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Summary
Phase space dynamics – fixed point analysis

Poincaré map

Motion close to a resonance

Onset of chaos

Chaos detection methods
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Phase space dynamics

- Fixed point analysis
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

Hamiltonian (energy)
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

Hamiltonian (energy)

 By simply changing the sign of the 

potential in the harmonic oscillator, the 

phase trajectories become hyperbolas, 

symmetric around the equilibrium point 

where two straight lines cross, moving 

towards and away from it
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential

 Considering three non-linear oscillators

 Quartic potential (left): two minima and one maximum

 Cubic potential (center): one minimum and one maximum

 Pendulum (right): periodic minima and maxima
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity

 The linearized equations of motion at their vicinity are

 Fixed point nature is revealed by eigenvalues of         , i.e. 

solutions of the characteristic polynomial  

Jacobian matrix
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

elliptic
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

 Two real eigenvalues with opposite sign, corresponding to 

hyperbolic (or saddle) fixed points. Flow described by two lines (or 

manifolds), incoming (stable) and outgoing (unstable)

elliptic
hyperbolic
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points

elliptic
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elliptic

Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points 

 , for which

corresponding to hyperbolic fixed points

 The separatrix are the stable and unstable  

manifolds through the hyperbolic points,     

separating bounded librations and unbounded rotations

hyperbolic
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

17

Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems

 The fixed point in the surface of section is now 

a periodic orbit
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Poincaré map
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

Poincaré map 
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

 For an autonomous Hamiltonian system 

(no explicit time dependence), it can be chosen to be 

any fixed surface in phase space, e.g.

 For a non-autonomous Hamiltonian system 

(explicit time dependence), which is periodic, it can be 

chosen as the period 

Poincaré map 



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

21

 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

 For an autonomous Hamiltonian system 

(no explicit time dependence), it can be chosen to be 

any fixed surface in phase space, e.g.

 For a non-autonomous Hamiltonian system 

(explicit time dependence), which is periodic, it can be 

chosen as the period 

 In a system with degrees of freedom (or

including time), the phase space has           

(or ) dimensions 

 By fixing the value of the Hamiltonian to , the 

motion on a Poincaré map is reduced to           

(or )

Poincaré map 
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 Particularly useful for a system with 2 degrees of freedom, or 

1 degree of freedom + time, as the motion on Poincaré map is 

described by 2-dimensional curves

 For continuous system, numerical techniques exist to produce 

the Poincaré map exactly (e.g. M.Henon Physica D 5, 1982)

Poincaré map 
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 Particularly useful for a system with 2 degrees of freedom, or 

1 degree of freedom + time, as the motion on Poincaré map is 

described by 2-dimensional curves

 For continuous system, numerical techniques exist to 

compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

 Example from Astronomy: the logarithmic galactic potential

Poincaré map 
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 Record the particle coordinates at 

one location in a ring

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation)

Poincaré Section for a ring
Poincaré Section:

y

x

s

U

U '

f U

U '

turn

3

12
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 Record the particle coordinates at 

one location in a ring

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation)

 Resonance condition corresponds to 

a periodic orbit or fixed points in phase 

space 

 For a non-linear kick, the radius will 

change by and the particles 

stop lying on circles

Poincaré Section for a ring

U

U '

f

Poincaré Section:

y

x

s

U

U '

2pn0

U

U '

turn

3

12
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 Simple map with single 

octupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Octupole
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 Simple map with single 

octupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Octupole
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 Appearance of invariant 

curves (“distorted” circles), 

where “action” is an integral of 

motion

 Resonant islands with 

stable and separatrices with 

unstable fixed points

 Chaotic motion

 Electromagnetic fields 

coming from multi-pole 

expansions (polynomials) do 

not bound phase space and 

chaotic trajectories may 

eventually escape to infinity 

(Dynamic Aperture)

 For some fields like beam-

beam and space-charge this is 

not true, i.e. chaotic motion 

leads to halo formation

Example: Single Octupole
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Motion close to a 

resonance
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Secular perturbation theory
 The vicinity of a resonance , can 

be studied through secular perturbation theory 

(see appendix)

 A canonical transformation is applied such that the 

new variables are in a frame remaining on top of the 

resonance

 If one frequency is slow, one can average the motion 

and remain only with a 1 degree of freedom 

Hamiltonian which looks like the one of the 

pendulum

 Thereby, one can find the location and nature of the 

fixed points measure the width of the resonance
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Fixed points for general multi-pole

 For any polynomial perturbation of the form the 

“resonant” Hamiltonian is written as

 With the distance to the resonance defined as  

 The non-linear shift of the tune is described by the term

 The conditions for the fixed points are

 There are fixed points for which and the 

fixed points are stable (elliptic). They are surrounded by 

ellipses

 There are also    fixed points for which and 

the fixed points are unstable (hyperbolic). The trajectories 

are hyperbolas 
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Fixed points for 3rd order resonance

 The Hamiltonian for a sextupole close to a third order 

resonance is 

 Note the absence of the non-linear tune-shift term (in this 1st

order approximation!)

 By setting the Hamilton’s equations equal to zero, three fixed 

points can be found at

 For all three points are unstable

 Close to the elliptic one at 

the motion in phase space is 

described by circles that they get 

more and more distorted to end 

up in the “triangular” separatrix

uniting the unstable fixed points 

 The tune separation from the 

resonance is 
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 Simple map with single 

sextupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Sextupole
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 Simple map with single 

sextupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance 

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

… and 5th order resonance

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

… and 5th order resonance

… and 6th order and 7th

order and several higher 

orders…

Example: Single Sextupole
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Fixed points for an octupole
 The resonant Hamiltonian close to the 4th order resonance 

is written as 

 The fixed points are found by taking the derivative over the 

two variables and setting them to zero, i.e.

 The fixed points are at

 For half of them, there is a minimum in the potential as

and they are elliptic and half of them 

they are hyperbolic as
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Topology of an octupole resonance
 Regular motion near the 

center, with curves getting more 

deformed towards a rectangular 

shape 

 The separatrix passes 

through 4 unstable fixed points, 

but motion seems well contained

 Four stable fixed points 

exist and they are surrounded by 

stable motion (islands of 

stability)

 Question: Can the central 

fixed point become hyperbolic

(answer in the appendix)

SFP

UFP



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

41

Octupole with hyperbolic central fixed point

 Now, if the solution for the action is

 So there is no minima in the potential, i.e. the central fixed 

point is hyperbolic
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 As for the sextupole, the octupole 

can excite any resonance

 Multi-pole magnets can excite any 

resonance order

 It depends on the tunes, strength

of the magnet and particle 

amplitudes

Single Octupole
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 Adding a sextupole and an 

octupole increases the chaotic 

motion region, when close to the 4th

order resonance

Single Octupole + Sextupole
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 Adding a sextupole and an 

octupole increases the chaotic 

motion region, when close to the 4th

order resonance

 But also allows the appearance of 

3rd order resonance stable fixed 

points

Single Octupole + Sextupole



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

45

Onset of chaos
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Path to chaos
When perturbation becomes higher, motion around the 

separatrix becomes chaotic (producing tongues or 

splitting of the separatrix)

 Unstable fixed points are indeed the source of chaos 

when a perturbation is added
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Chaotic motion
 Poincare-Birkhoff theorem states that under 

perturbation of a resonance only an even 

number of fixed points survives (half stable 

and the other half unstable)

 Themselves get destroyed when perturbation 

gets higher, etc. (self-similar fixed points)

 Resonance islands grow and resonances

can overlap allowing diffusion of particles
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is

 Considering the width of chaotic layer and secondary islands, the “two 

thirds” rule apply

 Example: Chirikov’s standard map
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is

 Considering the width of chaotic layer and secondary islands, the “two 

thirds” rule apply

 The main limitation is the geometrical nature of the criterion (difficulty

to be extended for > 2 degrees of freedom)
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Increasing dimensions
 For , i.e. by adding another 

degree of freedom chaotic motion is enhanced



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 N

o
v
e

m
b

e
r 

2
0
1

8

52

Increasing dimensions
 For , i.e. by adding another 

degree of freedom chaotic motion is enhanced

 At the same time, analysis of phase space on 

surface of section becomes difficult to interpret, as 

these are projections of 4D objects on a 2D plane
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Chaos detection methods
 Computing/measuring dynamic aperture (DA) or 

particle survival

 Computation of Lyapunov exponents

 Variance of unperturbed action (a la Chirikov)

 Fokker-Planck diffusion coefficient in actions

 Frequency map analysis

A. Chao et al., PRL 61, 24, 2752, 1988;

F. Willeke, PAC95, 24, 109, 1989.

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;

M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979 

J. Tennyson, SSC-155, 1988;

J. Irwin, SSC-233, 1989

T. Sen and J.A. Elisson, PRL 77, 1051, 1996
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Appendix
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The pendulum

 An important non-linear equation which can be 

integrated is the one of the pendulum, for a string of 

length L and gravitational constant g

 For small displacements it reduces to an harmonic 

oscillator with frequency

 The integral of motion (scaled energy) is

and the quadrature is written as
assuming that for
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Solution for the pendulum

 Using the substitutions with

, the integral is 

and can be solved using 

Jacobi elliptic functions:

 For recovering the period, the integration is 

performed between the two extrema, i.e.               

and , corresponding to

and          
, for which

i.e. the complete elliptic integral multiplied by four 

times the period of the harmonic oscillator
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Secular perturbation theory
 Consider a general two degrees of freedom Hamiltonian:

with the perturbed part periodic in angles:

 The resonance prevents the 

convergence of the series
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Secular perturbation theory
 Consider a general two degrees of freedom Hamiltonian:

with the perturbed part periodic in angles:

 The resonance prevents the 

convergence of the series

 A canonical transformation can be applied  for eliminating 

one action: using the generating function 

 The relationships between new and old variables are

 This transformation put the system in a rotating frame, 

where the rate of change measures 

the deviation from resonance 
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Secular perturbation theory
 The transformed Hamiltonian is

with the perturbation written as
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Secular perturbation theory
 The transformed Hamiltonian is

with the perturbation written as

 This transformation assumes that is the slow 

frequency and the Hamiltonian can be averaged over the 

corresponding angle to obtain 

with and 
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Secular perturbation theory
 The transformed Hamiltonian is

with the perturbation written as

 This transformation assumes that is the slow 

frequency and the Hamiltonian can be averaged over the 

corresponding angle to obtain 

with and 

 The averaging eliminated one angle and thus                     

is an invariant of motion

 This means that the Hamiltonian has effectively only one 

degree of freedom and it is integrable
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Secular perturbation theory

 Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

 Fixed points (i.e. periodic orbits) in phase 

space                        are defined by
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Secular perturbation theory

 Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

 Fixed points (i.e. periodic orbits) in phase 

space                        are defined by

 Introduce moving reference on fixed point 

and expand             around it 

 Hamiltonian describing motion near a resonance:
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Secular perturbation theory

 Assuming that the dominant Fourier harmonics for        

the Hamiltonian is written as

 Fixed points (i.e. periodic orbits) in phase 

space                        are defined by

 Introduce moving reference on fixed point 

and expand             around it 

 Hamiltonian describing motion near a resonance:

 Motion near a typical resonance is like the one of the 

pendulum!!! The libration frequency and the resonance 

half width are
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Single resonance for accelerator Hamiltonian

 The single resonance accelerator Hamiltonian 

(Hagedorn (1957), Schoch (1957), Guignard (1976, 

1978)) 

with 
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Single resonance for accelerator Hamiltonian

 The single resonance accelerator Hamiltonian 

(Hagedorn (1957), Schoch (1957), Guignard (1976, 

1978)) 

with 

 From the generating function   

the relationships between old and new variables are                                                 

 The following Hamiltonian is obtained
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Resonance widths
 There are two integrals of motion 

 The Hamiltonian, as it is independent on “time”

 The new action as the Hamiltonian is independent on

 The two invariants in the old variables are written as:
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Resonance widths
 There are two integrals of motion 

 The Hamiltonian, as it is independent on “time”

 The new action as the Hamiltonian is independent on

 The two invariants in the old variables are written as:

 Two cases can be distinguished

 have opposite sign, i.e. difference resonance, the motion is 

the one of an ellipse, so bounded

 have the same sign, i.e. sum resonance, the motion is the 

one of an hyperbola, so not bounded

 These are first order perturbation theory considerations

 The distance from the resonance is obtained as


