Hamiltonian Dynamics (see also CAS Advanced Course)

The menu:

> Lagrange and Hamiltonian formalism, including:
- Lie operators and Lie transformations
- Invariants of motion

- examples: beam-beam, sextupoles, octupoles, ..

» Non-linear Normal Forms
- the concept and what can we get from it

- examples: beam-beam, sextupoles, octupoles, ..

Werner Herr, Hamiltonian Dynamics, Thessaloniki, 13.11.2018




Frequently asked Question: Why not just Newton’s law and Lorentz force ?

Newton requires rectangular coordinates and time, trajectories with e.g.
"curvature” or "torsion"" need to introduce "reaction forces".
For example: LHC has locally non-planar (cork-screw) "design' orbits !

For linear dynamics done by ad hoc introduction of new coordinate frame

With Hamiltonian it is free: The formalism is ""coordinate invariant”

Automatically solves problems with curvature and torsion. Concepts such as
Symplecticity, Liouville Theorem, etc. follow naturally from the Hamiltonian
treatment, i.e. without hand-waving (or wrong !) arguments

For complicated systems (e.g. nonlinear, coupling, radiation, spin, etc.):
makes our life a lot easier (and in many cases possible !)

*) E.g. solenoids, helical wigglers, helical separation



Describe the particle’s motion by a function L (Lagrange function)

L( qi (t)a qn(t)’ ql (t)a qn(t)’ ! ) Short . L(Qi’ q.ia t)

q1(?), ...qu(?) ... generalized coordinates *

g:(1),...g,(1) ... generalized velocities

The integral S = [ L( ¢i(?),4:(?),t ) dr defines the action **

Without proof or derivation:
L =T -V =Kinetic energy - potential energy

) g; can stand for any coordinate and any particle, » can be a very large number
**) Confusion alert: action J (a variable) and S (a functional) are different things



Hamilton principle (stationary action)

2
S = / L(q;, g;, t)dt = stationary
1

ROWAN HAMILTON

Hamiltonian principle: system moves from 1 to 2 such that the
action S becomes stationary, i.e. 65 = 0

d OL  OL

Is fulfilled when: —
dt dg; g

=0 (Euler - Lagrange equation)



For the Lagrangian of a (relativistic) free particle we must write

2
Liee = —mc*1J1 = B2 = —m® (1 - (22 = - —
f r p y

Using for the electromagnetic Lagrangian a form (without derivation, any textbook):

Lem = c v-A - ed
C
The complete Lagrangian is:
2
Y C

For our purpose it is an advantage to use Hamiltonian



From Lagrangian to Hamiltonian ..
> Generalized momenta instead of velocities
> g; and p; are independent and on equal footing, ¢; and ¢; are not
Closely tied in with Symplecticity

We use fromnowon: ¢g; = x;

The generalized momenta p; we derive from L as:

oL S
i -> 7 - gA
C

:a—xj p

Note: the canonical momenta are linked to the fields A !!!!!

Once we know what the canonical momenta p; are: the Hamiltonian is a
(Legendre-)transformation of the Lagrangian:

H(xi, pi, 1) = inpi — L(x;, Xi, 1)
j



Without proof, the Hamiltonian is: H = T + V = kinetic energy + potential energy

From Hamilton’s principle® we obtain 2 first order equations of motion (Hamilton
equations):

oH . dpl OH . dxi
S =-Phi=—— o = %= —
(9x,- dt 6]?1 dt

Canonical coordinates:

> The Hamilton equations have always the same form (the Hamiltonian itself in
general not)

> Form the basis for calculating conserved quantities (invariants ..)

> Basic requirement for Liouville’s theorem

Next step: Hamiltonian for electro-magnetic fields =»

*) Backup slides or any textbook on classical mechanics



Hamiltonian for a (ultra relativistic, i.e. y > 1, 8 = 1) particle in an electro-magnetic
field is given by (any textbook on Electrodynamics):

H(Z p,t) =c \/(ﬁ— eA(%,1)% + m(z)c2 + eD(X, 1) (ugly...)

where A(%, 1), O(Z, {) are the vector and scalar potentials (i.e. the V)

Using canonical variables (2D*)) and the design path length s as independent
variable (bending field By in y-plane) and no electric fields:

. . duetot — s :
kinematic normalized
duetot —» s ) . 2
A x X Ag(x, )
H= —(1+->)- \/(1+5)2—p§—p§+ —+ 5 - — Y
Je,

where p = /E2/c2 — m2c? total momentum, § = (p — po)/po is relative momentum
deviation and A;(x, y) longitudinal component of the vector potential.

Find a formulation suited for beam dynamics in accelerators =%



After square root expansion® and sorting A, contributions:

MC\ dipole quadrupole sextupole
2 2 7 2 e -~ N 7 -~ N
pPxtp X0 X kl k2
2(xl+5y)_ o T 202 +7(x2—y2)+ g(x3—3xy2) +
~ =~
bending  focusing
: 1 "B 1 "B
using : k, = k’gn) - Y klgs) _ X
Bp 0x" Bop 0x"

> Each element has a component in the Hamiltonian (but see in a few moments

)

> Basis to extend the linear to a nonlinear formalism

“ remember: Vl+a = 1 +

o|R,
+
|Q
+

—_—
(@)



Hamiltonians of some machine elements (3D)
In general for multipole #:

1
1+n

Py + p;
2(1 + 6)

We get for some important types (normal components &, only):

H, =

Re [(ky + k) (x +iy)"* '] +

drift space: H = —\/(1 +0)2 — p2 - p?

-x6 x> pitDy

dipole: H = + n
P p 20 2(1+96)

1 P2+ p?

uadrupole: H = —k;(2—-y*) + — 2
AHacTEp Y S )
1 P2+ p?

sextupole: H = —ky(x® = 3xy?) + ——2
P 3R )

pi+p;
2(1 +0)

1
octupole: H = Zk3(x4 — 67y +yM) +



A first application - the simplest possible:

Keeping only the lower orders (focusing) and 6 = 0 we have:

2 2 2
px + py X kl(s) 2 2
H = - + X7 —
2 20°(s) |2 (" =y 3
\_v_/ v~
dipole quadrupole

Putting it into Hamilton’s equations (for x, ditto for y):

OH dp, 1 ki (5) OH dx
- = - = —X —_ = = x
0x ds 02%(s) : v

it follows immediately:

d*x 1 d“y
) + (p(s)2 — kl(s)) x =20 P + ki(s)y =0

Hill’'s equations are a direct consequence of Hamiltonian treatment of EM fields to
lower orders (without invoking the moon and hand-waving arguments !)



Introduce Poisson brackets for a differential operator (» = DOF):

_ N~ (0f 3 of og
[f? g] - Z (&xi apl 3pz axi)

i=1

Here the variables x;, p; are canonical variables, f and g are (arbitrary)
functions of x; and p;, (so far just a definition).

We can now write (using the Hamiltonian H for g(x;, p;) in the above):

oH dx; dx;
= X; i H = = ! == i = !
f=xi=> |l[x, H] o ( 7 ) [x;, H]

oH d i d i
f=pi= |lpnHl= =-=F = |[p.H) =2
6)61' dt

Poisson brackets encode time evolution of x and p



Having the principal equations:

dx; dpi

i7H — i7H - -
[xi, H] " [pi, H] 7

They give the state of a system at a time r + dr given the state at 1
(or s + ds), i.e. the time evolution of the dynamical system

we have a mapping from one place to another and a procedure for the
numerical integration

The Poisson bracket of the Hamiltonian with a variable provides the

evolution of this variable

The numerical studies of dynamical systems using Hamiltonian maps is
the only sensible method in the era of fast computers !



It holds more generally for any function F(x, p) of canonical coordinates:

[FH]—d—F
U de

The Poisson bracket of the Hamiltonian with a function provides the
evolution of this function

Not relevant for us, but for F(x, p, t) (to avoid complaints):

[FH]—d—F oF
U dt Ot

Question: if p is the particle distribution function, what is:

dp

ol ==




We can define a symbolic operator: fg o f, gl

where : f : is an operator acting on the function g:

for 1D

i,

o _N~(Of 9 _ofaoN _9fo oo
=1 ]_Z<axiapi apiaxi> - Oxdp Op 0x

=1

The operator : 1 : is (a special form of) a Lie Operator

Lie operators are Poisson brackets "in waiting"

Look at special cases of the functions g(x, p):

) o _ (afox 9f o
s§=4 7 s xl=f e B (axap 8p8x>
_ o _ df op  df dp
g=p fspl = 2 f:p = ((9)6(9]9 apax>



In passing: Useful formulae for calculations (and examples)

Some common special (very useful) cases for f:

0
XD = —
op
applied twice
D2 T &’
X = TXuXx: = —
dp?
0 0
X = p— — X—
P pap 0x
0
xr: = 2x—
op
n n—1 0
Xt = n- X —

. . — a
- p-= O
applied twice
O0x?
32
X = X: = -
P P 0x0p
0
2 — —2p—
P p@x
0
n =
p n-p Ix



Applied to some simple (but most important) cases:

With x coordinate, p momentum (as generators):

0
p:x = —1 :p2:x:—2p—x: - 2p
0x
dp
p:p =0 pPip= =200 = 0
X
a 2
prioapt = —2p=l = _2p
0x

Cp>)YPx= :pP:Cp*ix)= :p>:(=2p) =0

CpP?p=:pipiip = 1p:(0) =0



Applied to some simple (but most important) cases:

With x coordinate (as generators), p momentum:

0

x:x =0 :x2:x:—2x—x = 0
aop
0

cx:p =1 :xz:p:—2x—p = —2x
ap

2 2 axp2 o)

X Xp- = —2)(,‘ = —4px

ap

CxX>)Px=:22:¢Cx*:x)= :x%:0) =0

GCx*:)p = :x:G:x*:p)

x> (=2x) = 0



How to use them for our purpose ?

: H : g describes evolution of g over an infinitesimal distance L

d
d—g = [g,H] = C-H:dL) g
S

Accelerators typically larger than dL: we need to describe the
evolution of g over a finite distance L = dL-n

have to apply the map n times

C-H:L)g = (-H:dL-nyg = (-H:dL)'g

L



We know how to compute powers and write them as:
Cfg=f:Cf9=1f1fell
Cfg=f:Cr:Cf)=1L1f1f8]]] et

then we can construct/define an exponential operator:
like - e.x _ — l(x)i — e: f: dﬁf - l( f .)i
' _Zoi! _Zoi!"
1= 1=

.. 1 1
=14  f +5(:f:)2+§(:f:)3+...

The operator ¢' / ' is called a Lie Transformation



A special transformation:

We have from the Hamiltonian equations for the motion through an
element with the Hamiltonian H for the element of length L (s as
independent variable):

d
] =|g,Hl=:-H:g -»  (-H :)kg =

dkg
ds ok

=

) — st dkg — - s* - H - k  _ :—sH:
g(S)_ZE W —kzga(—- )'g = e 8
k=0 =

For the motion through an element of length L and a Hamiltonian H:

= gL = &7 g0



Acting on the phase space coordinates (shown for 1D here):

X . . X
_ it

P/, P/

for the components: x, = ¢/ x;, and p, = &/ p,

> Lie transforms describe how to go from one point
(x, p); to another (x, p), they are maps

» Crux of the matter: Not restricted to be matrices !!
> The generator / describes the element(s) between 1 and 2

The miracle:

Lie transformations are always symplectic, no matter what is f



What is /' ?

> The generator f is the Hamiltonian H of the element (or a
sequence of many elements) !

> The Hamiltonian describes the exact motion from 1 to 2

> For an element of length L the generator fis: f = L-H

For example a sextupole (remember the Hamiltonian components):

2 2
X pitpy, kg 2 X
= exp (L : + —(x7 = 3xy%) )
(P)z 229 2 . \r ),

H gexu pole

Instead of multiplications, one performs a more general operation

(examples follow ..)



Another neat package with useful formulae:

With a constant, f, g, 1 arbitrary functions:
a: =0 — e% =1
cfi:a =0 —> e:f:a:a
e:f: [g,h]:[e:f:g, e:f:h]
e:f:(g-h):e:f:g PR Y

and very important:

Mg(x) = e:f:g(x) = g(e:f:x) e.g. e:f:x2 = (e:f:x)2

Mlex) = @1 ) ax) = e o) (this is not 1f !)
RN E



If we know the Hamiltonian H of a machine element then:

e:H

e x = x and ‘p1L=po

It transforms the variables x and p, but that is not all:

This is true for any function of x and p

I.e. any property of a particle or the entire beam:

e 1 fix,p) = pix, p) e.g.: x2, x-p, x>+p>,.

} H and f can be complicated, any nonlinear contraption

» Used for: spin, synchrotron radiation, ..

Not possible with matrices ...



A (most) important feature - assume we have the map:
M = &/

we can write it in a different form, one transformation for each
power (factorization):

S = g hig g fat

Here f; are power series of k-th order.

The miracle:
since all exponential maps are symplectic, one can truncate the
factorized map at any order % ... and it remains symplectic !!

This was not possible with Power Series !

We can get closer to the best solution while remaining symplectic



Full Drift space

The exact Hamiltonian in two transverse dimensions and with a relative
momentum deviation ¢ is (full Hamiltonian with ff()?, 1) =0):

H=—-\/(+60 = p2 = p2 = fuiy = L-H

The exact map for a drift space is now (do not use x and x" !):
Dx

X" = x+L-
JA+0? = - p?
Pyt = Dx
ynew — y + L - P y
A+ = - p?
Py =Dy

In 2D and with 6 # 0 itis a complicated beast !!

In practice the map can (often) be simplified to the well known form.



Let’s apply it to polynomials:
For example:
e f ¥ = 7

Looking at the effect of a drift space on x°:

we would get:

%) = 2o+ 3x°Lp + 3xL*p* + L°p’

Note:

= :x)z = x> + 2xLp + sz2

with useful formula

(= evolution of x* in a drift space)



Try a Lie transformation with f = —-L-k-x*/2 = L-H:

. 2/ . 1
¢ ~LhkxT[2 x—EL:ka:x+O+..
0
- X
. 2/ . 1
e’ ka/z'p = p—- =L:kx>:p +0+..
2
=kLx
= p + kL-Xx

Transformation of a thin quadrupole of length L and strength k !!



For:
L

L L
f= -5k = ZP = =S+ p)

2

we write for the transformation (map):

e x
e:f:p _

Remember:

-, N
el iy = Z'f' X
n!
n=0

c L2 2y
o > (kx +p).x

c L2 2y
e.—i(kx +p).p




from the useful formulae (for the operators):

f 20 = (1)KL - x f 2ty = (ot g

we would get (rather straightforward with the above expressions,
and some intelligent sorting):

( : t;izn \ ( . f 20+l \

L phy . LN (—1y(VRLY" | | <1y VRL
© DS (2n)! DS Qn+1)!

\ / \ /

: —L(kxz 4 p2) : - o0 (_l)n( \/%L)M | - * (_1)n+1(\/%L)2n+1 | .
e 2 p = Z( 2n)! P2 2n+ 1)! vk x

n=0

%) -




Starting from:
L
fquad = _E(kxz + p2)

we finally have obtained:

el ix = cos (VKL) - x + %Sin(\@L)'P
e:f:p = —Vksin(VkL)- x + cos(VkL)- p

==»  Thick, focusing quadrupole, 1D !

Comes directly from the Hamiltonian from first principles, no need to assume a
solution of an equation of motion ...

A key point: the transformation/maps are done without the use of humerical
integration !!



Monomials in x and p of orders n and m (x"p™)

o ax'p™ .
gives for the map (for n # m):
e ax'pt iy = . [1+ a(n — m)x*! pm-1m/m=n)
0 ax"p" :p = p-[l+a®n- m)xn—lpm—l]n/(n—m)
gives for the map (for n = m):
gax'pti. . —anx"'p"!

. n..n . n—1_.n-1
e.ClXp p — p,eanx p



A special case ... (a useful one)
If the matrix represents one complete turn, it has a simpler form
cos u + asin(u) Bsin u
—y sin U cos u — asin(u)
and f becomes the Courant-Snyder invariant (derivation in backup slides):
o h:_ ol TH %(yx2+2cxxp+,8p2): — —u-J,

The (linear) normal form transformation was:

1 1
— (yx* +2axp+BpY) = (> +p) = J,
2 - ~~ 4 2 N——e ——’

ellipse circle

Written in our normal (simple) form, i.e. with the invariant J, :

. . - . . defines . . )
R I PN (the generator f; of the transformation)

Note: for a n-turn-matrix we have ¢ ~1 M- Jy



Physical Meaning:

The invariant J, is directly related to the effective Hamiltonian /.

A particularly important transformation:

MJ, = ¢ Wiy =

Jx

The constant area of the ellipse is conservation of energy

For a 3D linear system we have for f;:

f2

779

C
Mx , o 2w My, o 2 2
—E(X "‘Px)—j()’ +Py)—§&c5

— MxJx — pydy —

— 0062



Many machine elements

We want again a One-Turn-map for the ring (is now a Lie-transform, but
with a single generator)

Mring = e: heff :

> We must combine N machine elements m; by applying one
transformation after the other":

e e - (e.g. FODOcell: = ¢ Jor it Jp gt Jop i oIy

> Not restricted to matrices, i.e. linear elements ...

=» Need a procedure to combine Lie transforms

) Apply left to right (matrices right to left)



To combine/concatenate:
sl g
We can use the formula (Baker-Campbell-Hausdorff (BCH)):

h=f + g+ ilf.gl + SIf 118l + 5lg g f1]
+ 51f 08 [g fI — =slg. (g[8, [g. fI]
— [ UL UG8 + 5508 L LA L g1 +

or:
N N R
+ s fugtf - At f
B 720:][:484‘ ﬁ:g::f:3g+...

Stay calm: Software packages exist ==» LIEART, LIEMATH, LIEMAP, ...



Some simple tractable cases:

1. If f and g commute (i.e. [f,g] = [g, f] = 0) then concatenation
Is (exact):

h=f+g

2.If[f, 2] = [g, f] = scalar then concatenation is (exact):

1
h:f+g+§[f’g]

Other simple cases exist .. (in fact: many of the terms are zero !)



Example thin magnets, i.e. we neglect higher orders:

1. H; is the Hamiltonian of a thin multipole of order &
2. Hp is the Hamiltonian of a drift space (length of magnet)

For the combination we can write (both are Hamiltonians):
Hyp = H.+ Hp (= Hp + Hy)

or alternatively:

1 1
Hw = —Hp + Hy + —H
kD 2D k 2D

What does this correspond to ??



A frequently applicable case:

shi g

if one of them (f or g) is small, can truncate the series and get a
very useful formula.

Assume g is small compared to f:

e:fie:g: — e:h: — exp[f+(1_fe_f>g]

(How to use it: next example ...)



Some comments:

Applied to simple (linear) cases, the formalism looks
complicated and rather awkward !
Seems we need more effort to get the same result.
Doing concatenation by hand can drive you crazy !

Its power lies in the application to nonlinear problems :

Lie transformations generate transfer maps

They are always symplectic

They can be applied when the equation of motion is not
integrable !! (because they use only differentiation)

The formalism does not change when coupling or
nonlinearities are added

The effort does NOT increase with the complexity of the problem !



A (challenging) real life example: beam-beam interaction

Interaction Point

> Linear beam transport around the machine

> Beam-beam interaction localized and very nonlinear, cannot be
treated as "spectator” (ideally requires self-consistent treatment)

> But essential to understand single-particle stability
We need to know:
» How do particles behave in phase space ?

> Do we have an invariant (stable beam) and how to compute it



We look for invariants - start with single IP

Here in 1D, same treatment for higher dimensions

Linear transfer around the machine ¢ /1 : and beam-beam interaction ¢: B :
It is factorized into the two parts (see before):

s Br i

with (see before):
fi = —’%(x2+pi) = p- Jx

with the usual transformation to action - angle variables

|2J
x=+/2JB cos¥Y, p=- Fsin‘{’



Beam-Beam part B(x):

For a Gaussian beam we have for for the kick/force b(x) of the beam-beam
interaction (derived from the fields, see e.g. [WH1]):

for simplicity
N-e2 2 —x> ~ 2 —x2
b(x) = ——— (1 —e2?) = )= (1 -e2?)
dregmc?y  x X

For the generator (potential of the beam-beam force = H) we get
(extremely non-linear due to exponential !):

B(x) = /xa’x’b(x’)
0

and written as Fourier series (will soon be clear why):

o0 2

B(x)*) — Z Cn(])ein‘l’ with Cn(]) — E A B(X) e—in‘P
0

n=—o0

*) Note: x = +2JBcos¥



We evaluate the expression (because the beam-beam part is much
smaller than the rest of the machine, typically 10™>):

cudy: B _ ihi o _ . I ) ]
e e = e = exp|: + B :
p[ (1_6—:/1]x:

To do that we can now use (again) useful properties of Lie
operators

For each n-th component of B (i.e. « e"¥):

ud :einqj = iny - emlp, g uJy :)emLP = g(inu) - emLP
where we have used:
. 1 , 1
with g uJ, 1) = = g(inu) =

| —p— - MJy: | — o~ N



gives immediately for /:

no beam-beam i

— .

h = —uJ 4+ c,(J) -inu - . - em\P
p (Z () -imp - >

or written differently:

b= —ul+ (Z o (—H e(in‘P+i’/l2/J)>

2sin(%£)

n

Note: we can use the identical procedure for other "lenses"



Some inspection - analysis of /

. .%
h=—,uJ+ch(J) np (m‘P+12

2sin("")
lmear
On resonance:
_pP_ K
Q= n 2

with ¢, # O:
sin(m—p) =sin(pr) =0 V integer p
n
and / diverges, find automatically all resonance conditions

Not a big deal, but can we also reproduce the distorted phase
space (in action angle variables) ?



Invariant from tracking: Poincaré section of one IP

X Qx=0.31 X Qx=0.31
127 ) ",
50.2
[ ] [ L] u M
12.65 ] _ c0.1
12.6 ) . .- o . : .
B R SR ST S R T
|
12.55 199
| | | o o 49,8
215 -1 -05 0.5 1 15 Y+m2

= Phase space (action-angle) coordinates plotted each turn
= Shown for particle amplitudes of 50, and 100,

Without beam-beam: a straight line



Invariant versus tracking: one IP

Ix x =0.31 I X Qx =0. 31
12. 7}

50. 2¢

50. 1t

y+r/2

=» Shown for particle amplitudes of 50, and 100,
one can reproduce and analyse the motion ...

works also for more than one interaction point (see backup
slides), for LHC we treat up to 124 interactions per turn



First summary: Lie transforms and integrators

} We have powerful tools to describe nonlinear (and obviously
linear) elements

> They are always symplectic !

} Can be combined to form a ring (and therefore a nonlinear
One-Turn-Map)

} Tools and programs are available for their manipulation and
computation

} How do we analyse the maps ? =—> Normal Forms



Normal forms nonlinear case

Normal form transformations can be generalized for nonlinear maps. If M
Is our usual one-turn-map, we try to find a transformation:

N = AMA'  as before, but now M is non — linear

again /N is a simple form (like the rotation we had before)

Of course we now do not have matrices, we use a Lie transform 7 to
describe the transform A:

simple form

—
N = e_'h' — AMA " = e:F:Me—:F:

The objects A and A~' describe the transformation between the "ideal"
and "real” motion.

Note: the inverse of ¢' I " isjuste™ * £ 1 1



Use beam-beam example:

Horizontal Phase Space

Horizontal Phase Space

px

> Non-resonant contours can (maybe) transformed into a circle”
> More complicated transformation F required
> Transform to coordinates where map is a rotation (as before)

But: Rotation angle (i.e. phase advance) is amplitude dependent:
P —p Y(J) Y > % > ¥

“) | have picked some of the amplitudes with closed contours



The transformation A = ¢~ ‘' * should be the transformation to produce
a simple form

"Simple" means: Remove the dependence on ¥, and ¥,
M = MK = S F ipfp— F i 2 Jeps(Undy) =
Once we know #,/,(J,, J,) we can derive everything !

A analyses again the complexity of the motion, e.g. amplitude of the
wiggles etc.

Formalism and software tools exist to find F (see e.g. Chao' or E.Forest,
M. Berz, J. Irwin, SSC-166)

o am DA Chao, Lecture Notes on Topics in Accelerator Physics, 2001 = ™



Normal forms - nonlinear case
Once we can write the map as (how example in 3D):

N = e . heff(Jx>]y,5) .

where /., depends only on J,, J,, and ¢, then we have the tunes:

1 Oheyy

X ‘]xa‘l 75 -
0ulJs 4. 0) 2 dJ,
1 Oheyy

Jey Jy, 0) = —
O »9) 2r 0J,

and the change of path length:
Oheyy
Az = —
T T o

Particles with different J,, J, and 6 have different tunes:

== Dependence on J is amplitude detuning, dependence on ¢ are the
chromaticities !



How does 7.,/ look like ?

The effective Hamiltonian can always be written (here to 3rd order) as:

|
hepr = + e+ Jy + Eacéz

+ cqJ 0+ Cyljyé‘ + 6353

+  Cod? gty + cnyyz + o0 + cjd 0% + 46"

and then tune depends on action J and momentum deviation 6:

detuning chromaticity
L Oheyy _ 1 N
2
Qx(JX9Jy76) — T 8] — T ,ux+2Cxx]x+ny-]y+cx15+cx25
X
detuning chromaticity
1 aheff 1 7’ b ™~ 7 e N\
2
Qy(\]xa Jy, 6) = = lL[y + 2nyjy + nyjx + Cy15 + Cy25

2r 0J, 21



What’s the meaning of it ?
> Uy, i1y: linear phase advance or (2r)*tunes for rings
> %ac, c3, c4: linear and nonlinear "'momentum compaction”
» ¢, ¢y first order chromaticities
» cu,cy0: second order chromaticities

> Cuxs Cuys €yt detuning with amplitude

The coefficients are the various aberrations of the optics

A few examples (in brief - no derivation)



Example 1: sextupole

A linear map (3D !) followed by a single (weak) sextupole:

PE+py

2(1+0)

o~ M+ opdy %acﬁz Lo k(x> = 3xy%) +

M

we get for 7.+, (see e.g. [AC1, EF]):

1
herr = pxdy + pydy + 5%52 — kD38 — 3kB,J D6 + 3kByJ, DS

Then it follows:

1 Ohyr 1
= — = —(uyx — 3kB,DS
0:(Jyx, Jy,0) % 0. 2ﬂ(.u B:D0)
1 6heff 1
= — = — D
0,(Jx. Jy.0) = - 57, 5. (1, + 3kB, Do)

No tune shift/spread in first order ...



Side note:

Before the Normal Form Transformation, the Hamiltonian / (1D) is:

3
W) = —pued = 2ok

sin3¥ + %) sin(¥ + 4)

sin( 37’“‘ ) sin(5)

= const.



Example 2: octupole (1D - to emphasize important part)

x4

Starting with: M =¢~ *HJx ¢ fat o gm it ks

we get (without derivation, see[EF1, AW]):
hefff R

Ve

J+3k J;
M:e—:F:e"u g3 I F:

Note: the normalized map (our most simple map):
3

3 1
R=exp:—puJ+=ks-J° : =» Q= —(u+ =kiJ)
3 2 4

Is again a rotation in phase space, but the rotation angle (tune) now
depends linearly on the amplitude J

Particles with different amplitudes have different tunes = tune spread




Example 3: once more beam-beam ...

We had:

(m‘P + % )

h=—pJ + Z ca(J) 2sm(,w)

a normal form transformation takes away the angular dependence
(see before) and we have only:

herr = —pd +co(J) = const. (for co(J) see e.g. [AC1])
oh dco(J) N2 N\ 2| ;2
ef f Co e 5
< aJ aJ (47reomczy> J 0(2) ‘

Iy is the modified Bessel function

Different amplitudes J imply different tunes =—> tune spread




Amplitude detuning

Detuning Detuning is amplitude dependent

Very nonlinear (unlike octupoles)

Largest effect for small amplitudes

For calculations : see proceedings

Advanced CAS (Trondheim, 2013)

_ 6heff _ aCQ(J) _ ( N°€2 ) 2 J A

dregmc?y



Tunes in tune grid, now in 2D: with and without beam-beam

working point two dimensions tune footprint for headon collisions

0.311 0.311
0.317 X 1 0.311 08) X
Qy Qy ,
0.309 | ] 0.309 -
0.308 0.308
0.307 | 0.307
0.306 | 0.306
0.305 : ‘ : : : 0.305 : w \ \
0275 0276  0.277 0278  0.279 0.28 0.275 0.276  0.277 0.278  0.279 0.28
Ox

Ox

X,y —(x* +y%)
force for 2D |:> bx,y(x,y) = xz—+yZ . (1 — exp( 252 ))
> Without beam-beam: all particles at the same tune (at X)
> With beam-beam: all particles have a different tune !

Here for a single collision, LHC has many ...



It can be worse:

0312
Qy
0311 |

031

0.309 ¢

0.308

0.275

0.276 0.277 0.278 0.279
Ox

0.28

Beam — beam with offset beams

(so — called ”’Long Range” interactions)

Very different behaviour

Here calculated for 1 interaction
(LHC has 120(!) of them)

Analysis of the /., allows relevant predictions and optimization, e.g.

W.Herr, D. Kaltchev, ’Analysis of long range studies in the LHC”, in ICFA
beam-beam workshop, CERN-2014-004



What about particle on resonance (beam-beam again):

Horizontal Phase Space Horizontal Phase Space

px
px

Particle "jumps™ from one island to the next each turn, i.e. move fast,
big jumps

Stroboscopic analysis: use only every nth turn (6th in this example)
== Particle moves slowly around the (now lonely) island

==» Can be analysed (very involved, for a simple example see [AC1])



Are nonlinear effects always bad ??

Horizontal Phase Space near resonance Horizontal Phase Space near resonance
T T T T

PX
PX

> Left: close to 3rd order resonance with sextupole, particles are
lost (or extracted)

> Right: close to 3rd order resonance with sextupole and
octupole

} Octupole has stabilizing effect due to strong detuning



Is it always bad ??
Landau Damping
} Octupole or space charge or beam-beam (!) introduce large

tune spread

> Tune spread within beam suppresses coherent beam
oscillations (Landau Damping)

} Tune spread from Normal Form analysis allows to compute the
Stability Diagram

} Stability Diagram determines optimal operating conditions,
maximum intensity, maximum allowed impedance

> lon (e.g. proton) storage rings cannot work without Landau
Damping (e.g. LHC relies on it)



Many nonlinear elements

Assume: M=e¢ “HIxiif3i i fatgifpt ot i

The map can be (most of the time) factorized

Since we get an analytical expression for 7./, we can insert a
"correction element” f,

Examples:
- Chromaticity correction with sextupoles

- Final focus linear collider



Putting it together
Conventional tools and methods fail for nonlinear (i.e. realistic) systems

But we can provide a suitable framework for complex systems

» The main steps needed:

Get the (linear or nonlinear) map from the Hamiltonian

Lie maps are the natural extension from linear to nonlinear
dynamics

Always symplectic and allow analytical solutions

Normal Form analysis to obtain all relevant properties

» Recommendation:

- Without Hamiltonians you can do linear dynamics, but completely
fail for nonlinear effects

- Right from the start use an approach which leads automatically
into the application of advanced concepts and methods



