-BPMs are
indicated by circles.

FIG. 3. In the arcs the phase advance between two consecutive
BPMs is about π=4. If the blue BPM is probed, it is better to skip
the grey BPM and use the two red BPMs. The resulting phase
advances are approximately ϕ1;2 ¼ π=4 and ϕ1;3 ¼ 3π=4, which
is the optimum according to Eq. (3).
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3-BPM method [15], N-BPM method [16] &
analytical N-BPM method [17].



Random and systematic errors

Error analysis is fundamental. β from phase is
model dependent. In [16] impact from model
uncertainties are assessed with Montecarlo. In [17]
an analytical approach is taken:

A. Effect of transverse sextupole misalignments

The magnetic field of a sextupole displaced horizontally
by Δx reads

By ¼
B
2
½ðxþ ΔxÞ2 − y2�: ð13Þ

This induces a quadrupolar field error whose strength
δK1 is

δK1 ¼
1

B0ρ0

∂By

∂x
����
x¼y¼0

¼ B
B0ρ0

Δx: ð14Þ

This term can be used in Eq. (12) to include sextupole
offsets in h̄ij.

B. Effect of longitudinal quadrupole misalignments

The effect of a longitudinal displacement δs of a
quadrupole magnet can be approximated by leaving the
magnet at its original position and introducing two thin
magnets at its edges to mimic the displacement, as shown in
Fig. 3. In the direction of the displacement there is an
additive element with integrated field strength δK1 ¼ k1δs
(k1 being the nonintegrated quadrupole strength), whereas
an error −δK1 is placed at the opposite end.

C. Effect of BPM misalignments

An error, δsi, in the longitudinal position of a BPM
affects the evaluation of Eqs. (11) and (12) which rely on
the model values of β and ϕ at the nominal position of the
BPM. To determine the effect we start with the definition of
the phase advance

ϕij ¼
Z

sj

si

1

βðsÞ ds: ð15Þ

We can approximate the phase error and the resulting β shift
at the position si þ δsi as

~ϕi ≈ ϕi þ
1

βi
δsi; ð16Þ

~βi ≈ βi þ
∂βi
∂s δsi ¼ βi − 2αiδsi; ð17Þ

up to first order in δsi. By αi we denote the α function at the
position of element i, defined as

α ¼ −
1

2

∂β
∂s : ð18Þ

We have to rederive an equation similar to Eq. (11) by
taking into account the considerations of the preceding
sections. The steps of the derivation are elaborated in
Appendix B. The final formula up to first order reads:

βlðsiÞ≈
cotϕijl −cotϕikl

cotϕm
ijl
−cotϕm

ikl
þ ḡijl − ḡikl

½βmðsiÞ−2αmðsiÞδsi�;

ð19Þ

with

ḡij¼ sgnði−jÞ
1

βmðsjÞδsj−
1

βmðsiÞδsiþ
P

w∈Iβ
m
wδKw;1sin2ϕm

wj

sin2ϕm
ij

;

ð20Þ

where δKw;1 now includes quadrupolar-like errors coming
from sextupole misalignments and quadrupole longitudinal
misalignments, as described in the previous sections.
Having defined the set I as

I ¼ ½minði; jÞ;maxði; jÞ� ⊂ N; ð21Þ

so that an element with index w ∈ I lies between elements i
and j, Eqs. (19) and (20) hold for every combination i, j, k
of the BPMs. By doing so, we do not need to distinguish
the three cases where the probed BPM is in the middle, left
or right.
All these considerations can be put into Eq. (19) and

used to get a more accurate β function. To verify the validity
of Eq. (19), its horizontal β-functions are compared to the
ones simulated by MADX along with the ones inferred
from Eq. (1), this time including sextupole radial offsets
and BPMs longitudinal shifts.
The result is shown in Fig. 4. The accuracy is now as

good as the one of Eq. (11) when only quadrupolar field
errors were introduced in the lattice, which in turn is much
greater than the old formula, Eq. (1).

FIG. 3. The top sketch shows the displaced quadrupole (solid
gray) relative to the original position (dashed). In the bottom
sketch one can see the quadrupole at its original position with thin
magnets on both ends.
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g ik and δsi contain possible model perturbations.
Random errors on φik and their correlations are also
considered.
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Momentum reconstruction

BPMs only measure x . With 2 nearby we can
reconstruct px in the Floquet Normal Form:

x̂1(N) = cos(2πQxN + φ1)

x̂2(N) = cos(2πQxN + φ2)

p̂x1(N) = sin(2πQxN + φ1)

=
x̂2(N)

cos δ
+ x̂1(N) tan δ

with δ = φ2 − φ1 − π/2.
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Measurement of Resonance Driving Terms

From [8]:

x̂1 − i p̂x1 = e i2πQxN −
2i
∑

jfjklmε
j+k−2

2
x ε

l+m
2

y e i2πN[(1−j+k)Qx+(m−l)Qy ]+iϕ

So fjklm can be measured from the complex FFT of
x̂1 − i p̂x1. Let’s illustrate this with coupling.
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Coupling RDT
Using 2 nearby double-plane BPMs to reconstruct
x̂1 − i p̂x1 and ŷ1 − i p̂y1:
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PEP-II, from φ to virtual model to β

To offset radiation damping, the most economic process
for such data acquisition would be through two orthogonal
resonance excitations, one at the horizontal (eigen-plane 1)
and the other at the vertical (eigen-plane 2) betatron tunes,
and then take and store buffered BPM data. Since a beta-
tron motion has two degrees of freedom (the phase and the
amplitude), each excitation would generate a pair of conju-
gate (cosine- and sine-like) betatron motion orbits. They
are obtained from the real and imaginary parts of tune-
matched FFT respectively. Therefore, a complete set of 4
independent linear (X and Y) orbits can be extracted from
the two eigen-mode excitations.

DISPERSION

To compliment the above linear geometric data acqui-
sition, longitudinal oscillation at the synchrotron tune is
also resonantly excited for an additional transverse BPM
data acquisition. Dispersions at BPM locations are then
measured by taking a longitudinal-tune-matched (zoom-
ing) FFT from such BPM turn-by-turn BPM data.

RESPONSE QUANTITIES AND THEIR
CORRESPONDING QUANTITIES FROM

MEASUREMENT

Once the variables in the virtual lattice model, that is ~X
in Eq. 1, is given, one can update the virtual lattice trans-
fer matrices. The response quantities (~Y in Eq. 1), that is,
the phase advances and the Greens’ functions among BPMs
and the dispersions at BPM locations, are then calculated
by projection of these updated transfer matrices or the con-
catenated one-turn linear maps. Their corresponding quan-
tities from measurement (~Ym in Eq. 1) are described below:

Phase advances

The orbit betatron phase at each BPM location can be
obtained by taking the arctangent of the ratio of the imagi-
nary part to the real part of the resonance excitation FFT
mode [2]. Phase advances between adjacent BPMs can
then be calculated by subtraction. Note that the ratio of the
imaginary part to the real part of the FFT will cancel the lin-
ear BPM gains but not the BPM cross couplings. Therefore
the phase advances among BPMs are repeatedly calculated
during the Least Square fitting process as the BPM cross
couplings and BPM gains are updated to correct the linear
orbits.

Linear Green’s functions

The linear Green’s function are simply the
Rab12, R

ab
34, R

ab
14, R

ab
32 of the linear transfer matrix be-

tween any two BPMs labeled as a and b. They are
given in the data measurement space [3] and so to match
these measured quantities, the variables for BPM gains
and cross couplings have to be applied to the response
Greens’ functions from the updated virtual model for their
transformation into the data measurement space.

MEASUREMENT AND IMPROVEMENT
OF PEP-II STORAGE RINGS

Once the optics-matched virtual machine is obtained
through an SVD-enhanced Least-Square fitting [2], the up-
dated transfer matrices can be concatenated into one-turn
maps at the desire locations for calculating optics parame-
ters. One can also find solutions by fitting a well selected
set of normal and skew quadrupoles as well as orbit cor-
rectors for improving the optics, such as reducing the beta
beating and the linear coupling, optimizing beta functions
at IP, bringing the working tune to near half integer, and
improving dispersion. Furthermore, this virtual model can
feed to the lattice program LEGO and the beam-beam sim-
ulation [4].

Shown in Figure 1 is the PEP-II HER beta functions on
Nov. 22, 2005, which shows high beta beat and was sub-
sequently corrected through the solution from the MIA vir-
tual model. Shown in Figure 2 is the PEP-II beta function
on Mar. 16, 2006, showing that the beta beat had been
much improved. From the MIA accurate virtual machine,
we have been able to identify a key magnet (QF5L). This
normal quadrupole along with the linear trombone quads
and local and global skews are used as variables in the MIA
program for finding the solution from the virtual model.
The solution is then dialed into the PEP-II HER.

As mentioned above, we have been able to include dis-
persion measurement in the virtual model without adding
new type of variables. Figure 3 compares dispersion from
the virtual model and from the direct measurement for HER
on Nov. 22, 2005. There is no bending magnet or orbit cor-
rector involved in the fitting. The vertical dispersion beat
was subsequently improved with the MIA virtual models.

MIA virtual model has also been applied to PEP-II LER.
As an example, PEP-II LER major orbit steering usually
accompanied by a much degraded linear optics due to
change of sextupole feed-downs, which had been very dif-
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Figure 1: Comparing beta function between the ideal lat-
tice (blue color) and the virtual machine on Nov. 22, 2005
for PEP-II HER. The PEP-II HER showed high beta beat,
which were subsequently corrected through solution from
the virtual model
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Figure 2: Comparing beta function between the ideal lat-
tice (blue color) and the virtual machine on Mar. 16, 2006
for PEP-II HER. Beta beat shown in Fig. 1 has been much
improved. From the accurate virtual machine, we have
been able to identify a key magnet (QF5L). This normal
quadrupole along with the linear trombone quads and lo-
cal and global skews are used as variables for finding a
solution from the virtual model.

ficult to correct without an accurate optics model. With the
accurate MIA virtual model established for the LER right
after the steering, we have been able to correct the linear
optics such that the major LER orbit steering in April, 2006
is survived. Figure 5 shows the LER linear coupling char-
acteristics after dialing in solutions right after the major
orbit steering.

CONCLUSION

We have used a model-independent analysis (MIA) for
accurate orbit and phase advance measurement and then
uses an SVD-enhanced Least Square fitting for building ac-
curate virtual models for e+, e- storage rings. MIA virtual
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Figure 3: Comparing dispersion between the direct mea-
surement (green color) and the virtual machine on Nov. 22,
2005 for PEP-II HER. No bending magnet or orbit correc-
tor were added as fitting variables. The vertical dispersion
beat was subsequently improved with the MIA virtual mod-
els.
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Figure 4: Comparing linear coupling between the ideal lat-
tice (blue color) and the virtual machine on Apr. 21 for
PEP-II LER after a major orbit steering that was accom-
panied by a MIA solution for linear optics correction. This
PEP-II LER coupling is with a record low residual from the
ideal lattice. Top plot shows the Eigen ellipse tilt angles
while the bottom plot shows the Eigen ellipse axis ratios
for Eigen plane 1 and 2 respectively.

model matches, very well, the real-machine linear optics
including dispersion. It has successfully fixed PEP-II beta
beat, linear coupling, half-integer working tune. The suc-
cess comes from that: (a) the SVD-enhanced Least-Square
fitting can avoid degeneracies and has a fairly fast conver-
gence rate allowing for application to a fairly large system;
(b) the PEP-II ring has a reasonable amount of BPMs al-
lowing for extracting sufficient physical quantities for fit-
ting; and (c) the linear Green’s functions among BPMs can
provide essentially unlimited fitting constraints that add
significantly on the convergence.
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Farey sequences (1802)

The Farey sequence Fn of order n is the sequence of
completely reduced fractions between 0 and 1
which, when in lowest terms, have denominators
less than or equal to N → Resonances of order N
or lower (in one plane)
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Some properties of Farey sequences

F The distance between neighbors in Fn (aka two
consecutive resonances) a/b and c/d is equal
to 1/(bd)

F The next leading resonance in between two
consecutive resonances a/b and c/d is:

a + c

b + d

F The number of 1D resonances of order N or
lower tends asymptotically to 3N2/π2
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Farey sequence code

1 d e f Farey ( n ) :
2 ””” Return t h e nth Farey sequence , a s c e n d i n g . ”””
3 seq = [ [ 0 , 1 ] ]
4 a , b , c , d = 0 , 1 , 1 , n
5 w h i l e c <= n :
6 k = i n t ( ( n + b ) /d )
7 a , b , c , d = c , d , k∗c − a , k∗d − b
8 seq . append ( [ a , b ] )
9 r e t u r n seq
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Resonance diagram
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Resonance diagram & Farey

From [21]:

F The lines going trough Qx = h
k , Qy = 0 relate

to the elements in FN below 1
k .

F The number of resonance lines in the 2D
diagram is

2N3

3ζ(3)
+ O

(
N3

logN

)
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Plotting the resonance diagram

1 i m p o r t m a t p l o t l i b . p y p l o t as p l t
2 i m p o r t numpy as np
3 f i g = p l t . f i g u r e ( )
4 ax = p l t . a x e s ( )
5 p l t . y l i m ( ( 0 , 1 ) )
6 p l t . x l i m ( ( 0 , 1 ) )
7 x = np . l i n s p a c e ( 0 , 1 , 1000)
8 FN = Farey ( 5 ) # Farey f u n c t i o n d e f i n e d 3 s l i d e s ago
9 f o r f i n FN :

10 h , k = f # Node h/k on t h e a x e s
11 f o r s f i n FN :
12 p , q = s f
13 c=f l o a t ( p∗h )
14 a=f l o a t ( k∗p ) # Resonance l i n e a Qx + b Qy = c l i n k e d to p/q
15 b=f l o a t ( q−k∗p )
16 i f a>0:
17 p l t . p l o t ( x , c /a − x∗b/a , c o l o r= ’ b l u e ’ )
18 p l t . p l o t ( x , c /a + x∗b/a , c o l o r= ’ b l u e ’ )
19 p l t . p l o t ( c /a − x∗b/a , x , c o l o r= ’ b l u e ’ )
20 p l t . p l o t ( c /a + x∗b/a , x , c o l o r= ’ b l u e ’ )
21 p l t . p l o t ( c /a − x∗b/a , 1−x , c o l o r= ’ b l u e ’ )
22 p l t . p l o t ( c /a + x∗b/a , 1−x , c o l o r= ’ b l u e ’ )
23 i f q==k and p==1: # FN e l e m e n t s below 1/ k
24 b r e a k
25 p l t . show ( )

R. Tomás Linear imperfections 82/117

http://rtomas.web.cern.ch/rtomas/


Apollonian gasket 0,0,1,1
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Resonance diagram & Apollonian gasket
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Colliders in the resonance diagram
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Correction

F Local corrections
Ideal correction: Error source identification and
repair.
Effective local error correction.
Best few correctors (no guarantee of locality).

F Global corrections
Pre-designed knobs for varying particular
observables in the least invasive way (like tunes,
coupling, β∗, etc.)
Best N correctors
Response matrix approach

F Blind corrections (optimizing, scanning, etc.)
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Local correction: segment-by-segment
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Key point: Isolate a segment of the machine by
imposing boundary conditions from measurements
and find corrections [13].



Pre-designed knobs - Tunes
F In most machines it is OK to use all focusing

quads to change Qx and all defocusing quads
for Qy : PSB, PS, SPS

F In the LHC dedicated tune correctors (MQT)
are properly placed to minimize impact on
β-beating:

22500 22600 22700 22800 22900 23000

Longitudinal location (m)

0

50

100

150

200
β
(m
)

LHCB1, left of IP1

βy βx Position of MQT magnets



Pre-designed knobs - Coupling

F The full control of the difference resonance
(f1001) needs two independent families of skew
quadrupoles.

F PSB, PS and SPS can survive only with one
family since int(Qx) = int(Qy), making errors
in phase with correctors.

F In LHC there are two families to vary the real
and imaginary parts of f1001 independently.
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Response matrix approach

F Available correctors: ~c

F Available observables: ~a

F Assume for small changes of correctors linear
approximation is good:

R∆~c = ∆~a

F Use, e.g., MADX to compute R

F Invert or pseudo-invert R to compute an
effective global correction based on measured
∆~a:

∆~c = R−1∆~a

F This works for orbit, ∆β/β, coupling, etc.



Pseudo-inverse via SVD

R = U




σ1 0 0
0 σ2 0
0 0 σ3

0 0 0


V T

Imagine σ3 � σ2 ≤ σ1, then just neglect σ3:

R−1 = V




1
σ1

0 0

0 1
σ2

0

0 0 0
0 0 0


UT



Correcting optics and coupling




∆~φx
∆~φy
~∆βx
βx
~∆βy
βy

∆ ~Dx

∆ ~Q




meas

= P(theo) ·∆~k



~f1001

~f1010

~Dy




meas

= T(theo) ·∆~ks



Best N corrector: exact solution

1 i m p o r t numpy as np
2 from s c i p y . o p t i m i z e i m p o r t l e a s t s q u a r e s
3 from i t e r t o o l s i m p o r t p r o d u c t
4 i m p o r t m a t p l o t l i b . p y p l o t as p l t
5
6 N c o r r s=7
7 s=np . l i n s p a c e ( 0 , N c o r r s , 1000) # 1000 o b s e r v a t i o n p o i n t s
8
9 d e f c o r r s ( x , i ) : # Assume c o r r e c t o r s a t i=i n t e g e r < N c o r r s

10 r e t u r n np . s i n ( np . abs ( x−i ) )
11
12 d e f model ( x , c ) : # O r b i t a t x from c o r r e c t o r s t r e n g t h s as c
13 i f l e n ( x ) ==1:
14 r e t u r n sum ( c∗ c o r r s ( x , np . a r a n g e ( N c o r r s ) ) )
15 r e t u r n [ model ( [ y ] , c ) f o r y i n x ]
16
17 d e f m e a s u r e d o r b i t ( x ) : # Target O r b i t
18 r e t u r n np . s i n ( np . abs ( x−0.1) ) + np . s i n ( np . abs ( x−1.9) ) − np . s i n ( np . abs ( x−4.1) )

− np . s i n ( np . abs ( x−5.9) )
19
20 d e f f ( c ) : #F i g u r e o f m e r i t f o r g i v e n c o r r e c t o r c h o i c e encoded i n mask
21 r e t u r n model ( s , c∗mask ) − m e a s u r e d o r b i t ( s )
22
23 b e s t=1e16∗np . ones ( N c o r r s +1) ; bestmask=np . z e r o s ( [ N c o r r s +1, N c o r r s ] )
24 f o r mask i n p r o d u c t ( [ 0 , 1 ] , r e p e a t=N c o r r s ) : # Try a l l c o r r e c t o r c o m b i n a t i o n s
25 r e s = l e a s t s q u a r e s ( f , x0=np . ones ( N c o r r s ) ) #O r b i t c o r r e c t i o n
26 i f r e s . c o s t < b e s t [ sum ( mask ) ] :
27 bestmask [ sum ( mask ) ]=mask∗ r e s . x ; b e s t [ sum ( mask ) ]= r e s . c o s t
28
29 p l t . p l o t ( s , m e a s u r e d o r b i t ( s ) )
30 p l t . p l o t ( s , model ( s , bestmask [ 1 ] ) ) #Best 1 c o r r e c t o r
31 p l t . p l o t ( s , model ( s , bestmask [ 2 ] ) ) #Best 2 c o r r e c t o r s



Measured orbit
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Best 1 corrector
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Best 2 correctors
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Best 3 correctors
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Best N corrector: approximation

How many combinations of 500 correctors taking 20
at a time exist?
Various algorithms to find approximations:

F MICADO, CERN ISR-MA/73-17, 1973

F Projection pursuit regression, J. Amer. Statist.
Asso. 76 1981

F Matching pursuit, Transactions on signal
processing 41, No 12, 1993.
Later improved and named Orthogonal
Matching pursuit (OMP)

http://cds.cern.ch/record/790199/


Best N corrector: OMP (= MICADO)

1 from s k l e a r n . l i n e a r m o d e l i m p o r t O r t h o g o n a l M a t c h i n g P u r s u i t
2 i m p o r t numpy as np
3 i m p o r t m a t p l o t l i b . p y p l o t as p l t
4
5 N c o r r s=7
6 N BPMs=1000
7 s=np . l i n s p a c e ( 0 , N c o r r s , N BPMs) # 1000 BPMs
8
9 d e f c o r r s ( x , i ) :

10 r e t u r n np . s i n ( np . abs ( x−i ) )
11
12 d e f m e a s u r e d o r b i t ( x ) :
13 r e t u r n np . s i n ( np . abs ( x−0.1) ) + np . s i n ( np . abs ( x−1.9) ) − np . s i n ( np . abs ( x−4.1) )

− np . s i n ( np . abs ( x−5.9) )
14
15 d e f m e a s u r e d o r b i t ( x ) :
16 r e t u r n np . s i n ( np . abs ( x−0.1) ) + np . s i n ( np . abs ( x−1.9) ) − np . s i n ( np . abs ( x−4.1) )

− np . s i n ( np . abs ( x−5.9) )
17 ################ New p a r t f o r OMP #################
18 X=[]
19 f o r i i n r a n g e (N BPMs) : # P r e p a r e r e s p o n s e m a t r i x f o r OPM
20 X . append ( c o r r s ( s [ i ] , np . a r a n g e ( N c o r r s ) ) )
21 y= m e a s u r e d o r b i t ( s )
22 r e g = O r t h o g o n a l M a t c h i n g P u r s u i t ( n n o n z e r o c o e f s =1) . f i t (X, y ) #Run OMP f o r b e s t

1 c o r r .
23 p r i n t r e g . c o e f # c o e f f i c i e n t o f b e s t 1 c o r r
24 p l t . p l o t ( s , r e g . p r e d i c t (X) )



OMP: Best 1 corrector
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OMP: Best 2 correctors
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OMP: Best 3 correctors
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Real life example: Optics drift in 4 months

LHC beam 1, β∗ = 60/15 cm, 6.5 TeV:
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What changed? A single quadrupole?
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Possible candidate found with OMP
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The identified quadrupole is currently under
investigation.
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Analytical equations

δ
Dz,j√
βz,j

=
∑

m

[
(±δK0,m + δJ1,mDy ,m ∓ δK1,mDz,m)

√
βz,m

2

cos(τz,mj)

sin(πQz)

+
Dz,j√
βz,j

δK1,m
βz,m

4

cos(2τz,mj)

2 sin(πQz)

]

δΦz,wj = ±
∑

m

δK1,m
βz,m

4

[
2 (Πmj − Πmw + Πjw ) +

sin(2τz,mj)− sin(2τz,mw )

sin(2πQz)

]
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Three world records with optimizers

εy = 0.9± 0.4 pm
via random walk optimization

HL-

LHC

L = 2.1× 1034 cm−2s−1

Luminosity optimized via
downhill Simplex

History of measured minimum beam size 
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Dynamic linear imperfections

F Ground motion and vibrations in quadrupoles
produce sinusoidal dipolar fields

F Electrical noise can cause currents in
quadrupoles and dipoles to oscillate in time

F Electromagnetic pollution can act directly on
the beam.

F Slow variations (f << Qx ,y frev) just cause a
time varying orbit and optics

F Fast variations (f ≈ Qx ,y frev) can cause
resonances and emittance growth
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An oscillating dipolar field

F Let Qdip = fdip/frev be the tune of the dipolar
field oscillation.

F This causes the appearance of new resonances

F Linear resonances: Qx ± Qdip = N

F Non-linear resonances of sextupolar order:

Qx ± 2Qdip = N

2Qx ± Qdip = N

F Note that mQdip = N is not a problem
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Oscillating dipolar field, Qx 6= Qdip
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Orbit oscillates with Qdip but there is no emittance
growth far from resonances.
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Oscillating dipolar field, Qx = Qdip
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Linear growth in time → Emittance growth.
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An oscillating quadrupolar field

F Let Qquad = fquad/frev be the tune of the
quadrupolar field oscillation.

F This causes the appearance of new resonances

F Linear resonances: 2Qx ± Qquad = N
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Oscillating quadrupolar field, 2Qx 6= Qquad
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Tune is modulated with Qquad , displaying sidebands
at Qx ± Qquad but there is no emittance growth far
from resonances.
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Oscillating quadrupolar field, 2Qx = Qquad
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Exponential growth, clear signatures depending on
the oscillating field type.
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Outlayer detection: Linear correlation

1 i m p o r t numpy as np
2 from s c i p y . s t a t s i m p o r t t
3 i m p o r t m a t p l o t l i b . p y p l o t as p l t
4
5 d e f g e t f i l t e r m a s k ( data , x d a t a=None , l i m i t =0.0 , n i t e r =20) :
6 ””” Assumes l i n e a r c o r r e l a t i o n , normal d i s t r . R e t u r n s a f i l t e r mask f o r t h e

o r i g i n a l a r r a y ”””
7 mask = np . ones ( l e n ( data ) , dtype=b o o l )
8 ns igmas = t . ppf ( [ 1 − 0 . 5 / l e n ( data ) ] , l e n ( data ) )
9 p r e v l e n = np . sum ( mask ) + 1

10 f o r i n r a n g e ( n i t e r ) :
11 i f not ( ( np . sum ( mask ) < p r e v l e n ) and ( np . sum ( mask ) > 2) ) :
12 b r e a k
13 p r e v l e n = np . sum ( mask )
14 i f x d a t a i s not None :
15 m, b = np . p o l y f i t ( x d a t a [ mask ] , data [ mask ] , 1)
16 y , y o r i g = data [ mask ] − b − m ∗ x d a t a [ mask ] , data − b − m ∗ x d a t a
17 e l s e :
18 y , y o r i g = data [ mask ] , data [ : ]
19 mask = np . abs ( y o r i g − np . mean ( y ) ) < np . max ( [ l i m i t , ns igmas ∗ np . s t d ( y )

] )
20 r e t u r n mask
21
22 i f n a m e == ’ m a i n ’ :
23 x d a t a = 100 ∗ np . random . rand (1000) ;
24 y d a t a = 0 . 3 5 ∗ x d a t a + np . random . randn (1000) ; y d a t a [ −100: ] = y d a t a

[ 9 9 : : −1 ]
25 mask = g e t f i l t e r m a s k ( y data , x d a t a=x d a t a )
26 f , ax = p l t . s u b p l o t s ( 1 )
27 ax . p l o t ( x data , y data , ’ r o ’ )
28 ax . p l o t ( x d a t a [ mask ] , y d a t a [ mask ] , ’ bo ’ )
29 p l t . show ( )



Outlayer detection: Assuming linear
correlation and normal distribution

0 20 40 60 80 100
5

0

5

10

15

20

25

30

35

40



Bibliography

[1] E.D. Courant and H.S. Snyder, Annals of Physics 3 (1958).
[2] R. Tomás et al, Phys. Rev. Accel. Beams 20 054801 (2017)
[3] R. Miyamoto, PhD thesis, Uni. of Texas at Austin (2008).
[4] N. Biancacci et al., Phys. Rev. Accel. Beams 19, 054001 (2016).
[5] A. Franchi, arXiv:1603.00281 (2016).
[6] A. Hofmann and B. Zotter, Issued by: ISR-TH-AH-BZ-amb, Run:

640-641-642 (1975).
[7] F. Carlier et al., Phys. Rev. Accel. and Beams, 2016.
[8] F. Schmidt and R. Bartolini, LHC Project Report 132 (1997).
[9] R. Tomás et al., Phys. Rev. ST Accel. Beams 8, issue 2, 024001.
[10] M. Minty and F. Zimmermann, Measurement and Control of

Charged Particle Beams, Springer, Berlin (2003).
[11] Y. Alexahin et al., Journal of Instrumentation 6, P10006 (2011).
[12] T. H. B. Persson et al., Phys. Rev. ST Accel. Beams 17, 051004.
[13] R. Tomás et al., Phys. Rev. ST Accel. Beams 15, 091001 (2012).
[14] R. Tomás et al., CERN-ACC-NOTE-2018-0025.

R. Tomás Linear imperfections 116/117

http://rtomas.web.cern.ch/rtomas/


Bibliography

[15] P. Castro, Thesis CERN-SL-96-070-BI
[16] A. Langner et al, Phys. Rev. ST Accel. Beams 18, 031002 (2015)
[17] A. Wegscheider et al, Phys. Rev. Accel. Beams 20, 111002 (2017)
[18] R. Tomás, Phys. Rev. ST Accel Beams 5 54001 (2002)
[19] S. White et al., Phys. Rev. ST Accel. Beams 16 071002 (2013)
[20] F. Carlier et al., doi:10.18429/JACoW-IPAC2018-MOPMF033
[21] R. Tomás, Phys. Rev. ST Accel. Beams 17 014001 (2014) &

arXiv:1406.6991v2

R. Tomás Linear imperfections 117/117

http://rtomas.web.cern.ch/rtomas/

