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Chaos detection methods
 Computing/measuring dynamic aperture (DA) or 

particle survival

 Computation of Lyapunov exponents

 Variance of unperturbed action (a la Chirikov)

 Fokker-Planck diffusion coefficient in actions

 Frequency map analysis

A. Chao et al., PRL 61, 24, 2752, 1988;

F. Willeke, PAC95, 24, 109, 1989.

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;

M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979 

J. Tennyson, SSC-155, 1988;

J. Irwin, SSC-233, 1989

T. Sen and J.A. Elisson, PRL 77, 1051, 1996
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Dynamic aperture
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Dynamic Aperture
 The most direct way to evaluate the non-linear dynamics 

performance of a ring is the computation of Dynamic 
Aperture

 Particle motion due to multi-pole errors is generally non-
bounded, so chaotic particles can escape to infinity

 This is not true for all non-linearities (e.g. the beam-beam 
force)

 Need a symplectic tracking code to follow particle trajectories 
(a lot of initial conditions) for a number of turns (depending 
on the given problem) until the particles start getting lost. This 
boundary defines the Dynamic aperture

 As multi-pole errors may not be completely known, one has to 
track through several machine models built by random 
distribution of these errors

 One could start with 4D (only transverse) tracking but certainly 
needs to simulate 5D (constant energy deviation) and finally 
6D (synchrotron motion included)
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Dynamic Aperture plots

 Dynamic aperture plots show the maximum initial values 

of stable trajectories in x-y coordinate space at a 

particular point in the lattice, for a range of energy 

errors.

 The beam size can be shown on the same plot.

 Generally, the goal is to allow some significant margin in the 

design - the measured dynamic aperture is often smaller than 

the predicted dynamic aperture.

5inj

5inj
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Dynamic aperture including damping

0.12 ms 0.6 ms 1.2 ms

1.8 ms 2.4 ms 3 ms

3.6 ms 4.2 ms 4.8 ms

 Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping

 Certain particles seem to damp away 
from the beam core, on resonance 
islands
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DA scanning for the LHC

 Min. Dynamic Aperture 

(DA) with intensity vs 

crossing angle, for nominal 

optics (β*= 40 cm) and BCMS 

beam (2.5 μm emittance), 15 

units of chromaticity

 For 1.1x1011 p

 At θc/2 = 185 μrad  (~12 

σ separation), DA around 6 σ

(good lifetime observed)

 At θc/2 = 140 μrad (~9 σ

separation), DA below 5 σ

(reduced lifetime observed)

 Improvement for low 

octupoles, low chromaticity 

and WP optimisation

(observed in operation)

500 A

270 A

D.Pellegrini
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Genetic Algorithms for lattice optimisation

 MOGA –Multi Objective 
Genetic Algorithms are 
being recently used to 
optimise linear but also 
non-linear dynamics of 
electron low emittance
storage rings

 Use knobs quadrupole
strengths, chromaticity 
sextupoles and 
correctors with some 
constraints

 Target ultra-low 
horizontal emittance, 
increased lifetime and 
high dynamic aperture
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Measuring Dynamic Aperture
 During LHC design phase, 

DA target was 2x higher 
than collimator position, 
due to statistical 
fluctuation, finite mesh, 
linear imperfections, short 
tracking time, multi-pole 
time dependence, ripple 
and a 20% safety margin

 Better knowledge of the 
model led to good 
agreement between 
measurements and 
simulations for actual LHC

 Necessity to build an 
accurate magnetic model 
(from beam based 
measurements)

E.Mclean, PhD thesis, 2014
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DA guiding machine performance
 B1 suffering from lower 

lifetime in the LHC

 DA simulations predicted 

the required adjustment

 Fine-tune scan performed 

and applied in operation, 

solving B1 lifetime problem

D. Pellegrini et al., 2016
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Aggressive DA

 Reduction of crossing angle at constant luminosity, reduces pileup 

density (by elongating the luminous region) and triplet irradiation

Relaxed DA
DA [σ]
Luminosity [1034𝑠−1𝑐𝑚−2]

r.m.s Luminous 

Region  Length [cm]

Baseline

Relaxed (6 σ)

Aggressive (5 σ)

Ultimate aggressive (5 σ)

HL-LHC operational scenario

YP, N. Karastathis and D. Pellegrini et al., 2018
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Lyapunov exponent
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Lyapunov exponent
 Chaotic motion implies sensitivity to initial 

condition

 Two infinitesimally close chaotic trajectories in 

phase space with initial difference will end-up 

diverging with rate

with      

the maximum Lyapunov exponent

 There is as many exponents as the phase space 

dimensions (Lyapunov spectrum)

 The largest one is the Maximal Lyapunov 

exponent (MLE) is defined as
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Lyapunov exponent: chaotic orbit

Maximum Lyapounov exponent converges towards 

a positive value for a chaotic orbit
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Lyapunov exponent: regular orbit

Maximum Lyapounov exponent converges towards 

zero for a chaotic orbit
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Lyapunov exponent: regular orbit

Maximum Lyapounov exponent converges more 

slowly towards zero for a resonant orbit
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Lyapunov exponent: regular orbit

Maximum Lyapounov exponent converges more 

slowly towards zero for a resonant orbit, in 

particular close to the separatrix
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Frequency Map Analysis
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Frequency map analysis
 Frequency Map Analysis (FMA) is a numerical method 

which springs from the studies of J. Laskar (Paris 

Observatory) putting in evidence the chaotic motion in 

the Solar Systems 

 FMA was successively applied to several dynamical 

systems

 Stability of Earth Obliquity and climate stabilization (Laskar, 

Robutel, 1993)

 4D maps (Laskar 1993)

 Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

 Accelerator beam dynamics: lepton and hadron rings (Dumas, 

Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and 

Laskar 2001)
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Motion on torus
 Consider an integrable Hamiltonian system of the usual form

 Hamilton’s equations give

 The actions define the surface of an invariant torus

 In complex coordinates the motion is described by

 For a non-degenerate system

there is a one-to-one correspondence between the actions 

and the frequency, a frequency map 

can be defined parameterizing 

the tori in the frequency space
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Quasi-periodic motion
 If a transformation is made to some new variables

 The system is still integrable but the tori are distorted

 The motion is then described by 

i.e. 

a quasi-periodic function of time, with

 For a non-integrable Hamiltonian,

and especially if the perturbation is small, most tori persist 

(KAM theory)

 In that case, the motion is still quasi-periodic and a 

frequency map can be built

 The regularity (or not) of the map reveals stable (or chaotic) 

motion
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Building the frequency map
When a quasi-periodic function in 

the complex domain is given numerically, it is 

possible to recover a quasi-periodic approximation 

in a very precise way over a finite time span      

several orders of magnitude more precisely than 

simple Fourier techniques

 This approximation is provided by the Numerical 

Analysis of Fundamental Frequencies – NAFF

algorithm

 The frequencies and complex amplitudes        

are computed through an iterative scheme. 
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The NAFF algorithm
 The first frequency       is found by the location of the 

maximum of 

where            is a weight function

 In most of the cases the Hanning window filter is 

used

Once the first term is found, its complex 

amplitude       is obtained and the process is 

restarted on the remaining part of the function 

 The procedure is continued for the number of desired 

terms, or until a required precision is reached
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Frequency determination
 The accuracy of a simple FFT even for a simple 

sinusoidal signal is not better than

 Calculating the Fourier integral explicitly

shows that 

the maximum lies in between the main peaks of the 

FFT



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

25

Frequency determination

 A more complicated 

signal with two 

frequencies 

shifts slightly the 

maximum with 

respect to its real 

location
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Window function
 A window function like the Hanning filter 

kills side-lobs and 

allows a very accurate determination of the 

frequency  
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Precision of NAFF
 For a general window function of order

Laskar (1996) proved a theorem  stating that the 

solution provided by the NAFF algorithm converges 

asymptotically towards the real KAM quasi-periodic 

solution with precision

 In particular, for no filter (i.e. )  the precision 

is , whereas for the Hanning filter ( ), the 

precision is of the order of 
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Aspects of the frequency map

 In the vicinity of a resonance the system behaves like a 

pendulum

 Passing through the elliptic point for a fixed angle, a fixed 

frequency (or rotation number) is observed

 Passing through the hyperbolic point, a frequency jump is 

observed 
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Example: Frequency map for BBLR

 Simple Beam-beam 

long range (BBLR) 

kick and a rotation
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Example: Frequency map for BBLR

 Simple Beam-beam 

long range (BBLR) 

kick and a rotation
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Diffusion in frequency space

 For a 2 degrees of freedom Hamiltonian system, the 

frequency space is a line, the tori are dots on this lines, and 

the chaotic zones are confined by the existing KAM tori
 For a system with 3 or more 

degrees of freedom, KAM 

tori are still represented by 

dots but do not prevent 

chaotic trajectories to diffuse

 This topological possibility 

of particles diffusing is 

called Arnold diffusion

 This diffusion is supposed to 

be extremely small in their 

vicinity, as tori act as 

effective barriers 

(Nechoroshev theory)
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Building the frequency map
 Choose coordinates (xi, yi) with px and py=0

 Numerically integrate the phase trajectories through the lattice for 

sufficient number of turns

 Compute through NAFF Qx and Qy after sufficient number of turns

 Plot them in the tune diagram
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Example: Frequency maps for the LHC

 Frequency maps for the target error table (left) and an 

increased random skew octupole error in the super-

conducting dipoles (right)
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Diffusion Maps

 Calculate frequencies for two equal and successive time 

spans and compute frequency diffusion vector:

 Plot the initial condition space color-coded with the norm of 

the diffusion vector

 Compute a diffusion quality factor by averaging all diffusion 

coefficients normalized with the initial conditions radius
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Example: Diffusion maps for the LHC

Diffusion maps for the target error table (left) and an increased random 

skew octupole error in the super-conducting dipoles (right)
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Example: Frequency Map for the ESRF

All dynamics represented in 

these two plots

 Regular motion represented 

by blue colors (close to zero 

amplitude particles or working 

point)

 Resonances appear as 

distorted lines in frequency 

space (or curves in initial 

condition space

 Chaotic motion is represented 

by red scattered particles and 

defines dynamic aperture of the 

machine
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Numerical Applications
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Correction schemes efficiency

 Comparison of correction schemes for b4 and b5 errors 

in the LHC dipoles

 Frequency maps, resonance analysis, tune diffusion 

estimates, survival plots and short term tracking, 

proved that only half of the correctors are needed

“Chosen” scheme
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 Long range beam-beam interaction 

represented by a 4D kick-map 

with

Beam-Beam interaction
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Head-on vs Long range interaction

 Proved dominant effect of long range beam-beam effect

 Dynamic Aperture (around 6σ) located at the folding of the 
map (indefinite torsion)

 Experimental effort to compensate beam-beam long range 
effect with wires (1/r part of the force) or octupoles

Head-on Long range
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Action variance

 In the chaotic region of phase 
space, the action diffusion 
coefficient per turn can be 
estimated by averaging over 
the quasi-randomly varying 
betatron phase variable as
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Action variance vs. frequency diffusion

 Very good agreement of diffusive aperture boundary (action 
variance) with frequency variation (loss boundary 
corresponding to around 1 integer unit change in 107 turns)
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Wire compensation

S. Fartoukh et al., PRSTAB, 2015

Reduced crossing angle 

of  450μrad @ 15cmWithout
Without correction With correction

Current baring wire can improve DA by 1-2 σ

Tests in the LHC during 2017-2018 

K. Skoufaris et al. 2018
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Experimental BBLR compensation

YP, G. Sterbini, N. Karastathis, et al. 2017

+

7 h

• Wire current @ 340/190 A and collimator jaw at 

5.5 σcoll

• Compensating effect of the wires visible on beam 

lifetime

G. Sterbini, A. Poyet, et al. 2017



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

45

BBLR compensation

Intensity loss-rate

Instantaneous luminosity

• Compensating effect of the wires visible on effective x-section

G. Sterbini, A. Poyet, et al. 2017
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BBLR compensation

G. Sterbini, A. Poyet, et al. 2017

• Compensation  effect visible also with trains and reduced 

crossing angle!
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SABA2C integrator

1-kick

10-kick

SABA2C

C. Skokos, YP and J. Laskar, EPAC 2008

tune shift with amplitude

K. Skoufaris et al. IPAC 2018

 SABA2C allows symplectic 
integration with positive 
steps 

 Several orders of 
magnitude better precision 
of SABA2C with respect to 
classical YFR integrator
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Magnet fringe fields
• Up to now we considered only 

transverse fields

• Magnet fringe field is the 

longitudinal dependence of the 

field at the magnet edges

• Important when magnet aspect 

ratios  and/or emittances are big
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Quadrupole fringe field
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Magnet fringe fields
 From the hard-edge Hamiltonian

the first order shift of the frequencies 

with amplitude can be computed 

analytically

with the ”anharmonicity” coefficients 

(torsion) 

Realistic

Hard-edge

Tune footprint for the 

SNS based on hard-

edge (red) and realistic 

(blue) quadrupole 

fringe-field
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Off-momentum frequency 

maps
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Tune Diffusion quality factor

Choice of the SNS ring working point

Chosen Working Point
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Global Working point choice
 Figure of merit for 

choosing best working 
point is sum of diffusion 
rates with a constant 
added for every lost 
particle

 Each point is produced 
after tracking 100 
particles

 Nominal working point 
had to be moved 
towards “blue” area
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Sextupole scheme optimization

 Comparing different chromaticity sextupole 
correction schemes and working point optimization 
using normal form analysis, frequency maps and 
finally particle tracking

 Finding the adequate sextupole strengths through 
the tune diffusion coefficient
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Frequency Map Analysis

with modulation 
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Frequency maps with space-charge

F.Asvesta, et al., 2017

 Evolution of frequency map over different longitudinal 
position 

 Tunes acquired over each longitudinal period 

 Particles with similar longitudinal offset but different 
amplitudes experience the resonance in different manner 

 Particles with different longitudinal offset may experience 
different resonances 
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LHC: Power supply ripples

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large 

beta-functions increase the sensitivity to non-linear effects

- Resonance conditions:

aQx + bQy + c
fmodulation

frevolution
= k for a, b, c, k integers

S. Kostoglou, et al., 2018

-By increasing the modulation depth, sidebands start to 

appear in the FMAs
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LHC: Power supply ripples

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large 

beta-functions increase the sensitivity to non-linear effects

- Resonance conditions:

aQx + bQy + c
fmodulation

frevolution
= k for a, b, c, k integers

S. Kostoglou, et al., 2018

-By increasing the modulation depth, sidebands start to 

appear in the FMAs

ΔQ=1e-4
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LHC: Power supply ripples

 Scan of different ripple frequencies (50-900 Hz)

S. Kostoglou, YP et al., 2018
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6D FMAs with power supply ripples

S. Kostoglou, YP et al., 2018
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Summary
 Appearance of fixed points (periodic orbits) determine 

topology of the phase space

 Perturbation of unstable (hyperbolic points) opens the path to 

chaotic motion 

 Resonance can overlap enabling the rapid diffusion of orbits

 Dynamic aperture by brute force tracking (with symplectic 

numerical integrators) is the usual quality criterion for 

evaluating non-linear dynamics performance of a machine

 Frequency Map Analysis is a numerical tool that enables to 

study in a global way the dynamics, by identifying the excited 

resonances and the extent of chaotic regions

 It can be directly applied to tracking and experimental data

 A combination of these modern methods enable a thorough 

analysis of non-linear dynamics and lead to a robust design
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Appendix
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Advanced symplectic integration schemes
 Symplectic integrators with positive steps for Hamiltonian 

systems with both     and      integrable were 

proposed by McLachan (1995). 

 Laskar and Robutel (2001) derived all orders of such 

integrators

 Consider the formal solution of  the Hamiltonian system 

written in the Lie representation

 A symplectic integrator of  order     from     to               

consists of  approximating the Lie map 

by products of  and which 

integrate exactly and over the time-spans       and 

 The constants      and are chosen to reduce the error
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SABA2 integrator
 The SABA2 integrator is written as

with

 When  is integrable,  e.g. when A is quadratic in 

momenta and B depends only in positions, the accuracy of  

the  integrator is  improved by two small negative kicks    

with

with

 The accuracy of  SABA2C is one 

order of  magnitude higher than then than 

the Forest-Ruth 4th order scheme

 The usual “drift-kick” scheme 

corresponds to the 2nd order integrator of  this class
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Experimental methods
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 Frequency analysis of turn-
by-turn data of beam 
oscillations produced by a 
fast kicker magnet and 
recorded on a Beam 
Position Monitors

 Reproduction of the non-
linear model of the 
Advanced Light Source 
storage ring and working 
point optimization for 
increasing beam lifetime

Experimental frequency maps
D. Robin, C. Steier, J. Laskar, and L. 

Nadolski, PRL 2000
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Experimental Methods – Tune scans
 Study the resonance behavior around different working points in SPS

 Strength of individual resonance lines can be identified from the beam 
loss rate, i.e. the derivative of the beam intensity at the moment of 
crossing the resonance

 Vertical tune is scanned from about 0.45 down to 0.05 during a period of 
3s along the flat bottom

 Low intensity 4-5e10 p/b single bunches with small emittance injected 

 Horizontal tune is constant during the same period

 Tunes are continuously monitored using tune monitor (tune post-
processed with NAFF) and the beam intensity is recorded with a beam 
current transformer

H. Bartosik, PhD thesis, 2103
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Tune Scans from the SPS

Plot the tunes color-coded with the amount of 
loss

 Identify the dangerous resonances

Compare between two different optics

Try to refine the machine model 
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 Limiting resonances for space charge tune spread: (H, V) ~ (0.10, ~0.19)
 Blow-up at integer resonances as expected

 Losses for working point close to the Qx + 2Qy normal sextupole resonance 
(studied in Fix-line experiment with Q26) and around the the 4Qx = 81 normal 
octupole resonance

 Identified optimum working point area for vertical tune spread of 0.2 
 20.16 < Qx < 20.23, 20.24 < Qy < 20.33

 Losses around 0.5% for 3 s storage time on flat bottom

Tune Scans with SC
H.Bartosik


