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. Phase space dynamics
- Fixed point analysis



0 Phase space dyn:

B Valuable description when examining
trajectories in phase spacéu, p,,)

B Existence of integral of motion imposes
geometrical constraints on phase flow

B For the simple harmonic oscillator

H — 2 2 ——
2 (p w T Wo ) |
phase space curves are ellipses around b U |

the equilibrium point parameterized by the
Hamiltonian (energy)
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0 Phase space |i

B Valuable description when examining
trajectories in phase spacéu, p,,)

B Existence of integral of motion imposes
geometrical constraints on phase flow

B For the simple harmonic oscillator

1 2 2
H = 2 (pu T “o )
phase space curves are ellipses around
the equilibrium point parameterized by the
Hamiltonian (energy)

B By simply changing the sign of the
potential in the harmonic oscillator, the
phase trajectories become hyperbolas,
symmetric around the equilibrium point
where two straight lines cross, moving
towards and away from it
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0O Non-linear oscillator

B Conservative non-linear oscillators have Hamiltonian

1
H=E= p,+V(u)

with the potential being a general (polynomial) function of positions
B Equilibrium points are associated with extrema of the potential
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B Conservative non-linear oscillators have Hamiltonian

1
H=E= p,+V(u)

with the potential being a general (polynomial) function of positions

B Equilibrium points are associated with extrema of the potential

B Considering three non-linear oscillators
2 Quartic potential (left): two minima and one maximum
1 Cubic potential (center): one minimum and one maximum
2 Pendulum (right): periodic minima and maxima 7



0 Fixed point analysis

2

du
. a — fl(u7PU)
B Consider a general second order system .
Pu
At = fo(u,pu)

B Equilibrium or “fixed” points  f1(%0;Puo) = f2(uo,pu0) =0 are
determinant for topology of trajectories at their vicinity
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&

du
. E — fl (uapu)
B Consider a general second order system .
% — f2(u7pu)

B Equilibrium or “fixed” points  f1(uo, puo) = f2(uo,pu0) =0 are
determinant for topology of trajectories at their vicinity

B The linearized equations of motion at their vicinity are
"0 f1(uo, pu0) 0 f1(uo, Puo)”

d | du| M ou | ou Oy, ou
dit 5pu B / 5pu B an (UO 9 puO) an (u07 puO) 5pu
i ou 0P i

\ J
I

Jacobian matrix
B Fixed point nature is revealed by eigenvalues ofM; | i.e.
solutions of the characteristic polynomial det | M ; — AI| =0
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O Fixed point for conservat
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B For conservative systems of 1 degree of freedom, the

2

second order characteristic polynomial for any fixed point has
two possible solutions:

2 Two complex eigenvalues with opposite sign, corresponding to

pu °

elliptic fixed points. Phase space flow is described by ellipses, with

particles evolving clockwise or anti-clockwise

elliptic

10



O Fixed point for conse

2

B For conservative systems of 1 degree of freedom, the
second order characteristic polynomial for any fixed point has
two possible solutions:

Two complex eigenvalues with opposite sign, corresponding to
elliptic fixed points. Phase space flow is described by ellipses, with
particles evolving clockwise or anti-clockwise

Two real eigenvalues with opposite sign, corresponding to
hyperbolic (or saddle) fixed points. Flow described by two lines (or
manlfolds) mcomlng (stable) and o_utgomg (unstable)

elliptic \\hyperjbollc 74
Pu - > > ‘: :
| /

U
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0 Pendulum fixed point

2

B The “fixed” points for a pendulum can be found at
(¢n7p¢) T (__’n’ﬂ', O) ’ N — O, ].7 2 o o o

B The Jacobian matrix is[ g 0 1]
—7coso, 0

B The eigenvalues are ), , = ii\/% COS ¢,
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0 Pendulum fixed poi

B The “fixed” points for a pendulum can be found at

2

(¢mp¢) — (__nﬂ',()) ., n=0,1,2...

B The Jacobian matrix is[ g 0 1]
—7coso, 0

B The eigenvalues are ), , = ﬂ\/ﬁ COS ¢,
R ~elliptic
B Two cases can be distinguished: p%/

g N
/ _\ - ..-"/

O ¢n = 2nm |, for whichA1,2 = $¢ T

corresponding to elliptic fixed points
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0O Pendulum fixed |

B The “fixed” points for a pendulum can be found at

2

(¢napq§) — (__mr,()) ., n=0,1,2...

B The Jacobian matrix is[ g 0 1]
—7coso, 0

B The eigenvalues are ), , = ﬂ\/ﬁ COS ¢,
L _elliptic

B Two cases can be distinguished: D, -
. / \ / :
¢n, = 2n7 |, for whichA1,2 = £¢

g
L
corresponding to elliptic fixed points

¢n = (2n+ 1)7 , for which A1 2 = £ %

corresponding to hyperbolic fixed points

The separatrix are the stable and unstable | ’@erb\o{r/
manifolds through the hyperbolic points, = + = & + =+
separating bounded librations and unbounded rotations 14
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f) Phase space for time-depende

Consider now a simple harmonic oscillator
where the frequency is time-dependent

He L2 eaon) Pl

B Plotting the evolution in phase space, provides
trajectories that intersect each other

B The phase space has time as extra dimension
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f) Phase space for time-d |

Consider now a simple harmonic oscillator
where the frequency is time-dependent

1
H = 5 (pi + w%(t)uQ)

Plotting the evolution in phase space, provides
trajectories that intersect each other

The phase space has time as extra dimension

By rescaling the time to becomea = wqt and
considering every integer interval of the new pu
“time” variable, the phase space looks like the
one of the harmonic oscillator

This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

16



f) Phase space for time-c
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B Consider now a simple harmonic oscillator
where the frequency is time-dependent

1
H = 5 (pi + w%(t)uQ)

B Plotting the evolution in phase space, provides
trajectories that intersect each other

B The phase space has time as extra dimension

B By rescaling the time to becoma = wqgt and
considering every integer interval of the new
“time” variable, the phase space looks like the
one of the harmonic oscillator

B This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

B The fixed point in the surface of section is now
a periodic orbit

|= 0

Pu
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0 Poincaré map

2

B First recurrence or Poincaré map

(or surface of section) is defined by the

Intersection of trajectories of a dynamical

system, with a fixed surface in phase space ‘\<
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0 Poincaré map

B First recurrence or Poincaré map
(or surface of section) is defined by the e

Intersection of trajectories of a dynamical r Al g, )
system, with a fixed surface in phase space * * S/
B For an autonomous Hamiltonian system <« —

H(q, p) (no explicit time dependence), it can be chosen to be
any fixed surface in phase space, e.g.4; — 0

B For a non-autonomous Hamiltonian systemH(q, P, t)
(explicit time dependence), which is periodic, it can be
chosen as tﬁe—_peT@:l
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: Z |
O Poincare maf
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B First recurrence or Poincaré map
(or surface of section) is defined by the P B
Intersection of trajectories of a dynamical Al g )

A y ¥

system, with a fixed surface in phase space * *

B For an autonomous Hamiltonian system —
H(q, P) (no explicit time dependence), it can be chosen to be
any fixed surface in phase space, e.g.4; — 0

B For a non-autonomous Hamiltonian systemH(q, P, t)
(explicit time dependence), which is periodic, it can be
chosen as tﬁe—_peT@:J

W In a system with 1 degrees of freedom (orn + 1
including time), the phase space has2n

(or 2n + 2) dimensions
m By fixing the value of the Hamiltonian to 0, the | \ ¥
motion on a Poincaré map is reduced to 2n — s
(or 27 )




0 Poincare map

W Particularly useful for a system with 2 degrees of freedom, or
1 degree of freedom + time, as the motion on Poincare map is
described by 2-dimensional curves

B For continuous system, numerical technigues exist to produce
the Poincaré map exactly (e.g. M.Henon Physica D 5, 1982)

2
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0 Poincare me

W Particularly useful for a system with 2 degrees of freedom, or
1 degree of freedom + time, as the motion on Poincaré map is
described by 2-dimensional curves

B For continuous system, numerical technigues exist to
compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

B Example from Astronomy: the logarithmic galactic_potential

2

5 .
(xaana Y) = (¢£IJ7 ¢yv Jx’ J?J)

1
H,(z,y,X,Y)==(X*+Y?) +In (:132+ % + R?

3
|
-

>
o
V2I_ cosg,
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B Record the particle coordinates at Poincaré Section:
one location in a ring

B Unperturbed motion lies on a circle in
normalized coordinates (simple rotation) y
1 l]l A U'

T AR
NERNEL
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B Record the particle coordinates at Poincaré Section:
one location in a ring

B Unperturbed motion lies on a circle in ><\.
normalized coordinates (simple rotation) y )|
A Ul , /(JZE
e

U
2 1
V2J
B Resonance condition corresponds to
a periodic orbit or fixed points in phase
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—\ ) u
space
B For a non-linear kick, the radius will \
change by and the particles
stop lying o ¢itsies ®

V2T +6(V2J) 2



B Simple map with single
octupole_kick with integrated
strength k3 + rotation with
phase advances(,ux, ,Lby)

(k3,x,px,y,py):
X

pX — k3% (x*k*3-3%x*y**2)
y

py — K3k (=3kx*k*2xy+y**3)
x1,px1,y1,pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)xpx
cos (muy)xy+sin(muy)*xpy
—sin(muy)*xy+cos (muy)*py
x1,px1,y1,pyl

B Restrict motion in (CU,g:c)
plane i.e. Yo = Py0o =

M [terate for a number of
“turns” (here 1000)
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B Simple map with single
octupole_kick with integrated
strength k3 + rotation with
phase advances(,ux, ,Lby)

(k3,x,px,y,py):
X

pX — k3% (x*k*3-3%x*y**2)

y

PY — K3k (—3kxkk2xky+Yy**3)
return x1,px1,y1,pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)*px
cos (muy)xy+sin(muy)*xpy
=—sin(muy)x*xy+cos (muy)*xpy
return x1,px1,yl,pyl

B Restrict motion in (ZU,g:c)
plane i.e. Yo = Py0o =

M [terate for a number of
“turns” (here 1000)
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OO Example: $

B Appearance of invariant
curves (“distorted” circles),
where “action” is an integral of 05
motion

B Resonant islands with Px®]
stable and separatrices with
unstable fixed points

1.0 A

_0.5 -

B Chaotic motion —10q +

B Electromagnetic fields ~1.0 ~0.5 0.0 05 10
coming from multi-pole 0.8 L

expansions (polynomials) do 07y ERY

not bound phase space and 064
chaotic trajectories may .
eventually escape to infinity J el g
(Dynamic Aperture) X

B For some fields like beam- 02
beam and space-charge this is
not true, i.e. chaotic motion
leads to halo formation

0.1
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Motion close to a
resonance

29



O Secular pert

B The vicinity of a resonangaw: + nawz =0 , can
be studied through secular perturbation theory
(see appendix)

B A canonical transformation is applied such that the
new variables are in a frame remaining on top of the
resonance

2

M If one frequency is slow, one can average the motion
and remain only with a 1 degree of freedom
Hamiltonian which looks like the one of the
pendulum

B Thereby, one can find the location and nature of the
fixed points measure the width of the resonance

Analysis techniques, CERN Accelerator School, November 2018
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&

B For any polynomial perturbation of the form =" the
resonant Hamiltonian is written as

Hy = 6Js + alJs) + J/? Ay, cos (ki)
B \With the distance to the resonance defined asv = § +0, d<<1
- l The non-linear shift of the tune is described by the term Oé(Jz)

B The conditions for the fixed points are

sin(ky2) =0, 0+ 828J2) + g]f/Q_lAkp cos(kis) =0
2

B There are fixed points for which cos(kv20) = —1 and the
fixed points are stable (elliptic). They are surrounded by

ellipses

B There are also fixed points for whichcos(ki29) = 1 and
the fixed points are unstable (hyperbolic). The trajectories

Analysis techniques, CERN Accelerator School, November 201
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OFixed points for
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2

The Hamiltonian for a sextupole close to a third order
resonanceis H, = §Jy + J§/2A3p COS(3¢2)

Note the absence of the non-linear tune-shift term (in this 15t
order approximation!)

By setting the Hamilton’s equations equal to zero, three fixed
points can be found at ,, - T ST 5T 5 ( 20 )

0 : 3737 3 3Asp
For - >0 all three points are unstable

3p '
Close to the elliptic one at %20 =0 Separatrix
the motion in phase space Is i

//‘
A
/ unstable
/

I W20 =

described by circles that they get
more and more distorted to end
up in the “triangular” separatrix
uniting the unstable fixed points

The tune separation from the \\
P gz‘ﬂsp J%Z \

resonance iso = —,

7

3

32



B Simple map with single
sextupole kick with integrated
strength k2 + rotation with
phase advances(,ux, ,Lby)

(k2,x,px,y,py):
X
pX — K2x(x*k%k2-y**x2)

y
Dy — k2% (-2%xxy)
Irn Xl,pxl,yl;pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)xpx
cos (muy)xy+sin(muy)*xpy
—sin(muy)*xy+cos (muy)*py
x1,px1,y1,pyl

m Restrict motion in (T, Px)
plane i.e. Y0 = Py0 = 0

M [terate for a number of
“turns” (here 1000)

Analysis techniques, CERN Accelerator School, November 2018
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OO Example: $

B Simple map with single
sextupole kick with integrated
strength k2 + rotation with
phase advances(,ux, ,Lby)

(k2,x,pX,y,py):

X — k2% (x*%k2-y*x*2)

X
P
y
py — Kk2x(—2%xxy)
return x1,px1,yl,pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)xpx
cos (muy)*y+sin(muy)*py
pyl =-sin(muy)s*y+cos(muy)x*py
x1,px1,yl,pyl

m Restrict motion in (T, Px)
plane i.e. Y0 = Py0 = 0

M [terate for a number of
“turns” (here 1000)

Analysis techniques, CERN Accelerator School, November 2018
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0 Example: Single

B Appearance of 3" order

resonance for certain phase

advance

B ... but also 4" order
resonance

pxo.o 1

35




0 Example: Single

B Appearance of 3" order _
resonance for certain phase lu XL
advance

B ... but also 4" order
resonance

0.0}
Px

Analysis techniques, CERN Accelerator School, November 2018
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0 Example: Singl

B Appearance of 3" order
resonance for certain phase
advance

B ... but also 4" order
resonance

M ... and 5% order resonance

Dz

1.0}

05}

-0.5F

-1.0}

0.0}

-1.0 -0.5 0.0 0.5 1.0
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o Example: Sin:

018

N

S

Novembe

Analysis techniques, CERN Accelerator School

B Appearance of 3" order
resonance for certain phase
advance

B ... but also 4" order
resonance

... and 5™ order resonance

... and 6" order and 7t
order and several higher Pz
orders...

-1.0+

1.0t

-1.0 -0.5 0.0 0.5

1.0

38
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O Fixed points fo

=

B The resonant Hamiltonian close to the 4" order resonance
IS written as

s 2 2
Hy = 0J3 + cJ5 + J5 Ay cos(4)s)
B The fixed points are found by taking the derivative over the
two variables and setting them to zero, I.e.

sin(4v2) =0, 04 2¢cJy + 2J5 Ak, cos(41y) =0

B The flxed pomts are at

I T '37T\ /N '5—7%\ '3—7}\
¢20—‘4;|§} 4,7‘\7‘-,7 ‘\ ‘2
® For half o them thereis a’ mlnlmum In fﬁe pofentlal as

____________
-~
N

\
\ ,, )

| I \
IR ‘\27TI'

_-

-
‘—
’f

,,,,,,

~
- - -
—————————————

\\\\\\
——————————
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) Topology of an oct

B Regular motion near the
center, with curves getting more UFP
deformed towards a rectangular LT

SFP .~
shape A W B
B The separatrix passes NG T
through 4 unstable fixed points,

but motion seems well contained

B Four stable fixed points
exist and they are surrounded by
stable motion (islands of Lo s N
stability)
B Question: Can the central e
fixed point become hyperbolic
(answer in the appendix)

Analysis techniques, CERN Accelerator School, November 2018
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f)Octupole with hyperbolic centra

m Now, if ¢ = () the solution for the action is Joq = 0

2

B So there is no minima in the potential, i.e. the central fixed

point is hyperbolic
0.8 1 | 1 | ] | T

0.6

T £
O B
Py | e _ -, .
U-4 . __‘_.._IIIE I-'-.-. L - - _'\' :.;,'\-n: ] pr—
_ -:‘I:-_-_ - - . -I = '-J._ all :
R T U A R

o 0 . -
04 | -
-06 —

.08 I | 1 - | 1 | O
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0 Single Octt
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RS

B As for the sextupole, the octupole
can excite any resonance

B Multi-pole magnets can excite any
resonance order

B [t depends on the tunes, strength
of the magnet and particle

amnlitiidac




0 Single Octupole

B Adding a sextupole and an
octupole increases the chaotic
motion region, when close to the 4t
order resonance

Pz,

Analysis techniques, CERN Accelerator School, November 2018




B Adding a sextupole and an
octupole increases the chaotic
motion region, when close to the 41" -
order resonance Dy

= W But also allows the appearance of
@ 3'd order resonance stable fixed

Z points

: Ly = 0.34

E D gk Pa.,
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Onset of chaos
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O Path to chaos

2

B \When perturbation becomes higher, motion around the
separatrix becomes chaotic (producing tongues or
splitting of the separatrix)

B Unstable fixed points are indeed the source of chaos
= when a perturbation is added

N

S

=

[«]

3 5e-06

Z

E 4e-06 |

S

n /r\

= (\ (\ m 3e-06 |

5 \ |

— < \ |

% Ht < \\ \ w k/ 2e-06 b

o N p

< \\ \ \ :.r-.‘.‘_::: 3

= SO AN le06 | N

o NP - A

mm )& X AN Saeieix

o Q\\\\) X 0

@ ~ ;

@ T N X’ /

S =

z —_ — “1e-06 +

Q -2e-06

0

] SN
@ -3e-06 : : : : : e
g -0.008 -0.006 -0.004 0002 0  0.002 0004 0.006




O Chaotic mc

B Poincare-Birkhoff theorem states that under
perturbation of a resonance only an even
number of fixed points survives (half stable
and the other half unstable)

B Themselves get destroyed when perturbation
gets higher, etc. (self-similar fixed points)

B Resonance islands grow and resonances
can overlap allowing diffusion of particles

1.0 : . ‘

‘e
. %

0.65

0.60

0.55

0.50+

045+

0.40

. <
035 JAN =
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0 Resonance overl:

B \When perturbation grows, the resonance island width grows

B Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit difzusion )
2 nl—zll—ng o ’rL’l—zll—n’2

82 Hy(J)
dJ 2

B The distance between two resonances iSs.J, ., =

B The S|mple overlap crlterlon IS

Ji=Jio

Analysis techniques, CERN Accelerator School, November 2018




0 Resonance ove

)

When perturbation grows, the resonance island width grows

B Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

n

. . ~ 2 1 Y : 7
The distance between two resonances iSs.j; ,, ,» = ("1+”2 1+”2)
B The simple overlap criterion is %(J)
AJn mazx T AJn’ mazx > 5<]n,n’

Ji=Jio

B Considering the width of chaotic layer and secondary islands, the “two

. - - 2 -
thirds” rule apply AJy maz + Adns maz > §5Jn,n’

B Example: Chirikov’s standard map

pn_l_]_ — pn —l_ KSil’l(en) en_|_:!_o : Hn —I_ pn]_

p/2Jt.
0.8

o
e e somn

ddddd

0.6

.......

0.4
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0 Resonance ove
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)

When perturbation grows, the resonance island width grows

Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion )

11
ni-+no n+nl

The distance between two resonances iSs.j; ,, ,» =

The simple overlap criterion is
AJn mazx T AJn’ mazx > 5Jn,n’

92 Hy(J)
dJ 2

Ji=Jio

Considering the width of chaotic layer and secondary islands, the “two

) . 2 .
thirds” rule apply AJy maz + Adw maz > §5Jn,n’

The main limitation is the geometrical nature of the criterion (difficulty
to be extended for > 2 degrees of freedom)

p/211.0<'\

Pnt+1 = pn + K sin(6y,) 9n+}0 = 0, + Dnt1
&~ oo [ e o T
\%— 0.8 08 ,

= >N

P
e 0.6

0.4—F

3
= 0.2

0.0—F

0.84/711.0

0.2 0.4 0.6

I
0.8./7+1.0



O Increasing d
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L For(yOapyO) 75 (O, 0) , I.e. by adding another
degree of freedom chaotic motion is enhanced

1.0

05 + sl

pxo.of .

o5l ="

-1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5

1.0




O Increasing

L For(yOapyO) 75 (O, 0) , I.e. by adding another

degree of freedom chaotic motion is enhanced

B At the same time, analysis of phase space on
surface of section becomes difficult to interpret, as Py
these are pI’OjeCtIOZS of 4D objects on<a 2D plane

,ua;, ,uy 0.22,0.24)

1.0

0.5}

pxo.of

o5l ="
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O Chaos detection

2

B Computing/measuring dynamic aperture (DA) or

particle survival

A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

B Computation of Lyapunov exponents

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B Variance of unperturbed action (a la Chirikov)

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979
J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

B Fokker-Planck diffusion coefficient in actions
T. Sen and J.A. Elisson, PRL 77, 1051, 1996

B Frequency map analysis

Analysis techniques, CERN Accelerator School, November 2018
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Appendix
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&

B An important non-linear equation which can be
Integrated Is the one of the pendulum, for a string of
length L and gravitational constant g

d? ,
e | i sin = 0

dt?
B For small displacements it reduces to an harmonic

oscillator with frequency w, = \/%
B The integral of motion (scaled energy) is

L (do ’ g /
— | — — = =1 =F
() - femo=1

and the quadrature is written as t = /
assuming thatfor t =0, ¢ = V2 11 + 7 cos¢)
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o) Solution for the

2

B Using the substitutions cos ¢ = 1 — 2k*sin® 4 with

k=+/1/2(1+1,L/g) , the integral is

L [? do -
A and can be solved using
9Jo V1—Kk2sin®6

Jacobi elliptic functions: ¢(t) = 2arcsin [k: sn (t\/% k)]

B For recovering the period, the integration Is
performed between the two extrema, i.e. ¢ = 0
@rdarccos(—I11L/g) , correspondipga)
tardT/ 2

for _}CW do _ \F i
r= \@10 V1 — k2sin? 6 ! gf( /2.F)

l.e. the complete elliptic integral multiplied by four 56
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0 Secular perturbatic @

B Consider a general two degrees of freedom Hamiltonian:

H(Jv 90) — HO(J) + ng(Jv 90)
with the perturbed part periodic in angles:

Hl( ) Zk Ko kl ko (J17 JZ) exp[ (k1<701 T k2902)]
B The resonance njw; + nawe = 0 prevents the

convergence of the series
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=

B Consider a general two degrees of freedom Hamiltonian:

H(Jv 90) — HO(J) + ng(Ja 90)

with the perturbed part periodic in angles:

Hi(J, ) = > 1 1y Hiy ko (J1, J2) expli(k1p1 + kaw2))

B The resonance njw; + nowo = 0 prevents the
convergence of the series

B A canonical transformation can be applied for eliminating
one action: (J,¢) — (J,¢) using the generating function
F.(J,p) = (n1p1 — naws)J1 + pado

B The relationships between new and old variables are

Jo=niJ1 | Jy = Jy — naJ

P1 =N1p1 — N2 P2 = P2
B This transformation put the system in a rotating frame,

where the rate of change ¥1 = n1¢1 — N2¢2  measures
the deviation from resonance 58
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O Secular perturbation the

B The transformed Hamiltonian isH(J, ¢) = Hy(J) + cH1(J, )
with the perturbation written as

N R 0 ) A
Hi(J,¢) = Z Hi, ke, (J) exp {n_l [k1p1 + (kine + k2n1)901]}
k1,k2
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O Secular perturbatic

o

B The transformed Hamiltonian isH(J, ¢) = Hy(J) + cH1(J, )
with the perturbation written as
Z Hp, k,(J) exp {nil k161 + (kina + k2n1)¢1]}

k1,ko
B This transformation assumes that - is the slow

frequency and the Hamiltonian can be averaged over the
corresponding angle to obtain

(3, @) = Ho(d) + (3, 41) with Ho(J) = Ho(J) and

El(jawl) <H1 7901 — Z H—pnlpn2 )eXp(—iptﬁl)
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O Secular pertur
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o

B The transformed Hamiltonian isH(J, ¢) = Hy(J) + cH1(J, )
with the perturbation written as

) R R
E Hkl k2 eXp { n [lepl + (kan + kzm)w]}
1
k1,ko

B This transformation assumes that - is the slow
frequency and the Hamiltonian can be averaged over the
corresponding angle to obtain )

H(J,p) = Ho(J) +eH1 (I, $1) Wlth Ho(J) = Ho(J) and

Hl(JﬂOAl) <H1 7901 — Z H—pnlpnz )eXP(—Zpsﬁl)

P=—00

B The averaging eliminated one angle and thus J2 = Jz + J; —
IS an invariant of motion

B This means that the Hamiltonian has effectively only one
degree of freedom and it is integrable
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O Secular perturbation

B Assuming that the dominant Fourier harmonics forp = 0, =1
the Hamlltonlan IS written as

2

H(J, ¢1) = Ho(J) + eHoo(J) + 26 Hp,,—n, (I) cos ¢y
B Fixed points (Ji0,$10) (i.e. periodic orbits) in phase
($paae on

OJ1 Op1
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O Secular perturbati

B Assuming that the dominant Fourier harmonics forp = 0, =1
the Hamlltonlan IS written as

2

H(J, ¢1) = Ho(J) + eHoo(J) + 26 Hp,,—n, (I) cos ¢y
B Fixed points (Ji0,$10) (i.e. periodic orbits) in phase
o OH
%
( D@ﬁé OJ1 Op1

B Introduce moving reference on fixed point
and expand H(J) aroundit AJ; = J; — Jig
O Hamlltonlan descrlblng motlon near a resonance:

+2eH,, _pn,(J)cos ¢y
Ji=Jo
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O Secular perturl

B Assuming that the dominant Fourier harmonics forp = 0, =1
the Hamlltonlan IS written as

2

H(J, ¢1) = Ho(J) + eHoo(J) + 26 Hp, i, (T) cos 1
B Fixed points (Ji0,610) (i.e. periodic orbits) in phase
o OH
%
($paag o7 o

B Introduce moving reference on fixed point
and expand H(J) aroundit AJ; = J; — Jig
B Hamiltonian dgscrlblng motion near a resonance:
9> Hy(J) (AJ))?
H.(AJy, b1) = 952 |5 s
B Motion near a typical resonance is like the one of the
pendulum!!! The libration frequency and the resonance

+2eH,, _pn,(J)cos ¢y
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half width are Lo 1/2
2 1] q . ] b
2 _H j 6 O(J) AJl max — 2 28Hn1,_n2 (J)
Elln, —nz( ) 29 A 82 Hy(J)
a']1 Ji1=J10 oJ2 | . . 64
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f)SingIe resonance for accelerator

2

B The single resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,
1978)) | 5

H(Jxat]ya¢xa¢y75) = E(Va:c]x + Vny> +gnw,nyR

Wlth gnm,n €Z¢O — gjak;alam)p
Y

ke Fy
J2* Jy? cos(ng ¢, + Ny®y + ¢o — p0)
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QSingIe resonance for acc I@:A

(Hagedorn (1957), Schoch (1957), Guignard (1976,

B The single resonance accelerator Hamiltonian

1978)) 1 2 ke ky
H(Jzy Jy, @uy Py, 8) = E(V:cjx + vy dy) + Ine,my EJJJQ Jy? cos(ng e + nydy + ¢o — po)
. 1 L
Wlth gnmanye i T gjakalam;p

B From the generating function ) A
Fr(pz, Oy, Ju, Iy, 8) = (Nyp@y + nydy — 00) Iz + @y,
the relationships between old and new variables are

bz = (Nate +nydy —p0) , Jo =15,
by = Oy Jy =nyJy + J,
B The following Hamiltonian is obtained

Aa A A NgVy + Nyty — p)dy + J 2
H(J$7Jy7¢$) - ( £ ) L —l_gnx,nyﬁ

N kg A N ky .
7 (nydz) 2 (nydy + Jy) 2 cos(pz + ¢o)
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2

0 Resonance widths

B There are two integrals of motion
- The Hamiltonian, as it is independent on “time”
2 The new actlonJ as the Hamiltonian is independent on (py

B The two invariants in the old variables are written as:

LT
p p y
co = (Vg — VI + (v — )y + 29n, nyJ Jy2 coS(Ng Pz + Nypy + Po — PO)

Mg + Ny Mg + Ny
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O Resonance

B There are two integrals of motion
The Hamiltonian, as it is independent on “time”
The new actlonJ as the Hamiltonian is independent on (,by

B The two invariants in the old variables are written as:

2

J. J
g =— -2
Ng Ny
co = (Vg — P VI + (v — P )y + 290, n, J2 Jykzy coS(Ng g + Ny Py + Go — PO)
Mg + Ny Y Mg + Ny yry

B Two cases can be distinguished

Nz, Ny have opposite sign, i.e. difference resonance, the motion is
the one of an ellipse, so bounded

Ny , Ny have the same sign, i.e. sum resonance, the motion is the
one of an hyperbola, so not bounded

B These are first order perturbation theory considerations
B The distance from the resonance is obtained as

) ky—2

A = 9n2ny Je 2 Jy 7 (kenaJy + kynyJ,)
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