Numerical Computing - before you start

(General issues, Interpretation of results, potential troubles and traps, etc. ..)

(... strong emphasis on accelerators)

Werner Herr, Numerical computing, Thessaloniki, 12.11.2018

Some (maybe less known) Reading Material

[LL] A.Lichtenberg and M.Lieberman, Regular and Chaotic Dynamics,
Applied Mathematical Sciences 38, Springer, New York, 1983.

[SC] J.B. Scarborough, Numerical Mathematical Analysis, Oxford University
Press, Oxford, 1958.

[TF]T. Ferris, Coming of age in the Milky Way, HarperCollins, New York,
2003.

[EA]D.Earn et.al. Physica D 56 (1992).

[RN] P. Rannou, Astron. Astrophys. 31, 289.

The purpose of computing for science is insight, not numbers

Dealing with Dynamic Systems it is usually difficult and most likely impossible to
find analytical solutions (at least the interestings ones).

The most reliable tools to study Realistic models, e.g. an accelerator, are numerical
methods (e.g. amongst others: numerical evaluation of Differential Equations and
tracking codes)

== Understanding the quality of a numerical method is the key to understand the
behaviour of e.g. an accelerators.

=P This lecture is not at all meant as an thorough computer science discussion,
(1.e. it is liberated from the shackle of a syllabus) rather to cover topics for no
more reason that they are interesting and useful

==» just writing some code is not enough (by far !)
Numerical methods have limitations !!

The purpose of computing for are numbers, not insight

Dealing with Dynamic Systems it is usually difficult and most likely impossible to
find analytical solutions (at least the interestings ones).

The most reliable tools to study Realistic models, e.g. an accelerator, are numerical
methods (e.g. amongst others: numerical evaluation of Differential Equations and
tracking codes)

== Understanding the quality of a numerical method is the key to understand the
behaviour of e.g. an accelerators.

=P This lecture is not at all meant as an thorough computer science discussion,
(1.e. it is liberated from the shackle of a syllabus) rather to cover topics for no
more reason that they are interesting and useful

==» just writing some code is not enough (by far !)
Numerical methods have limitations !!

Therefore: "A man’s got do know his limitations" (courtesy Dirty Harry)

If you write complex scientific computer codes and do not take into account the
limitations (yours, the computer’s and other issues), you will flop !

Therefore: "A good man always knows his and his computer’s limitations"

. V .
this we discuss

Discuss and analyse some limitations - Menu

> Numerical Analysis (can we rely on numbers ?)

> Model versus algorithm (do we have a preference ?)
> Chaos, (artifical or true ?) and all that ..

> Lattice Map (a rescue for some problems ?)

> ..

Will touch on a few concepts treated in detail in following lectures, may/should
provide some awareness (unlike sometimes said: we shall do more than discussing
LINUX versus WINDOWS)

Numerical analysis - (some) typical issues:

> Intrinsic errors using computers (not programmer’s faults)
> Inappropriate algorithms

> Roundoff errors

> Truncation errors

> Conversion errors
Be aware of potential numerical and conceptual difficulties that may exist.

> Numbers are part or the problem, not the answer

Most (if not all) of the following may sound familiar , but the consequences strongly
affect the computation and the analysis of the results ! Be prepared and avoid
being dogmatic ...

Here is a purpose - challenges for LHC experiments:

CMS Experiment at the LHC; CERN

S e g ' , Need to understand what the
— computer is doing ..

A\

- More than 40 collisions
- Numerically challenging

- Requires careful analysis

Spot the "Higgs"

- Wrong conclusion would be
very embarrasing

- Wrong statements are em-
barrasing

Wrong numbers = wrong conclusions = wrong statements = no price

Numbers (Computers versus mathematicians versus physicists):

Integer, fixed point and floating point (complex ignored for the time being):

> Integers: usually do not pose any problem:
- Unique represention
- Finite range (due to word length) Note: starts with 0

> Fixed point numbers: e.g. 2.71828, 3.14159265", 299792458.000:

- Fixed length (usually linked to word length), machine always keeps the
same number of digits, limited range

- An important use: banking ! (you do not want 16.049999993 - 10° CHF)

- Fast and easier to implement in hardware (but see later ...)

> Floating point nhumbers:

Internal representation of floating point numbers use a fixed humber of binary
digits to represent a decimal number. Some (most) decimal numbers cannot
be represented exactly in binary, resulting in problems already for basic
operations (addition, subtraction, multiplication, division)

* troubles ahead ..

> Floating point numbers, some issues:
- So-called scientific notation, e.g. 0.000271828 x 10%*:
- In mathematics, there is a single 0

But: 0, -0, .000 x 107, .000 x 10*°
are logically the same, but some machines or programming languages
make them the same, others do not ! (sometimes for good reasons)

- Related: 1.00- 107! and 0.01 - 10! are stored differently

This has some very unpleasant consequence !

> Finite arithmetic in mathematics not the same as finite arithmetic of machines
> Floating point humbers are a trade-off between range and precision

This can/will have strong implications for writing scientific software

First troubles - Floating point Representation on different machines

CERN in the late ’70: mainly 3 types of mainframes; CDC, IBM, VAX

Double precision floating point (64 and 60 bits) representation was:
2nd 1st

VAX (itistruel)
4th 3rd

IBM

CDC

exponent

Exchange of binary floating point numbers somewhat difficult ...

Common standard as defined by IEEE 754 (1985)

Floating point operations can give unexpected results:

0.6/0.2 - 3.0 = -0.44408920985006261617D-15

Equality tests such as (if (x ==y) ...) do not work

Another one, we know: (x+y):-(x—y) = X2 - y2

for x = 0.3 and y = 0.5 we obtain:

(x+y)-(x-y) = -0.1600000000000000 3109D+00 but
(x* —y?) = -0.1600000000000000 0333D+00

A real good one, try (C or FORTRAN90, float or double, makes no difference):
with: x=10*, y=-10%, z=1, X+ +2=2?2 and X+VYy) +z =27

Try withe.g. C or FORTRAN90 (or any pocket calculator) :

3.0 -30 30~ -30% 30 -30" -30» -30%

beware of: X’ ! — some are nonsense, some NaN, some are correct ...

Consider the function:

X

f(x)

1.100000 9.9999976
1.001000 999.9532721
1.000100 9998.3408820
1.000010 99864.380952
1.000001 1048576.000000
10.100000 0.109890
10.001000 0.111099
10.000100 0.1111098
10.000010 0.1111109
10.000001 0.1111110

well behaved for small changes near x = 10

ill-conditioned for small changes near x = 1 (check and avoid)

Iterative systems - circular accelerators:

The use of computers and numerical methods may require a large humber of
iterations - typical example simulations for a (circular) machine

> Iterative systems usually means that results from one stage of the
computation are used in subsequent calculations, i.e. a feedback situation

> Small errors are propagated and can lead to:
- Loss of precision of the results

- Artifacts leading to wrong conclusions and wrong physics

> A powerful tool for (accelerator) simulations but can lead to problems:

Examples mainly for beam dynamics, but problems can be the same everywhere
(some examples later ..)

At every iteration only a fixed number of digits is retained, rounded nearby the
representable number. The problems:

- The "Hamiltonian properties” (see later) are not preserved, can become
dissipative hence in the worst case violate Liouville’s theorem (see later):
worst case scenario ..

- For a small nhumber of iterations it is probably not dramatic

- The cumulative effect can/will lead to significant changes to the long-term
behaviour of e.g. trajectories — can lead to completely wrong conclusions ..

The standard argument: use Double Precision and we are save.

Is this always true for practical applications ?

An iterative process IEEE 80 (!) bit precision (both formulae are equivalent):

! and 0 !
R q [—
V3 V3
with: 6.2/ p'

0.315965994209750084D+01
0.314271459964536861D+01
0.314166274705685013D+01
0.314159703432150639D+01
0.314159292738506092D+01
0.314159267069799892D+01
0.314159265460636674D+01
0.314159265260533476D+01
0.314159264193316416D+01
0.314159264193316416D+01
0.304383829792641763D+01
0.295679307476062510D+01
NaN

\/pl.2+1—1

Pi

Pi+1 =

with: 6.2 . 4

0.315965994209750084D+01
0.314271459964536865D+01
0.314166274705684888D+01
0.314159703432152650D+01
0.314159292738509738D+01
0.314159267070199840D+01
0.314159265465930638D+01
0.314159265365663814D+01
0.314159265359005470D+01
0.314159265358979461D+01
0.314159265358979359D+01
0.314159265358979359D+01
0.314159265358979359D+01

and 4

qiv1 =
Vg + 1 +1

Starting point
Iteration 1

Size matters:

Normally 64-bit floating point arithmetic is fully sufficient.

But for numerically sensitive calculations it may be questionable*. May in turn
induce other errors: e.g. wrong decision in a conditional branch or real
pathological results.

Some examples where higher precision is needed:
- Supernova simulations (non-local thermodynamic equilibrium)
- Climate modelling

- Planetary orbit calculation [TF], black hole merger (astrophysicists are
smart(er) !)

- LHC experiments: Quark, Gluon and Vector Boson scattering. If a phase space
point is numerically unstable: recomputed with higher precision

- Large matrices (e.g. n x n with n as large as 10’) with large condition numbers

* most likely insufficient !

Most programming languages can use arbitrary precision floating point arithmetic using (free)
libraries e.g.: popular one for Python is MPMATH. Also ARPREC for FORTRAN 90 and C++.
UNIX based (also MAC OSX): MPFUN2015 for FORTRAN 90 which requires very little changes
to existing programs (mainly types).

Some issues:

> Have to take into account when the code is written: may/does require individual calls to
library routines for each arithmetic calculation. Much easier with MPFUN?2015.

> Slow execution time, e.g. rule of thumb compared to 64 bits (17 digits):

31 digits: x 5

62 digits: x 25

100 digits: x 50

1000 digits: x 1000

> Rather hard to debug

> Can cause user fatigue and most scientists give up ... (except maybe a few)

Better if sufficiently high precision is inbuilt !

Behind your back - Consider the programs:

int maini()
{

double x, y;
X = 4.0/9.0;
y = 8.0/18.0;

if (x == y)
printf("nice");
else

printf("not nice");

}

The results ??

int main2()

{

double Xx, y;
X = 4.0/9.0;
y = 8.0/18.0;

if (x == 8.0/18.0)
printf("nice");
else

printf("not nice");

}

Behind your back - Consider the programs:

int maini() int main2()

{ {

double x, y; double x, y;

x = 4.0/9.0; x = 4.0/9.0;

y = 8.0/18.0; y = 8.0/18.0;

if (x==vy) if (x == 8.0/18.0)
printf("nice"); printf("nice");
else else

printf("not nice"); printf("not nice");
} }

The results:

- main1: will always give you nice !
- main2: nice or not nice, Hardware and/or Compiler dependent !

Lesson 1: use a smart compiler with very smart optimizer !
Lesson 2: use it like in main1()

Included datatypes. Furthermore, popular languages, i.e. C++ and FORTRAN 95 and PYTHON
allow operator overloading (practical example in the coming few days), this makes it less
painful. Examples:

¥ FORTRAN (95 or higher)
- Proper Quad Precision (128 bits, up to 62 digits) with e.g.:
My128 = selected_real_kind(32), My128 is then the TYPE

- "Quad" Precision (80 bits, up to 62 digits) with e.qg.:
My80 = selected_real_kind(10), My80 is then the TYPE

For some compilers you can write: REAL*10 and REAL*16 (don’t!)

> C/C++

- VERY compiler and hardware dependent (there is no IEEE standard):

long double can be anything between 64 and 80 bit precision,
80 bit is often proper 128 with padding for alignment

Proper 128 bit with _Quad on Intel compiler
> NO support on Microsoft VC, everything converted to standard double

> Very different for Mathematica, Matlab, etc. ...

Examples, using 1/10 different languages and types (inbuilt, incomplete):

FORTRAN and C++ single precision:
0.10000000149011612 i.e. 6 - 7 reliable significant digits

FORTRAN and C++ double precision:
0.10000000000000001 i.e. 15 - 16 reliable significant digits

PYTHON double precision (printed using DECIMAL):
0.1000000000000000055511151 i.e. 15 - 16 reliable significant digits

FORTRAN using selected real kind(p=18) i.e. 18 significant digits
0.10000000000000000001

Available on some (UNIX !) machines and compilers (e.g. DIGITAL FORTRAN 90)
selected_real_kind(p=33) i.e. 33 significant digits

Mixing different precisions or types: you should know exactly what you are doing !

(e.g. byte streams in communication, TCP)

Use typecasting wherever possible .. (rather good in C++)

Integers have "higher" precision that single floats !!! :

try:

#include <stdio.h>
int main(void)
{
int myint = 16777217,
float myfloat = 16777216.0;
printf("my integer is: %d", myint);
printf("my float is: %f", myfloat);
printf("equality ? %d", myfloat == myint);
}

Result ?

Integers have "higher" precision that single floats !!! :

try:

#include <stdio.h>
int main(void)
{
int myint = 16777217,
float myfloat = 16777216.0;
printf("my integer is: %d", myint);
printf("my float is: %f", myfloat);
printf("equality ? %d", myfloat == myint);
}

Result:

my integer is: 16777217
my float is: 16777216.000000
equal ?: 1 (means they are found to be equal)

integer can store 224, floating point mantissa is too small (23)

Most problematic: rounding and truncation

Rounding of constants to integers following the IEEE 754 standards:

Mode/Example 55 | 65 | -65 | -6.5
to nearest, tied to even 6.0 | 6.0 | -6.0 | -6.0
to nearest, tied away from 0 60 | 70 | -6.0 | -7.0
toward 0 (truncation !) 50 | 6.0 | -5.0 | -6.0
toward +co (ceiling) 60 | 70 | -5.0 | -6.0
toward —oo (floor) 50 | 6.0 | -6.0 | -7.0

some examples to remember:
1 float to int causes truncation, i.e., removal of the fractional part.
2 double to float causes rounding of digit.

3 long to int causes dropping of excess higher order bits.

After floating point operation:

(63.0/9.) to integer gives: 7
(0.63/0.09) to integer gives: 6

machine dependent !!!

However: Integer to floating point is mostly (!) well behaved

Some computer languages allow to control the truncation/roundoff, e.g. float to
integer (C++, FORTRAN 90, Python, ...):

a) Integer part of x (x is truncated)
b) Nearest integer to x (x is rounded)

Some more (no guarantee that it is always true):
Python 3.0 gives: 5/2=2.5, 5//2=2, 5.0//2=2.0

99/3 is float, 99//3 isinteger (// means floor)

FORTRAN 95: 9999999999999999/3 = 3333333333333333
keeps integer (if the result is integer)

Fore some fun: 0.1 is never correctly represented
e.g. with high precision:

0.1 = 0.1000000000000000055511151231257827021181583404541015625
(unlikely to be relevant)

single precision: 0.1 =0.10000000149011612

Conditional branches make a very big difference whether defined as floating point
or fixed point: different use of significant digits !

- Trouble with small humbers ...

subtraction of almost equal nhumbers may cause extreme loss of accuracy

=P the most significant digits become 0

- Typical example - computing derivatives:

fla +h) - fla)

the derivatives are computed as : P

For smaller s also f(a + h) — f(a) becomes smaller and makes the least
significant digits more important

Side note: programming languages such as C, C++, FORTRAN2003 support
infinities - they just follow some rules

a) +oo + 5 = + o0
b) +0o X -5 = —o0
Cc) +oo X 0 = NaN (not meaningful)

Why ? =P they can be used in conditional branches

h dependence in derivative
22

20

18 -

16 —

Derivatives

14 -

f(X) — X2.5 a—y -

12

0.0001 8e-05 6e-05 4e-05 2e-05 0

fla + h) - fla)
h

the derivatives are computed as :

> For small /1 the calculation of the derivatives becomes unstable/useless
Lesson: avoid subtraction of close humbers !

If you want to do better: wait ..

In this context: A (true !) everyday example - LHC input for a popular optics program:
From database:

s.ds.r1.b1:omk, at= 268.904
mco.8r1.b1:mco, at= 269.248
mcd.8r1.b1:mcd, at= 269.2495
mb.a8r1.b1:mb, at= 276.734
mcs.a8r1.b1:mcs, at= 284.158
mb.b8r1.b1:mb, at= 292.394
mcs.b8r1.b1:mcs, at= 299.818
bpm.8r1.b1:bpm, at= 300.697
mqml.8r1.b1:mqmli, at= 303.842
mcbcv.8r1.b1:mcbceyv, at= 306.884
mco.9r1.b1:mco, at= 308.313
mcd.9r1.b1:mcd, at= 308.3145
mb.a9r1.b1:mb, at= 315.799
mcs.a9ri.b1:mcs, at= 323.223
mb.b9r1.b1:mb, at= 331.459
mcs.b9r1.b1:mcs, at= 338.883
bpm.9r1.b1:bpm, at= 339.763
mqmc.9r1.b1:mgmc, at= 341.739
mqm.9ri.b1:mgm, at= 345.005
mcbch.9r1.b1:mcbch, at= 347.346

... after "slicing" (sometimes needed, see this afternoon and tomorrow):

s.ds.r1.b1: omk, at = 268.903999999999996

mco.8r1.b1: mco, at = 269.247999999999990

mcd.8r1.b1: mcd, at = 269.249500000000012

mb.a8r1.b1, at = 276.734247349421594

mcs.a8r1.b1, at = 284.158494698843185

mb.b8r1.b1, at = 292.394742048264789

mcs.b8r1.b1, at = 299.818989397686323

bpm.8ri.b1: bpm, at = 300.697989397686342

mqml.8ri.b1..1, at = (1 303.84298939769) + ((l.mgml) * (0 - 0.33333333333333))
mqml.8r1.b1, at = 303.842989397686324 e.g. its strength: kq8 = -0.00694900907253902
mqml.8ri1.b1..2, at = (1 303.84298939769) + ((I.mgml) * (0.33333333333333))
mcbcv.8r1.b1, at = 306.884989397686354

mco.9r1.b1: mco, at = 308.313989397686328

mcd.9r1.b1: mcd, at = 308.315489397686349

mb.a9r1.b1, at = 315.800236747107931

mcs.adr1.b1, at = 323.224484096529523

mb.b9r1.b1, at = 331.460731445951126

mcs.b9r1.b1, at = 338.884978795372717

bpm.9r1.b1: bpm, at = 339.764978795372713

comments ??

... after "slicing" (sometimes needed, see this afternoon and tomorrow):

s.ds.r1.b1: omk, at = 268.903999999999996

mco.8r1.b1: mco, at = 269.247999999999990

mcd.8r1.b1: mcd, at = 269.249500000000012

mb.a8r1.b1, at = 276.734247349421594

mcs.a8r1.b1, at = 284.158494698843185

mb.b8r1.b1, at = 292.394742048264789

mcs.b8r1.b1, at = 299.818989397686323

bpm.8ri.b1: bpm, at = 300.697989397686342

mqml.8ri.b1..1, at = (1 303.84298939769) + ((l.mgml) * (0 - 0.33333333333333))
mqml.8r1.b1, at = 303.842989397686324 e.g. its strength: kq8 = -0.00694900907253902
mqml.8ri1.b1..2, at = (1 303.84298939769) + ((I.mgml) * (0.33333333333333))
mcbcv.8r1.b1, at = 306.884989397686354

mco.9r1.b1: mco, at = 308.313989397686328

mcd.9r1.b1: mcd, at = 308.315489397686349

mb.a9r1.b1, at = 315.800236747107931

mcs.adr1.b1, at = 323.224484096529523

mb.b9r1.b1, at = 331.460731445951126

mcs.b9r1.b1, at = 338.884978795372717

bpm.9r1.b1: bpm, at = 339.764978795372713

303.842989397686324 is NOT a useful number, in the worst case may lead to problems

It is not just academic (non scientific incidents):

1991: Truncation after multiplication of an integer (time) with 0.1 to convert to
a floating point number prevented a MIM-Patriot from intercepting a SCUD
proposed bug fix: always reboot after 8 hours of operation

1996: ARIANE 5 off trajectory and self-destructed: converted 64 bit float to 16
bit unsigned integer (too large)

1992: Wrong initial report of result from German election (4.97 % rounded to
5.0 %)

1982: Vancouver stock exchange: index from 1000.00 to 520.00 in 2 month
(should have been 1100, after each transaction the value was not rounded but
truncated)

2025:

Discussion 1:

- Be aware of (unavoidable) numerical problems

- Avoid being dogmatic: problems are intrinsic, the choice of your favorite
operating system or programming language does not help at all (the issues
may even be different and re-writing can become tricky) : it is not the ink that
makes the splotches

This means that programmers need to implement their own method of detect-
ing when they are approaching an inaccuracy threshold, must guard against it
at all times !

Or else give in the quest for a robust, stable implementation of an algorithms.

Some algorithms can be scaled so that computations don’t take place in the
constricted area near problems. However, scaling the algorithm and detecting the
inaccuracy threshold can be difficult and time-consuming for each numerical
problem.

Next: implications for interpretation of beam dynamics calculations =»

Terms important for dynamics (stability) of particles - stochastic versus chaotic
behaviour

Confusion alert = they may appear equivalent from the point of view of an
observer, but are totally different phenomena:

- Stochastic motion is random at all times and all amplitudes

- Chaotic motion is predictable in the short term, but can appear random at
longer time and periods of an iterative system. At long term because it is very
sensitive to initial conditions and intrinsic to the dynamics, usually depends
on particle amplitudes (dynamic aperture)

To determine a "dynamic aperture” (see other lectures) stochastic contributions
should be avoided and are often due to one of these problems:

- Random by construction (e.g. "Monte Carlo" simulations)
- Random due to external noise (e.g. power converters, vibrations, ...)

- Numerical noise, in particular truncation or rounding

"Chaotic behaviour" is what we may want to study/observe

Some of our main interests:

> Is the machine stable ?

> Do we observe chaos (of the motion) ?
If we do "observe” chaotic motion:

> Chaotic motion should be intrinsic to the dynamics and not the result of
numerical artifacts associated with finite precision arithmetic

> Can easily be due to a not absolutely exact method of integration

Key: need an unambiguous understanding of a physical mechanism and whether
this mechanism really accounts for the observed chaos

The underlying model (e.g. the description of the machine, no need for attometer
precision) can be an approximation (which is always the case !), the algorithm must
be exact (within the limitations of the computer itself, i.e. truncation errors etc.).

Some keywords here, the gory details in other lectures: Hamiltonians,
symplecticity, Lie integrators, lattice maps, ...

Anticipating a following lecture, a key issue for the stability of a simulation (in
particular iterations) is the concept of symplecticity (will come many times).

Symplecticity in a nutshell (consider a pendulum):

Reduce to 2 equations 1D:
g(1) = v()
(1) = - - sin(g(1)

1. Break time r into steps Ar: —» 1, = k- Ar "time" is now a discrete variable 7
2. g(t) — qr and v(t) — v

3. Solve for g;.1 and vy (various methods)

Method 1 (fast, unstable, bad accuracy, energy blows up):

qi+1 = qr + At-vy

Vit 1 = Vi — Atf- 8 - sin(gy)
L
Method 2 (stable, slow, bad accuracy, energy dissipative):

qi+1 = qr + At - vy

Vi+1 = ve — At- % + SIN(qG+1)

Method 3 (stable, good accuracy, energy conserved, symplectic):

Gi+1 = qr + AtV

g .
Vit 1 = v — At- 7 - sin(qx)

The third is the best known (Hamiltonian) map and is called the "standard

map

Dealing with the standard map (plotted in Phase Space - x versus p,:

1.0
p/2n

0.8

p 2y A S 0.2

i ';///' = \
o.o{%ﬁxl 0B oo

I
0.2 0.4 0.6

K=0.50 K=0.97 K=2.00

The behaviour, e.g. regular or chaotic motion depends on the parameter K = 8

Transition to chaotic/stochastic layers appear for K = 0.97

However, for studying very long term behaviour: due to roundoff or truncation
errors, the standard map will always produce some chaos.

How to detect chaotic behaviour ?

A standard procedure: evaluate Lyapunov exponent, e.g. [LL]

"It characterizes the rate of separation of initially infinitesimally close (!)
trajectories”

=P a measure for the stability of a dynamic system, therefore a critical parameter
to be evaluated

It cannot be computed analytically, hence must rely on numerical techniques.

Typical use in accelerator design: single particle tracking to estimate region of
stability of trajectories (dynamic aperture). In the long term particles can "slip" into
chaotic region.

== Track two particles initially very close in Phase Space and see what happens ...

HH crossing, 100000 turns, no errors, nominal bunches

LHC with two beam-beam interactions

e—by Particles

01

Two particles started very close in Phase
Space

0.01 F

Plotted:

Phase Space distance after tracking 10° iter-
ations (turns, corresponds to ~ 10° machine
elements in this case) 3

in Phase Space of 2 initially clos

0.001 |

stance

Initial Amplitude [sigma]
Phase Space distance between the particles "jumps'" by 2 orders of magnitude (and
stays up)
Depends only on particle amplitudes (in this example ~ 6 o) = clear evidence for

onset of chaotic behaviour - in this case cross-checked with another parameter

The physics:
nonlinear beam-beam interactions make particles unstable at large amplitudes

Another example:

HH crossing, PACMAN bunches

e—by Particles

01F X

0.01

1l

0.0001
2

Again: LHC with two beam-beam interactions
(but different parameters)

An unstable "band" followed by a "stable re-
gion”

Distance in Phase Space of 2 initially clos

’ ‘ 5Initial Ampliude [sigma; ’ ’ !
The corresponding Phase Space structures can be reproduced (maybe in another
lecture)

Depends only on particle amplitudes (in this example ~ 6 o) = clear evidence for
onset of chaotic behaviour - in this case cross-checked with another parameter

The physics:
nonlinear beam-beam interactions make particles unstable at large amplitudes, but
hit a resonance at smaller amplitudes, then stable again

Not just accelerators - largest chaotic system: Solar System

Kuiper Belt

Pluto: orbit highly inclined and eccen-

i ; Pluto's orbit
tric (crosses the Neptune orbit !) uto's orbi

Motion chaotic (but not unstable) due
to resonance with Neptune

Maybe also exhibit "stable bands" !
(beyond Saturne)

Requires N-body simulation (long Neptune's orbit
term, over Myrs or Gyrs)

Image Credit! Johna Hopking University

Problems very similar to beam stability: chaos, roundoff, symplecticity, etc. Can we
profit from those studies ?

"Exact Numerical Studies of Hamiltonian Maps, Iterating without roundoff Errors",
D. Earn et.al. Physica D 56 (1992)

== last part of this lecture ...

How does this relate to a (circular) accelerator ?
Take the most trivial example: Linear Motion in 1D (remember High School)

==P Consider one turn as a time step for this exercise (in reality the machine is
split into many time steps around the whole machine, but the arguments don’t

change)

Plotting the variables (now x and p,) once per turn (again see later lecture) one gets
an ellipse in phase space:

Exact quadrupole versus thin lens approximation

0.0004

0.0003| Exact map

0.0002

0.0001

-0.0001

-0.0002

-0.0003 -

-0.0004 ! ! ! ! !
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

The exact model of the machine and exact algorithm are used

A non-symplectic solution

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

0.0003| An exact and a non-symplectic map -
\
)
0.0002 : -
0.0001 | 1
=1 °r / / -
-0.0001 1
-0.0002 |- \ -
\ ..
-0.0003 |- , -
_00004 1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 (6] 0.5 1 1.5 2

Non-symplecticity: particles spiral towards outside (could also go to the
inside), artifact of the algorithm

exact model, but approximated algorithm

drawing conclusions from that is totally careless (but frequently happens)

the lesson: make sure the physical mechanism can be explained

Symplectic solution, model is O(L")

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

0.0003| Exact map and symplectic map O(1) s e -

0.0002

0.0001

pX

-0.0001

-0.0002

-0.0003

_0-0004 1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 (0] 0.5 1 1.5 2

symplectic, i.e. exact integrator, visible inaccuracy but the physics is right

model slightly approximated O(L!), algorithm exact

Symplectic solution, improved model (O(L?))

Exact quadrupole versus thin lens approximation
0.0004 T T T T T T T

0.0003

Exact map and symplectic map O(2) e .
et N
= BN
e 3
0.0002 | = i/ .
e Y

&
0.0001

px

-0.0001

-0.0002 7 e .

-0.0003

-0.0004
-2

o
ol
a
'_\

-1.5 -1 -0.5 1.5 2

symplectic (in theory), solution with model order O(L?), but already
good accuracy

Lesson from that — different cases:

} Model approximate and algorithm approximate
» Model exact and algorithm approximate
> Model approximate and algorithm exact

> Model and algorithm exact

Only the two latter are acceptable, otherwise the physics stinks

There is no general remedy to improve approximate models but errors due
to approximate algorithms should be made as small as possible.

Back to the standard map:
Is it possible to avoid truncation and roundoff errors ?

For very long term tracking (e.g. Gyrs) eventually one is beaten by truncation and
roundoff errors - all machines are finite ..

Are there any humbers not (or less) troubled by these (unavoidable) errors?

> For Fixed Point numbers bits are eliminated, but some rounding is done before
the elimination. Better than just truncation.

> All integer numbers: They are limited by the humber of bits, but no truncation
or roundoff. No chaos or stochastic behaviour can come from numerical
artifacts.

But can Integer Numbers be used for anything useful ?

Prerequisites: integration technique, method 3

1
It is usually used to integrate trajectories for a Hamiltonian like: H = §v2 + U(x, 1)

x(t + Ar) = x(t) + Ar-X'(t+ Ar)
X(+At) = X@) + A-At-x@)
A is the force derived from the potential: A = — VU(x,1)

To "cure" the truncation errors: multiply the potential by a (periodic) time

dependent factor with average zero:

-1
H = §v2 + U(x,t)-znja(r — n-Af)

First — introducing Lattice Maps:

Usually one uses floating point maps:

Xn+1 = X, + something

Vn+1 = y, + something

The time dependence of x and y is continuous.

Lattice maps:
- Each element is set on a lattice with given dimension
- Map: time is discrete
- Lattice: space is discrete

Solving Differential equations often using this procedure

Replace time step by finite, discrete steps

/
X1 = Xx, + At-x,_,

N——
drift

/ — /
X, = xn+é-At-xE

kick

It can be considered as a sort of "kick" and a "drift" and A is the force derived from
the potential: A = — VU(x,1)

Now going for the roundoff error = Integer Lattice maps [EA, RN]

After change of scale, lattice points have integer coordinates, iterations are done
without error

The scheme is now: the function VYV itself is discretized onto a lattice with:
Integer Grid Points (m, n) =% lattice points have Integer Coordinates !.

Integer coordinates do the iterations on the nodes without rounding errors.

The nodes are separated by Ax and Ax’'. Each node has a value ¥Y(m, n) of the
distribution function.

Important: for a lattice with m points per unit, the time step Ar must be choosen so
that m - Ar becomes an integer.

The procedure "shifts" particles on the lattice (from one lattice point to another).

With each time step Ar the value Y(m, n) is updated to a new lattice node using a
"kick” and "drift" step, i.e.

n+ [At-A] - n followed by m + [At-n] > m

Each node represents a point in Phase Space (not necessarily a single particle)

n

......

With each time step Ar the value ¥Y(m, n) is updated to a new lattice node using a
"drift" and "kick" step, i.e.

n + |Ar- Al — n ’kick™, left picture
m+ |[At-n] — m ’drift”, right picture

X,, Y, are integers. Note: |...] is the operator: "rounding to nearest integer"

Discussion 2:
- The update steps are first order, prior to rounding
- The method has no rounding errors

- The limit of a continuous floating point map is approached for increasing
resolution, i.e. large » and m

- Uneffected by round off: The integration scheme is fully reversible.

> This "tracking” is not fully exact (for finite » and m), but DOES NOT produce
numerical artifacts such as (wrongly interpreted) chaotic behaviour

> Their use has practical value when systems are studied over long time scales

> It is exactly Hamiltonian, i.e. for example: phase space trajectories cannot
intersect.

As practical example: using the "standard map"

Written in a general form (method 3):

Xn+1 = Xp + Yn+l
K .

Yn+1 = Yn T Sy sin(27xy)
T

Step 1: Replacing the variables x and y and the standard map becomes:

x = X = m-x

y = Y =m-y
it can be written as

Xn+1 = Xn + Yyt1
m- K

2
Yii1 = Y, + Sin(_ﬂXn)
m

2
Step 2: Replace sin(—ﬂXn) by a function §,,(X) to take integer values on
m

the lattice points:

2
SnX) = Lﬁ K sin (—ﬂ X>-‘ where X is an integer
T m

with that, the new mapping becomes:

Xn+1 Xn Xn + Yn + Sm(Xn)
= Im =

Yl’l+1 Yn Yn + Sm(Xn)

2
Step 2: Replace sin(—ﬂXn) by a function §,,(X) to take integer values on
m

the lattice points:

2
SnX) = Lﬁ K sin (—ﬂ X>-‘ where X is an integer
T m

with that, the new mapping becomes:

Xn+1 Xn Xn + Yn + Sm(Xn)
= Im =

Yl’l+1 Yn Yn + Sm(Xn)

But there is one obvious question/problem !

Step 2: Replace

2

sin(—ﬂXn) by a function §,,(X) to take integer values on
m

the lattice points:

m , 2 . .
SnX) = {— K sin (— X>-‘ where X is an integer
2 m
with that, the new mapping becomes:
Xn+1 _ 7 Xn _ Xn + Yn + Sm(Xn)
=1, =
Yl’l+1 Yn Yn + Sm(Xn)

It is a coarse-grained model and assuming m = n there is only a finite humber of
system states: m’ !

=P after < m” iterations the system must returned to a state already visited
before, therefore all trajectories are periodic.

Seems we have avoided rundoff and truncation errors, but cannot distinguish
between chaotic and regular motion !!! Looks like a real flop ...

Any hope ?
Without proof (For examples and details see [LL], [RN]):

One can assume for a given map that we have regular (e.g. showing up as ellipses)
and non-regular behaviour (see standard map for K around 0.97)

One can "compare" with a "normal” tracking with the following findings:

The (suspected) system states (X, Y) have extremely long periods filling more
evenly the space around "stable ellipses". It is legitimate to assume that they
characterize chaotic motion.

Prove for yourself: there are M! (M = m?) possible one-to-one mappings of the
n X n grid onto themselves.

1
Attribute the same probability il for each of the M!

It can be shown [RN] that (here basics only):

1. Probability for a cycle of "length” » iterations from some

1
point (X,Y) is 7 and does not depend on n

1
2. Average length <n> is about E(M + 1)

This is strongly supported by humerical experiments

> One can avoid roundoff and truncation errors using Integer maps

> Criteria for random or chaotic behaviour are defined and are at least as good
as standard procedures, without the danger of rounding or truncation errors

SUMMARY

> Before some calculations: anticipate possible sources of problems, good
algorithm design and the implementation of these algorithms must be the
main issues right at the beginning. It is a mistake to believe these issues can
be solved at the end of the software development cycle.

> Reading the code may not be sufficient to predict the outcome and no
guarantee that the same procedures (or algorithms) give the same results
every time and on every platform

> Choice of operating system and/or programming language is much less
important. All platforms and languages have sweet spots and weaknesses.
Largely depends on purpose and required performance:
==p A program with 400 000 lines of code has different needs than a web
interface, a device driver or the need for a rapid application development.
Some languages emphasize the role of the computer, others the
role of the programmer

> Look around what people in other fields are doing and always use computer
number 1

SUMMARY

> Before some calculations: anticipate possible sources of problems, good
algorithm design and the implementation of these algorithms must be the
main issues right at the beginning. It is a mistake to believe these issues can
be solved at the end of the software development cycle.

> Reading the code may not be sufficient to predict the outcome and no
guarantee that the same procedures (or algorithms) give the same results
every time and on every platform

> Choice of operating system and/or programming language is much less
important. All platforms and languages have sweet spots and weaknesses.
Largely depends on purpose and required performance:
==p A program with 400 000 lines of code has different needs than a web
interface, a device driver or the need for a rapid application development.
Some languages emphasize the role of the computer, others the
role of the programmer

> Look around what people in other fields are doing and always use computer
number 1

Thanks for attention and have fun at the school ...

- BACKUP SLIDES -

Floating point operations can give unexpected results:

0.6/0.2 - 3.0 = -0.44408920985006261617D-15

Equality tests such as (if (x ==y) ...) do not work

Another one, we know: (x+y):-(x—y) = X2 - y2

for x = 0.3 and y = 0.5 we obtain:

(x+y)-(x-y) = -0.1600000000000000 3109D+00 but
(x* —y?) = -0.1600000000000000 0333D+00

A real good one, try (C or FORTRAN90, float or double, makes now difference):
with: x=10*, y=-10%, z=1, X+ +2=0 and xX+y) +2z= 1

Try (with C or FORTRAN90):
3003.0 . 3.03.0 3.02.3 _3.02.3 3.0—2.3 _3.01.5 _3.00.5 _3'03.1

beware of: X’ ! — some are nonsense, some NaN, some are correct ...

