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Linear Optics Calculations

The aim of the " Linear Optics Calculations” lecture and the
relative Hands-On session is three-fold:

@ to present the matrix formalism applied to Linear Optics,
@ to use the matrix formalism to perform linear Calculations,

@ to break the ice for the concepts that will be generalised
during the next days.
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ANNALS OF PHYSICS: 3, 1-48 (1958)

Theory of the Alternating-Gradient Synchrotron™
E. D. Courant anp H. S. SXYDER

Brookhaven National Laboratory, Upton, New York

The equations of motion of the particles in a synchrotron in which the field
gradient index

n = —(r/B)aB/or

varies along the equilibrium orbit are examined on the basis of the linear
approximation. It is shown that if » alternates rapidly between large positive
and large negative values, the stability of both radial and vertical oscillations
can be greatly increased compared to conventional accelerators in which n is
azimuthally constant and must lie between 0 and 1. Thus aperture requirements
are reduced. For practical designs, the improvement is limited by the effects of
constructional errors; these lead to resonance excitation of oscillations and
consequent instability if 2v; or 2v; or vz + v, is integral, where v, and », are the
frequencies of horizontal and vertical betatron oscillations, measured in units
of the frequency of revolution.

60-years anniversary of the seminal paper of linear optics.
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8 years before, N. Christophilos filed a patent on

Feb. 28, 1956 2,736,799
NICHOLAS CHRISTOFILOS (OR PHILOS)
FOCUSSIIG SYSTEM FOR TORS AYD ELEGTRONS
Filed varen 10, 1950 4 Shasta-shaot 1

2‘”5 vz %
J;’g.z . ,_F/;'g.gt

A lot of Greece in the linear (and not-only-linear...) optics theory.
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A list! of books presenting Linear Optics (and much more).

Accelerator Physics
“Engineering

Second Edton

Accelerator
Physics

Third Hdition

el

Particle
Accelerator

Physics

Fourth Edtion

Very incomplete! Apologies for the omissions.
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Alternating-gradient as Beam Dynamics foundations

The alternating-gradient was a breakthrough in the history of

accelerators based on linear algebral It is still the very first step for
any new technology,

Focusing (E,)

Defocusing L)mclcmlmﬂ (E)
pd
Hié ¥ et
l T‘.iit ‘1T” (€ SEEERT ) ——>
Letter | Published: 05 November 2014 _*_, AT T electron
. . . T beam

High-efficiency acceleration of an @ Foeusing ()
electron beam in a plasma wakefield f ;  Decelerating (£)
accelerator

35+
+ 4+
= (L) —>
M. Litos ™, . Adli, W. An, C. I Clarke, C. E. Clayton, 5. Corde, J. . Delahaye, R. J. England, A. . Fish: + o N
-F, r. T .+ + electron
J. Frederico, S. Gessner, 5. Z. Green, M. J. Hogan, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, N S b, £t 3 b
= -, ea
Vafaei-Najafabadi, D. Walz, G. White, Z. Wu, V. Yakimenko & G. Yocky )
(b)
Nature 515, 92-95 (06 November 2014) | Download Citation &

and for facing the non-linear problems that you will discuss during
the following lectures and your professional life.
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The three ways

One can consider three typical approaches to introduce the linear
optics:
@ solving the equation of motion (the historical one),

@ using Hamiltonian formalism (opening the horizon to the
non-linear optics, see later Lectures),

@ using the linear matrices (natural choice for the linear optics
computation, our approach).
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Introduction

To describe the motion of a particle in an optics channel, as usual,
we fix a coordinate system to define the status of the particle at a
given instant t; and a set of laws to transform the coordinates of

the system from t; to a new instant t.

e

reference
orbit

centre of
curvature

Figure 1: From the MAD-X User’s Reference Manual.
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Introduction
Our reference system I

@ It is convenient to define the motion along a reference
trajectory of the 3D phase space (reference particle
trajectory/orbit), so to take into account only the variations
along that trajectory (Frenet-Serret frame).

@ In addition, it is convenient to replace as independent variable
the time, t, with the longitudinal position, s, along the
reference trajectory/orbit.

. . Px Py Pz
@ The natural choice for the variables are (x, Yo Zs %)

(phase-space, see Hamiltonian approach). pg is the amplitude
of the reference particle momentum.

@ Assuming ps & pp one can consider also the trace-space
/ __ dx / __dy Ap . .
(x,x'=F, v,y =%, 2, R) (see equation of motion

approach).
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Introduction
Linear transformations

Our system is linear IFF the evolution from the coordinates U to V

can be expressed as
V=MU

where M is a square matrix and does not depend on U.

BUT we are interested only on a special set of linear
transformation: the so called symplectic linear transformations,
that is the ones associated to a simplectic matrix.
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Introduction
Bi-linear transformations

Let us define the bi-linear transformation F as

vl FuU. (1)

This is a function of two vectors (e.g. U and V).
Let consider, for simplicity, the 1D case, that is, U = (u,, up)" and
V= (va,w)".
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EXAMPLE: orthogonal matrix

Assuming
1 0

the bilinear transformation / is the inner product between
V = (va,vp)" and U = (ua, up)7:

vl | U= Vals + VpUp.
F

A matrix M preserves the bi-linear transformation / (then the
projections) IFF

VIMT IMU=VT ITU=SMT I M=1,
N——
(M V)T

then M is called orthogonal matrix.



EXAMPLE: symplectic matrix

Assuming

the bi-linear transformation  is proportional to the amplitude of
the outer product between V = (va,vp)" and U = (u,, up) "

VI QU= voup — vpus.
F

that is proportional to the area defined by the vectors. A matrix M
preserves the bi-linear transformation Q (related to the outer

product) IFF
viMtamu=viQu-MT amM=Q,
then M is called symplectic matrix.
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Introduction

EXAMPLE: visualise an orthogonal and symplectic

transformation.

V=M U, M=| V=M U, M orthogonal V=M U, M symplectic
10.0 10.0 100
75 75 7.5 /
5.0 5.0 5.0 ‘
7 A ’
5 25 25 25 P
s ,
]
5 00 00 4 0.0 Py B
~5 7
5
: M i
225 -25 C’ ’ -25 /
-5.0 -5.0 -5.0 Cii
-75 -75 -7.5
-4 -2 0 2 4 -4 -2 [ 2 4 -4 -2 0 2 4
‘a' coordinate [arb.units] ‘a' coordinate [arb.units] ‘a' coordinate [arb.units]
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Introduction
Matrix symplecticity in nD

From 1D this can generalized to nD and 2 becomes a 2n x 2n
matrix:

Example of 2D symplectic matrix:

= O O
o O+~ O
O = = O
= O O O
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Introduction
Properties of symplectic matrices

o If My and M, then M = MM, is symplectic too.
o If M is symplectic then MT is symplectic.

e Every symplectic matrix is invertible
M1=QIMTQ (4)

and M~ is symplectic.
@ A necessary condition for M to be symplectic is that

det(M) = +1. This condition is necessary and sufficient for
the 1D case. We will consider 1D case.

@ There are symplectic matrices that are defective, that is it

cannot be diagonalized, e.g., <é i)
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Introduction
Domino effect
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Introduction
Symplectic matrix and accelerators

Please have a look on this generating set of the symplectic group

G 0 1 L 1 0

0 &/ \0 1)7 \-% 1)°
—_——— — — ——
thin telescope drift thin quad

Among the above matrices you can recognise the one of a L-long
drift and thin quadrupole with focal length f.

Conveniently combining drifts and thin quadrupole one can find
back the well known matrices for the thick elements.
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EXAMPLE: a thick quadrupole |

One can derive the transfer matrix of a thick quadrupole of length
L by and normalized gradient K7 by considering the following limit

. 1 0\/1 L\
I\ ke g Jlo 1)) =

cos (\/ﬂ L) sin(VKIL)

K1

—+v/K1sin (\/ﬁL) cos (\/ﬁL)

Therefore we now have a correspondence between elements along
our machine (drift, bending, quadrupoles, solenoids,...) and
symplectic matrices.
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Introduction

EXAMPLE: a thick quadrupole Il

To compute the above limit and, in general, for symbolic
computations one can profit of the available symbolic computation
tools (e.g., Mathematica™™).

MD[L_] ={{1, L}, {0, 1}}

{11, L}, {0, 1}}

MQIAL_] = {{1, O}, {-KL, 1}}
{1, 0}, {-KL, 1}}

FullSimplify[Limit[MatrixPower [MQ[ K1L/n].MD[L/n], n], n -> @, Assumptions - {K1>0, L>0}]]

{{Cos[\/ﬁ L, %}, {-VKL sin[VKL L], Cos[VKL L]}}

FullSimplify[Limit[MatrixPower [MQ[ -K1L/n].MD[L/n], n], n -> ®, Assumptions - {K1>0, L>0}]]
Sinh[ VK1 L]
K1

{{Cosh [VKL L], Ty

}» (VKL sinh[VKL L], Cosh[VKL L]}}
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Introduction
Tracking in a linear system

Given a sequence of elements My, M,, ... My (the lattice), the
evolution of the coordinate, X, along the lattice for a given
particle can be obtained as

X,=M,...M; Xo for n > 1. (5)

The transport of the particle along the lattice is called tracking.
The tracking on a linear system is trivial and boring. ..

In the following we will try to decompose the trajectory of the
single particle in term of invariant of the motion and properties of
the lattice, and via those properties we will describe the statistical
evolution of an ensemble of particles.

So instead of tracking an ensemble we will concentrate to solve the
properties of the lattice.
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Lattices Twiss parameters CS invariant CO, D and &

Starting a long journey. . .

Jet Propulsion Laboratory
NA}!‘ California Institute of Technology | Voyag < [
. 1 Xk

Wi

Mission ~ Golden Record  Galleries  Where Are They Now.

Pﬁpufé?\Culture

Greetings to you, whoever you are.
We come in friendship to those who are

DISTANCE FROM EARTH Oyager 1 DISTANCE FROM SUN Voyager 1 ONE-WAY LIGHT TIME friends.
< 13 433,768,627 mi 13,369,895,504 mi 20:01:55 (hh:mm:ss) >
14451784323 AU 143.83070873 AU

Voyager 1 is the Man-built object farther away from Earth
~ 20 light-hours.
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Lattices Twiss parameters CS invariant CO, D and &

Periodic lattice and stability |

We study now the motion of the particles in periodic lattice, that
is lattice constituted by a indefinite repetition of the same basic
C-long period MoTpy, the so-called One-Turn-Map:

Motm(so) = Motm(so + C).

From Eq. 5 we get
Xn = Morm Xo

and we study the property of MpTy to have stable motion in the
lattice, that is

|X,| < |X| for all Xg and n.

In other words, we need to study the if all the elements of the
Ma 1 stay bounded.
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Lattices Twiss parameters CS invariant CO, D and &

Periodic lattice and stability Il

If MoTam can be expressed as a Diagonal-factorization

M0 -
MOTM:P<01 A2)Pl,
D

after m-turns, it yields that
M3y = PDP~L x PDP! x ... x pDP™! = pD™P~1,
1 2 )

Therefore the stability depends only on the eigenvalues of MoT,.

Note that the if V is an eigenvector also KV, k # 0 is an
eigenvector. Therefore P is not uniquely defined: we chose it such
that det(P) = —1i.
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Lattices parameters CS invariant CO, D and &

Periodic lattice and stability IlI

@ For a real matrix the eigenvalues, if complex, appear in
complex conjugate pairs.

@ For a symplectic matrix Mo1um

where A; are the eigenvalues of MoTuy.
@ Therefore for 2x2 symplectic matrix the eigenvalues can be
written as A\ = e'# and \y = e~ '* — D™ = D(mp).

If 1o is real then the motion is stable we can define the fractional

tune of the periodic lattice as 4-.
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Lattices parameters CS invariant CO, D and &

R-factorization of the Moy |

The Diagonal-factorization we introduced is convenient to check
the stability but not to visualize the turn-by-turn phase space
evolution of the particle. To do that it is convenient to consider
the Rotation-factorization

5[ cosp sinp\ 5-1
MOTM_P(—sin,u cos,u)P ' (6)

R(w) is orthogonal

This is very important since implies that the Moy, is similar to a
rotation in phase space (see Werner's lecture).
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Lattices viss parameters CS invariz

R-factorization of the Moy |l

To go from Diagonal to Rotation-factorization we note that

. 1 1 i I

(s sy (B )5 50 (2 7
—SsIinf COSs 5BV 0 e 'H v
T N————

R(1) s-1 D(u) S

and therefore
R™ = R(mu),
Morm=PS StDS s tpt
P p-1

We note that det(P) = 1.
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Twiss-factorization of Mory |

We note that

10 0 1\ .
R(p) = (0 1) cosp + <_1 0) sin u,

yielding the, so called, Twiss-factorization
_ Byb-1 50 B5—1 :
Motm = PIP™ " cospu + PQP™ " sin
! J

Where J has three properties: det(J) =1, J11 = —Jp, J12 > 0.

Code: J properties

Omega = {{0, 1}, {-1, 0}};
Pbar = {{m1l, m12}, {m21, m22}};
Pbar.Omega.Inverse[Pbar] /. {-ml12m21 + ml11lm22 -> 1}

{{-m11m21-mi2m22, m11% + m12?}, {-m21% -m22?, m11m21+mi2m22}}
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Twiss-factorization of Mo Il

Therefore the following parametric expression has been proposed

>0
=~
o B
J= 1+ a?
p
~——
>0

defining the Twiss parameters of the lattice at the start of the
sequence MoTtp. It is very important to not that they are not
depending on m since

M@rn = I cos(mp) + Jsin(mp)

In other words the Twiss parameters are periodic (compare to
Floquet theorem).
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Twiss-factorization of Mory I

From the definition of J follows, J = PQP~1, the one of
- [} 1 - 1 a
VB VP 0 B/ \"v !

We note that by choosing det P = —i we got det P = 1 that is we
expressed M as the product of orthogonal and symplectic matrices.

and

B B

P—ﬁ5—1—< 2 2.).
—a+i —a—I
23 V25
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Lattices CO, D and &

Where do we stand?

Given a symplectic MoTm(s), if diagonalizable, we can study three
equivalent periodic problems

o Moru(s)™ = P D(mu) P,
o Moru(s)™ = P R(my) P,
e Motm(s)™ =1 cos(mu) + J sin(mpu).

The previous factorizations allow us to reduce the power of a

matrix to an algebric multiplication (mu). We expressed P, P and
J as function of 8 and « parameters.

— HANDS-ON EXERCISE <+ )

From Morwm(s) compute D (check stability) and P (force
det(P) = —i), then P = PS and J = PQP~1. You therefore get
the fractional tune and the Twiss parameters at sg.
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Lattices rameters CS invariant CO, D and &

Motm(so) and Morwm(si)

Motm(s) is a function of s: are u, 8 and « all s-function? J

Given a C-long periodic lattice and two longitudinal positions sy
and s; (s1 > sp), the transformation from sp to s; + C can be
expressed as

S0 S1 s1+ C

so+ C s1+C

S0

Motm(s1) M =M Morm(so)
where M is the transformation from sy to s;. This implies
Motm(s1) = M Morm(so) M~!

— the matrices Motpm(s1) and MoTwm(s2) are similar.
— same eigenvalues: the Moty is s-dependent but the @ is.not.
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Lattices Twiss parameters CS invariant CO, D and &

B and « transport |

On the other hand we observe that 8 and « are s-dependent
function and we have:

Motm(s1) = M Morm(so) M~ = M (I cos i+ J(s0) sinps) M7,
therefore
a(s1)  B(s1) \ _ a(s)  B(s0) ~1
(—fy(sl) —a(s1)> =M (—’Y(So) —a(so)) v

J(s1) J(s0)

G. Sterbini Linear Optics Calculations



Lattices Twiss parameters CS invariant CO, D and &

£ and « transport |l

To simplify from a computational point of view the Eq. 7 we can
use the Eq. 4 (inverse of a symplectic matrix) and this yields

a(s1)  B(s1) 1 a(so)  B(s0) -
<—’7(51) —a(51)> =M <—v(50) —a(50)> M
that is

B(s1) —al(s1)) B(s0) —a(so)
<_a(51) v(s1) > =M <—Oz($0) ~(s0) ) M. (7)
J(s0) Q1

J(Sl) 971

— HANDS-ON EXERCISE +
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Lattices Twiss parameters C ant CO, D and &

EXAMPLE: the S-function in a drift

To compute the Twiss parameters in a drift we can simply apply
the previous equation

(Lo ) =6 D )6
yielding
B(s) = Bo — 2a0s + 708

and
a(s) = ag — 70s.
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Lattices Twiss parameters CS invariant CO, D and &

The differential relation between v and [ |

In order to see differential relation with the matrix formalism we
consider the general AM matrix for the infinitesimal offset, As,

AM = <—K(15)As Als) '

Note that AM is symplectic only for As — 0. )

Then we have

(ﬁf;ﬁgl) _’YO(?:AAS;)) =AM < B(s) —aﬁs)) N

J(s+As)Q1 J(s)Q-1
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Lattices Twiss parameters C ant CO, D and &

The differential relation between v and 3 Il

From that we have that

i J(s+ As) — J(s) 0-1_ ( B'(s) —a’i.)s))

As—0 As

where we used standard notation % = /. One gets

B(s) = —2a(s)
o(s) = —y+K(s)(s).

Replacing o and « in the latter equation with functions of 3 we
get the non-linear differential equation:

BIIIB ﬁlZ
2

+KB?=1.
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Lattices Twiss parameters CS invariant CO, D and &

EXAMPLE: from matrices to Hill's equation

Following the notation already introduced
X(s+ As) = AM X(s)

with X(s) = (x(s), pX—(S))T ~ (x(s),x'(s))7T, therefore

po Po~pPz

x(5) = (1D) = fim, XXX (26 )

we find back the Hill's equation

x"(s) + K(s)x(s) = 0.
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Lattices Twiss parameters CS invariant CO, D and &

Where do we stand?

@ We learnt how to propagate via linear matrices the initial
Twiss parameters along the machine.

— HANDS-ON EXERCISE <+ )

@ We also retrieved several differential relations between « and
B, B8 and K, and X and K: these are, in general, not practical
for computations.

@ The next question is, moving from the lattice to the particle,
is there an invariant of the motion?
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Lattices parameters CS invariant CO, D and &

Courant-Snyder invariant |

Given a particle with coordinate X we can observe that the
quantity

X't x

is an invariant of the motion: it is called the Courant-Snyder
invariant, Jcs. In fact from Eq. 7

XP QI X=X MT(M S MTYIM Xo = X7 Q Jgt Xo

Code: find back the CS invariant in the trace-space

J={{a, B}, {-¥, -a}};
FullSimplify[{{x, x"}}.{{0, 1}, {-1, 0}}.Inverse[J].{{x}, {x"'}}] /. By-a’-1
{{xzy+2xax’+ﬁ(x’)z}}
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Lattices rameters CS invariant CO, D and &

Courant-Snyder invariant |l

In the normalized phase-space, remembering that X = P X, we
have

XTQ P Xx=XTp'QJ P X=XTX

I

that is the Jcs is the square of the circle radius defined by the
particle initial condition.
This normalized phase-space is also called action-angle phase
space. The particle action is defined as Jcs/2.

G. Sterbini Linear Optics Calculations



Lattices Twiss parameters CS invariant CO, D and &

What about the phase p(s)? |

What is the Ay introduced by a linear matrix M = <m11 m12>?
M1 my

In normalized space the transport from s to s + As does not
change Jcs but the angle by Ap = p(s + As) — u(s).
To compute it we move to the normalized phase-space

X(s) = P(s) X(s) and X(s + As) = P(s + As) X(s)

and from
X(s+ As) =M X(s),

it yields

cos Ay sin Au) %(s)

)?(5+As) = P(5+As)_1 M P(S)X(S) = <_ sin Ay cos Apu
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Lattices T parameters CS invariant CO, D and &

What about the phase u(s)? I
That is

sin A m
tan Ap = SMan = 12

cos Ap mi1 B(s) — mi2 afs)

It does depend only on 8 and « in s!

Code: derivation of Ap

Pbaro = {{«/a_e, e} {

m Tl

pbar1 = {{V1, o}, { Vﬁ_l \/B_l}}

M= {{mll, m12}, {m21, m22}};
FullSimplify[Inverse[Pbarl].M.Pbar0]

{{ -ml2 a® + mll 30 ml2 } { -ml2a0 al + mllal B0 - m22 a0 1 +m2130 31 ml2oal + m22 31 }}
— HANDS-ON EXERCISE « )
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Lattices Twiss parameters CS invariant CO, D and &

EXAMPLE 1: u(s) differential equation

(M1 M2\ 1 As
If M= <m21 m22> = (—K(S)AS 1 > then one gets
, im tan Ap i 1 1
= _— m =
As—0  As As—0 B(s) —a(s) As  B(s)’

1

that is the well know expression

s) = / ykg(la)da T u(so).
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Lattices v rameters CS invariant CO, D and &

EXAMPLE 2: Betatron oscillation |

How we describe a betatronic oscillation from s; to s, in terms of
Twiss parameters and initial conditions?

R(9)

X(s1) X(s2)

/m: ]l
? s
1y

X(s1) -=------ > X(s2)

It is easy by transforming the vector X in the normalized phase
space in s3, moving it from s; to s in the normalized space (pure
rotation of the phase ¢) and back transform it in the original phase

space.
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Lattices Tw

parameters CS invariant CC

EXAMPLE 2: Betatron oscillation |l

al 1
Pbarl = {{V/S1 s a}, {-?, ?}},
a2 1
Pbar2 = {{«/51 s a}, {-?, ?}};

R= {{Cos[¢], Sin[¢]}, {-Sin[¢], Cos[4]}};

FullSimplify[Pbar2.R.Inverse[Pbarl]]

{{\/57 (Cos[¢] +al Sin[¢]) , ngJTzsin[q;]}, {— (-al+oa2) Cos[d)];sinjda] +alo2Sin[e] , VBL (Cosjd)];az sin[¢]) }}
VBL VBL /B2 VB2

<
I
el

(s2) R($)P(s1) " =
%(cosqﬁ—i—al sin ¢) V/B1P2sin @

a1 —ap

14oan /37 _
YA cos ¢ — N1 sin ¢ w/ﬁ (cosp — aysin )

f“
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Lattices meters CS invariant CO, D and &

EXAMPLE 3: Solution of Hill's equation

How we describe a betatronic oscillation in machine considering a
Jecs and phase pg? This is a special case of the previous one. With
the Jcs and phase g we are already in the normalized phase
space, therefore we need only to rotate by u(s) and back transform
it in the original phase space.

. Vs cos(p+ o) \
X(s) = P(s) <_\@sin(u+ﬂo)> N
JesB(s) cos(p + o)
_\/%[a(s) cos(p + po) + sin(u + po)]

where one recognizes the solutions of the Hill's equation.
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Computing the closed orbit

Up to now we assumed that the closed orbit (CO) corresponded to
the reference orbit. This is not always true.

Assuming a MoTpm(sp) and a single thin kick © at sp (independent
from X,) we can write

Xn+1(s0) = MoTm(s0) Xa(s0) + ©.

In the 1D case © can represent a kick of a dipole correction or
misalignment of a quadrupole (© = (0,6)"). The closed orbit
solution can be retrieved imposing V11 = V,, (fixed point),
yielding

Xn(s0) = (I = Motm(0)) " O(s0)-
Please note that the CO is discontinuous at sy so the previous
formula refers to the CO after the kick. In presence of multiple
©(s;) one can sum the single contributions along s.

— HANDS-ON EXERCISE <« }
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EXAMPLE: from the CO matrix to the CO formula

Code: closed orbit formula

l+al?
3= {ta1, p13, {77, -a1}}s
MCO = Fullsimplify [Inverse [IdentityMatrix[2] - (IdentityMatrix[2] Cos[27Q] + ISin[27Q1)]]
(1+a1?) Cot(nQ] 1

{{%(luxl(:ct[ﬂQ]): %ﬁlCct[ﬂQ]},{f o s 5 (-arcotiran }

x0 = Fullsimplify [MCO. ({0}, (61}}]

{{; Bl el Cot[nQ]}, {; (61 - alel Cnt[nQ])}}

2 (C 1 S -al 2) Ce Si 1a2Si 1 (Co - a2Si
VB2 (Cos[¢] +alSin[¢]) , WTlWTzsinm}, {_( al +a2) Cos[4] +Sin[¢] +ala: 1n[¢], VB1 (Cos[4] - a 1n[¢])}};
VB1 VBl VB2 B2

Fullsimplify [Transport.x0]

Transport = {{

VB 01 (Cos[¢] (-1+a2Cot[rQ]) + (a2 +Cot[nQ]) Sin[¢]) }}

{{%w’ﬁwﬁm (Cos(6] Cot[nQ) +Sin(o]) }, {- WS

TrigReduce[Cos[¢] Cot[xQ] +Sin[¢]]
Cos[rQ-¢] Csc[nQ]

We found back the known equation
B(s)B(s0)

2sin(7Q)
where ¢ is the phase advance (> 0) from sp to s.

G. Sterbini Linear Optics Calculations
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Computing dispersion and chromaticity |

Up to now we considered all the optics parameters for the
on-momentum particle. To evaluate the off-momentum effect of
the closed orbit and the tune we introduce the

dispersion, Dy, (s, %), and chromaticity, §X7y(%), respectively, as

ACOXJ(S) = vay <S7 Ap) X &7 Dx,y(s + C) = D(S)
Po Po

and

A A
Ac?x,y = £x7y <p> X 7p
Po Po

— HANDS-ON EXERCISE + )
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Computing dispersion and chromaticity Il

In order to compute numerically the D, , and &, one can
compute first the COx,, and the Q. , as function of of %.

To do that one has to compute MoTun(s, %), that is evaluate the

property of the element of the lattice as function of %.

@ In a thin quadrupole the focal length linearly scales with the
beam rigidity:

1 0 1 0
1 — | _ 1 .
rezy 1 ) T

@ A dipolar kick 0, scales with the inverse of the beam rigidity:

0 0
(o)~ ()
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Where do we stand?

We learnt how to compute
@ the invariant of the motion Jcs,
@ the betatronic phase, p(s), along the lattice,
o the CO given a set of kicks,

@ the dispersion and chromaticity.

— HANDS-ON EXERCISE <« )

We will consider in the following an ensemble of non-interacting
particle and we will introduce the concept of beam emittance and
beam matching.
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The Beam distribution |

The beam can be considered as a set of N particles.

20

154

10 A

X' [107]
o

—-10 4

—15 4

-20 T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x [mm]
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The Beam distribution |l

To track N particles is possible by using the same approach of the
single particle tracking were X becomes Xgeam, @ 2n X N matrix:

XBeam = (X17X27 e 7Xn)

We will restrict ourself to the 1D case (n=1).

We are looking for one or more statistical quantities that
represents this ensemble and its evolution in the lattice.
A natural one is the average Jcs over the ensemble:

L
m > Jesi = (Jes)
i—1

From the definition it follows that the quantity is preserved during
the beam evolution along the lattice.
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Beam emittance

We will see in the hands-on that (Jcs) converges, under specific
assumptions, to twice the rms emittance of the beam, ¢,ms

€rms =

1
det(NXBXBT ).
N—_——

o matrix

One can see that the ¢,,,s is preserved for the symplectic linear
transformation M from sy to s; (see Cauchy-Binet theorem):

1
e () = det(NXBXBT)

rms

1 1
ms(51) = det(M 5XgXg MT) = det Mdet(;XpXg ) det M7
N—_—— -1 -1

a(s0)

where Xg denotes Xg(sp). Note that o(s1) = M o(sp) M.



Ensembles Beam emittance Matched distribution

The o matrix

By its definition we have (e.g., 1D trace-space) that

ers
1 N 1 N / =2 /
o= ?Z;'Vzlexf TZ;‘\/:lX"Xi _ | &9 <XX2>
- / =/
NZI:IX:{XI' NZi:lX:{X:{ (') (X%)
x'2

and therefore we can write

rms = 1/ (62) (x2) — {x')2.

So we show how to numerically transport the second-order
moments of the beam distribution.
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Matched beam distribution |

A beam distribution is matched to the specific optics functions &
and [ if the corresponding normalized distribution is statistically
invariant by rotation in the normalized space. In other words it has
an azimuthal symmetry.

It is worth noting that since P~ is a symplectic matrix and
defining Xg = P~1Xg we have that €ms = €,ms and for a matched
beam we have

h— l X XT — P ls p—= <)_(2 <)_O_</> _ [ €rms 0
SNTEE TlE @ TN
N~~~
2

Therefore & is diagonal.
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Matched beam distribution 1l

For a beam distribution matched to the specific optics functions &
and 3 the we have

o= P5 '571 _ < Berms _aerms> (9)

—Q€ms  Y€rms

where we found back the rms beam size and divergence formulas,

\/Be,ms and +/7€ms, respectively.

The rms size of a matched beam in a periodic stable lattice and at
given position sp is a turn-by-turn invariant.

— HANDS-ON EXERCISE <+ J
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About ensembles

@ We extended the single particle computation method to
transport ensembles of particles.

@ We introduced the concepts of beam o matrix, the €,,s, its
relation with the (Jcs) and the concept of beam matching.

— HANDS-ON EXERCISE «+ J
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MAD-X in 20 min. ..

DISCLAIMER

o We will use MAD-X to benchmark the optics code we are
going to write during the hands-on.

@ This material is intended to be an short introduction to
MAD-X: a large part of the code capabilities are not discussed
in details or are not discussed at all!

@ Please refer to MAD-X web site http://madx.web.cern.ch/ to
learn more.
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MAD-X syntax “Hello World!"

What is MAD-X?

Methodical Accelerator Design version X

@ A general purpose (free) beam optics and lattice program.
@ It is used since more than 30 years.

@ MAD-X is written in C/C++ /Fortran77/Fortran90 (source
code is available under CERN copyright).

[ st h— 5118
Last login: Wed Nov 7 10:53:39 on ttys000
macbel6107:~ sterbini$ madx

B B
+ MAD-X 5.02.13 (64 bit, Darwin) +
+ Support: mad@cern.ch, http://cern.ch/mad +
+ Release date: 2016.12.20 o+
+ Execution date: 2018.11.09 16:35:34 oF
B B

1> quit;

Number of warnings: 0

B R EAaa s S E
+ MAD-X finished normally +
bttt bbb

macbel6107:~ sterbini$ ¢

G. Sterbini Linear Optics Calculations




MAD-X MAD-X syntax

A general purpose beam optics code

“Hello World!"”

AD
2 X A KT ) R
A

4 ISOLDE
/7

For circular machines, beam lines and linacs. ..

@ Describe/document parameters from machine description.
@ Design a lattice for getting the desired properties (matching).

@ Simulate beam dynamics, imperfections and operation.
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A general purpose beam optics code

MAD-X is
e multiplatforms (Linux/OSX/WIN...),
@ very flexible and easy to extend,

@ made for complicated applications, powerful and rather
complete,

@ mainly designed for large projects (LHC, CLIC, FCC...).
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In large projects (e.g., LHC):

@ Must be able to handle machines with > 10* elements,

@ many simultaneous MAD-X users (LHC: more than 400
around the world): need consistent database,

@ if you have many machines: ideally use only one design
program.
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Describe an accelerator in MAD-X

@ Describe, optimize and simulate a machine with several
thousand elements eventually with magnetic elements shared
by different beams, like in colliders.

Define the Define Activate
_ Execute the
machine the beam the )
. operations
hardware properties sequence
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MAD-X language

How does MAD-X get this info? Via text ( )-

@ It accepts and executes statements, expressions. . .,

@ it can be used interactively (input from command line) or in
batch (input from file),

@ many features of a programming language (loops, if's,. .. ).

All input statements are analysed by a parser and checked.
@ E.g. assignments: properties of machine elements, set up of
the lattice, definition of beam properties, errors. . .
e E.g. actions: compute lattice functions, optimize and correct
the machine. ..
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MAD-X input language

@ Strong resemblance to "C" language (but NO need for
declarations and NOT case sensitive apart in expressions in
inverted commas),

o free format, all statements are terminated with ; (do not
forget!),

e comment lines start with: // or ! or is between /*... %/,

@ Arithmetic expressions, including basic functions (exp, log,

sin, cosh...), built-in random number generators and
predefined constants (speed of the light, e, 7, mp, me...).

In particular it is possible to use deferred assignments

@ regular assignment: a = b, if b changes a does not,

o deferred assignment: a := b, if b changes a is updated too.
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Example: deferred assignments

[ ] (] A sterbini —-bash — 54x19
B O T 2 o o S S S ST S S S TS S S 2
+ MAD-X 5.02.13 (64 bit, Darwin) +
+ Support: mad@cern.ch, http://cern.ch/mad +
+ Release date: 2016.12.20 +
+ Execution date: 2018.11.10 10:16:13 +
B A S A S A S

i

i
info: a redefined
value a;

value b;
value c;

quit;

We use the value command to print the variables content.
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Definitions of the

Generic pattern to define an element:
label: keyword, properties. . .;

@ For a dipole magnet:
MBL: SBEND, L=10.0;

@ For a quadrupole magnet:
MQ: QUADRUPOLE, L=3.3;

@ For a sextupole magnet:
MSF: SEXTUPOLE, L=1.0;

In the previous examples we considered only the L property, that is
the length in meters of the element.
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of the elements

The name of the parameter that define the normalized magnetic
strength of the element depends on the element type.

e For dipole (horizontal bending) magnet is ko:
_ 1 : -1
ko = B—pBy [m m ]
@ For quadrupole magnet is ki:

ki = Bip% [in m_Q}

@ For sextupole magnet is ko:
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Interlude

What does k; mean? It is related to the quad focal length 2.

1

= 10
kl Lquad ( )

Assuming k; = 10~ m~2 and Lguad = 107! m the f = 10° m.

klv Lquad

2thin lens approximation
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Example: definitions of elements

o Kicker magnet:
theta = 1e-6;
KICK: HKICKER, L=0, HKICK=theta;

@ Multipole magnet "thin" element:
MMQ: MULTIPOLE, KNL = {kO - /,k1-1,k2-1,k3-1,...};

@ LHC dipole magnet as thick element:
length = 14.3;
p = 7000;
angleLHC = 8.33 * clight * length/p;
MBL: SBEND, ANGLE = angleLHC;
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The lattice sequence

A lattice sequence is an ordered collection of machine elements.
Each element has a position in the sequence that can be defined
wrt the CENTRE, EXIT or ENTRY of the element and wrt the

sequence start or the position of an other element:

label: SEQUENCE, REFER=CENTRE, L=length;

... here specify position of all elements. . .;

ENDSEQUENCE;

G. Sterbini Linear Optics Calculations



MAD. MAD-X syntax “Hello V

EXAMPLE: www.cern.ch/lhcoptics

® © ® [} LHC Optics Web Home X +

& 5 C O ® NotSecure | abpdataweb.cern 1c_optics. webl el * @m0 x @

LHC Optics Web Home

The website contains information optics models for the LHC. Twiss table, madx scripts, plots can be browsed by selecting a scenario, an optics
configuration and the data under intercst.

Optics Scenarios

LHC Run I protons Optics for LHC Run [ protons for physics in 2011-2012.
LHC Run 11 pp phy;

LHC Run 11 pp HighBeta Optics for LHC Run II protons for High Beta physics in 2015.
LHC Run II PbPb physics Optics for LHC Run II PbPb for physics in 2015.

HLLHCV1.0 Optics for HL-LHC V1.0.
HLLHCV1.1 Optics for HL-LHC V1.1.
s for HL-LHC V1.2,

About

These LHC Opucs Web pages may be accessed via the LHC Project Home (click on the link for "Lattce and Optics") o directy at htip://cern.ch/proj The-
shortcut is: cern “You should be able to type this directly into your Web browser's address bar. The data is

organized in a memmhy as follows:

+ Optics Scenarios: the scenario that can be associated to a layout and a particular use of the machine a given time (e.g. pp Run 2015, HL-LHCV1.2).

« Configuration: the statc of the machine for which an optics cxist (¢.g. injection, end-of-ramp, squeeze 0.50-0.50-3.00-10.00) with a given value of
the avaialble knows. A corresponding madx file will be given for the user to change the knobs.

« Selection: Part of the machine under interest (c.g. whole ring, IR2, ARC34)

« Data: The type of data generated by the model (c.g. Twiss parameters, Orbits, Apertures) in tabular form (TFS table, CSV table) or in plots.
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EXAMPLE: the LHC sequence

sterbini — sterbini@hplus

Kmax_MBAW / Imax_MBAW;
Kmax_MBWMD / Imax_MBWMD;
Kmax_MBXWT / Imax_MBXWT;

LHC SEQUENCE

SEQUENCE, refer = CENTRE, L = LECLENGTH;
at= pIP1+IP1OFS.B1+DS;
1.5+(0-IP10FS.B1)*DS, mech_sep= 0, slot_id= 2209454,
19.95+(0-IP10FS.B1)*DS, mech_sep= 0, slot 102103,
21.564+(0-IP10FS.B1)*DS, mech_sep 6080259, assembly id= 6080224,
21.564+(0-IP10FS.B1)*DS, mech_sep: 10429420, assembly id= 6080224,
21.62+(0-IP10FS.B1)*DS, mech_sep: ._ia= 6080224,
21.724+(0-IP10FS.B1)*DS, mech_sep= i _id= 6080224,
26.15+(0-IP10FS.B1)*DS, mech_sep: 282126, assembly._:
29.842+(0-IP10FS.B1)*DS, mech_sep: _id= 282213, assem.bly i
29.842+(0-IP10FS.B1)*DS, mech_sep=
BPMS, 31.529+(0-IP10FS.B1) *DS, mech_sep

MOXB.A2R1:MQXB, 34.8+(0-IP1OFS.B1)*DS, mech_sep= 0

MCBXH. 2R1:MCBXH, 38.019+(0-IP10FS.B1)*DS, mech_sep= _id= 249450, assembly_i
38.019+(0-IP10FS.B1) *DS, mech_sep= 249451, assembly i
41.3+(0-IP1OFS.B1)*DS, mech_sep= 0, slot_id= 241892, assembly i
45.342+(0-IP10FS.B1)*DS, mech_sep = 241893, ssseably 4
46.608+(0-IP10FS.B1) *DS, mech_sep=
50.15+(0-IP10FS.B1)*DS, mech_sep:
53.814+(0-IP10FS.B1)*DS,
53.814+(0-IP10FS.B1)*DS,
53.814+(0-IP10FS.B1) *DS,

0l McTx. 3R1:MCTX, 53.814+(0-IP10FS.B1)*DS, mech_sep= slot_id= 249459, assembly id= 102106,
808,1
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Beam definition & sequence activation

Generic pattern to define the beam:

label: BEAM, PARTICLE=x, ENERGY?=y,.. .;
e.g., BEAM, PARTICLE=proton, ENERGY=7000;

It is the TOTAL energy!

After a sequence has been read, it can be activated:

USE, SEQUENCE=sequence_label;
e.g., USE, SEQUENCE=Ihcl;

The USE command expands the specified sequence, inserts the
drift spaces and makes it active.
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Definition of operations

Once the sequence is activated we can perform operations on it.

e Calculation of Twiss parameters around the machine (very
important) in order to know, for stable sequences, their main
optical parameters.

TWISS, SEQUENCE=sequence_label;
TWISS, SEQUENCE=sequence_label, betx=1;

@ Production of graphical output of the main optical function
(e.g., S-functions):
PLOT, HAXIS=s, VAXIS=betx,bety;

TWISS, SEQUENCE=juaseq, FILE=twiss.out;
PLOT, HAXIS=s, VAXIS=betx, bety, COLOUR=100;
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EXAMPLE: a the TWISS file

* NAME S BETX BETY
$ Us %le %le %le
"QF" 1.5425 107.5443191 19.4745051
"QD" 33.5425 19.5134888 107.4973054
"QF" 65.5425 107.5443191 19.4745051
"QD" 97 .5425 19.5134888 107.4973054
"QF" 129.5425 107.5443191 19.4745051
"QD" 161.5425 19.5134888 107.4973054
"QF" 193.5425 107.5443191 19.4745051
"QD" 225.5425 19.5134888 107.4973054
"QF" 257.5425 107.5443191 19.4745051
"QD" 289.5425 19.5134888 107.4973054
"QF" 321.5425 107.5443191 19.4745051
"QD" 353.5425 19.5134888 107.4973054
"QF" 385.5425 107.5443191 19.4745051
"QD" 417.5425 19.5134888 107.4973054
"QF" 449.5425 107.5443191 19.4745051
"QD" 481.5425 19.5134888 107.4973054
"QF" 513.5425 107.5443191 19.4745051
"QD" 545.5425 19.5134888 107.4973054
"QF" B577.5425 107.5443191 19.4745051
"QD" 609.5425 19.5134888 107.4973054
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EXAMPLE of the graphical output (

R

90. 3 Periodic horizontal beta function

85. R
80. A 1
75. 4
70.
65.
60. -
55.
50. 4
45. 4
40. 4
35. 4
30. 4
25, T ; T ; T y T y T y T
1000. 1200. 1400. 1600. 1800. 2000. 2200.
Momentum offset = 0.00 %

B (m)

s(m)
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Matching global parameters

It is possible to modify the optical parameters of the machine using
the MATCHING module of MAD-X.

@ Adjust magnetic strengths to get desired properties (e.g., tune
Q, chromaticity dQ),
@ Define the properties to match and the parameters to vary.

Example:

MATCH, SEQUENCE=sequence_name;
GLOBAL, Q1=26.58;
GLOBAL, Q2=26.62:
VARY, NAME= kqf, STEP=0.00001;
VARY, NAME = kqd, STEP=0.00001;
LMDIF, CALLS=50, TOLERANCE=1e-6;
ENDMATCH;
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Other types of matching |

Local matching and performance matching:

@ Local optical functions (insertions, local optics change),

@ any user defined variable.

A -
™ Periodic horizontal beta function 0. & Horizontal beta with low beta insertion
_— " :
i”WHMHHH m < o)
80. 1
751 H L h | h h i M h \ h h 01
70. | | I I 600.
s HHEHE L |
”’*\MH\ (i H\MH\ i ]
60. ] \‘ I ‘ ‘ H ‘ \ | | 500.
55| ‘H\H (] ‘H\‘\H | ‘H HH H‘H 100.]
so 4 T UL 300. ]
45<*HHHHHHHHHHH\ ‘HHHHHHHHHHH o
o 401V U 2.
sV IUY vty 100
so ALVt
25/’0 . 1200. 1400. 1600. 1800. 2000. 2200. 0'9 0. 1200. 1400. 1600. 1800. 2000. 2200.
Momentum offset = 0.00 % ( Momentum offset = 0.00 % vom
sm) .

G. Sterbini Linear Optics Calculations



MAD-X MAD-X syntax “Hello World!"

Other types of matching Il

Local matching and performance matching:

@ Local optical functions (insertions, local optics change),

@ any user defined variable.

MATCH, SEQUENCE=sequence_name;
CONSTRAINT, range=#e, BETX=50;
CONSTRAINT, range=#e, ALFX=-2;
VARY, NAME= kqgf, STEP=0.00001;
VARY, NAME = kqd, STEP=0.00001;
JACOBIAN, CALLS=50, TOLERANCE=1e-6;

ENDMATCH;
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“Hello World!" input file

LectureExample — i@Ixplus101:/eos]users/sterbini/_First/2018/LHC MD Opticsfinjection — vi fodo.mad — 92x38
/
QqfType:QUADRUPOLE, L=1.5, Kl:=kf;
qdType:QUADRUPOLE, L=1.5, Kl:=kd;

VAss i of the
fodo:SEQUENCE, REFER=exit, L=10;
qfType, at=!
qdType,

/****Definition of the beamt**+/
beam, particle=proton, energy=7001;

/****Activation of the
use, sequence=fodo;

/****QOperations***+/
twiss, file=beforeMatching.twiss;
plot, HAXIS=s, VAXIS=betx, bety, title='Before matching';

/#****Matching****/
MATCH, sequence=fodo;

GLOBAL, Q1=.25;

GLOBAL, 02=.25;

VARY, NAME=kf, STEI

VARY, NAME=kd, STE!

LMDIF, CALLS=50, TOLERANCE=le-8;
ENDMATCH ;

/****Operations*¥x+/

twiss, file=afterMatching.twiss;

plot, HAXIS=s, VAXIS=betx, bety, title='after matching', interpolate=true;
QUIT;

"fodo.mad" 37L, 842C
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“Hello World!" output (1)

21 LectureExample — sterbini@Ixplus101:/eos/user/s/sterbini/_First/2018/LHC MD Optics/injection — -bash — 92x38
/ inition of el /

qfType:QUADRUPOLE, L=1.5, Kl:=kf;

qdType:QUADRUPOLE, L=1.5, Kl:=kd;

/+***Definition of the sequence****/
fodo:SEQUENCE, REFER=exit, L=10;
qfType, at=5;
qdType, at=10;

ENDSEQUENCE ;

/****Definition of the strength¥**#/

/****Definition of the beam****/

beam, particle=proton, energy=7001;

VAiid i i of the

use, sequence=fodo;
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“Hello World!" output (2)

¢ 21 LectureExample — sterbini@|xplus101:/eos/user/s/sterbini/_First/2018/LHC MD Oj /injection — -bash — 92x38
/+*++Operations#+s+/

twiss, file=beforeMatching.twiss;

enter Twiss module

iteration: 1 error: 0 deltap: 0.

orbit: 0. 0.
++++++ table: summ

length orbit5
10 -0 0

q1 dql betxmax dxmax
0.3159191546 -0.4863193631 16.65487108 o

dxrms xcomax xcorms q2
0.3159191546

dq2 betymax dymax dyrms
-0.4863193631 16.65487108 o o

ycomax ycorms deltap synch_1
0 0 o

synch_2 synch_3 synch_a synch_5
o o o o

nflips
0
plot, HAXIS=s, VAXIS=betx, bety, title='Before matching';
Plot - default table plotted: twiss
GXPLOT-X11 1.50 initialized

plot number = 1
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MAD-X MAD-X syntax “Hello World!"

“Hello World!” output (3)

2 LectureExample — sterbini@ xplus101:/eosuser/s/sterbini/_First/2018/LHC MD Oj jection — -bash — 92x38
START LMDIF:
Initial Penalty Function =  0.86906699E+00

4 Penalty function 0.12041476E-01

7 Penalty function 0.18270348E-05

10 Penalty function =  0.40829956E-13

++++++++++ LMDIF ended: converged successfully
10 Penalty function =  0.40829956E-13

Constraint Type Target Value Final Value Penalty

Global constraint: ql 2.50000000E-01 2.50000014E-01 1.836786

89E-14
Global constraint: q2 2.50000000E-01 2.50000015E-01 2.246208

74E-14

Final Penalty Function =  4.08299562e-14

Final Value Initial Value Lower Limit Upper Limit

2.11022e-01 2.50000e-01 -1.00000e+20 1.00000e+20
-2.11022e-01 -2.50000e-01 -1.00000e+20 1.00000e+20
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MAD-X MAD-X syntax “Hello World!"

“Hello World!" output (4)

¢ 21 LectureExample — sterbini@|xplus101:/eos/user/s/sterbini/_First/2018/LHC MD Oj /injection — -bash — 92x38
/+*++Operations#+s+/

twiss, file=afterMatching.twiss;

enter Twiss module

iteration: 1 error: deltap: 0.
orbit: 0. 0.

++++++ table: summ

length orbit5
10 -0 0

q1 dql betxmax dxmax
0.2500000136 -0.3176945739 14.60761389 o

dxrms xcomax xcorms q2
0.250000015

dq2 betymax dymax dyrms
-0.3176945752 14.60761386 o o

ycomax ycorms deltap synch_1
0 0 o

synch_2 synch_3 synch_a synch_5
o o o o

nflips
0
plot, HAXIS=s, VAXIS=betx, bety, title='after matching', interpolate=true;
Plot - default table plotted: twiss
2

plot number =
QUIT;
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Hands-On
Exercise |

Let us consider a FODO cell of length of L=100 m for a proton
beam of Ei(or = 1 GeV.

Assume thin lens approximation, quadrupoles with same focal
length in absolute value and no dipoles. Start the cell with the
focusing quadrupole (for the incoming proton beam and in the
horizontal plane) at 0 m. Put the defocusing quadrupole at 50 m.

@ Using the approach presented in the lecture, find the
quadrupole focal length to have a cell phase advance of
tx=,=60 deg. The suggested code is Python 3 but you can
use your preferred tool.

@ With this focal length, compute in MAD-X the FODO optics
(Bx,y: ax,y and piy ), at s=0 m and s=50 m).

© Using the approach presented in the lecture, write a program

to compute the 3, ,, ay, and p, at s=0 m and s=50 m
and cross-check with MAD-X the results.
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Hands-On
Exercise ||

@ Add a horizontal kick at the position of the focusing quad of 1
urad and compute using your code the closed orbit at s=0.
Compare with MAD-X (use the MAD-X HKICKER element).

© Using the approach presented in the lecture, compute and plot
the py and the horizontal closed orbit at s=0 for range

—1073 < Ap/pg < 1073, Compare your results to MAD-X
linear chromaticity and dispersion.
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Hands-On
Exercise IlI

@ Prepare a distribution N=10° particles normal distributed and
matched to the optics of the lattice at s=0. Assume a
geometrical rms emittance, €,,s, of 1 nm.

o Verify, using the sigma matrix of the beam, that your
distribution is matched.

o Compute the (Jcs) of your distribution, and compare with €,ms.

e Transform your bi-Gaussian distribution in an hollow
distribution by removing all particles with Jcs < 1 nm. Is the
distribution still matched? Compare the < Jcs > with the new
€rms. Compute the x,,s from the beam distribution and
compare it to the formula \/B€/ms.

@ Plot in the normalized space of the hollow distribution in s=0
(before the focusing quadrupole) and in s=50 m (after the
defocusing quadrupole).
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