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History
[O.L. De Weck]

Rational people attempt to make the best decision within a specified set
of possible alternatives.

@ Multiobjective thinking originated in
economics: the best referred to
decisions taken by buyers and sellers
(micro-economics) or governments
(macro-economics), which
simultaneously optimise or balance
several criteria.

@ Taxation: an optimal, average level of
tax collected (% per $ of economic
activity) maximizes the revenue
available for the common good, while
maintaining a sufficient incentive for
individuals to earn income from their
own work.

Francis Y. Edgeworth (1845-1926), King's College & Oxford
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History cont.

Pareto on the other hand was a contemporary of Edgeworth, born in
Paris in 1848, graduated from the University of Turin in 1870 (Civil
Engineering) with a thesis: The Fundamental Principles of Equilibrium in

Solid Bodies

@ Pareto took up the study of philosophy
and politics and was one of the first to
analyse economic problems with
mathematical tools

@ In 1893, Pareto became the Chair of
Political Economy at the University of
Lausanne, where he created his two
most famous theories:

@ Circulation of the Elites
@ The Pareto Optimum

Vilfredo Pareto (1848-1923)
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History cont.

The translation of Pareto’s work into English in 1971 spurred the
development of multiobjective methods in Applied Mathematics and
Engineering.

The growth of this field manifested itself particularly strongly in the
United States with pioneering contributions by (Stadler 1979),
(Steuer 1985) among many others.

Theoretical aspects of multiobjective optimisation can be found in
Japan (Sawaragi, Nakayama and Tanino, 1985).

Over the last three decades the applications of multiobjective
optimisation have grown steadily in many areas of Engineering and
Design including the Particle Accelerator Community

A particularly remarkable resource in this area is the website
http://delta.cs.cinvestav.mx/~ccoello/EM0O0/ created and
maintained by C.A. Coello.


http://delta.cs.cinvestav.mx/~ccoello/EMOO/
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© History
© A Simple but Instructive Example
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Buying a Car

Conflicting criteria — Trade-offs

Conflicting criteria — Trade-offs
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Buying a Car

Conflicting criteria — Trade-offs

Conflicting criteria — Trade-offs

objective 2
i car 4
|
| car3
|
|
¢ar 2 Set of optimal candidate cars
|
|
car! 1

s > objective 1

!
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Buying a Car

Conflicting criteria — Trade-offs

Conflicting criteria — Trade-offs

objective 2
i car 4
|
' car3
|
|
¢ar 2 Set of optimal candidate cars
|
|
car! 1

G > objective 1

!

Subjective decision using
higher level information o
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Optimality?
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Optimality?

f2
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« le . minimize price
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low ¢ ~ @ , @ red points are equally.optlrpal :
N | fi cannot improve one point without
low price high hurting at least one other solution

— Pareto optimality
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Optimality?
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N | fi cannot improve one point without
low price high hurting at least one other solution

— Pareto optimality

@ 1, is dominated by x; and 2
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f2

0
performance %

2

Optimality?

high

conflicting objectives:

minimize price

maximize performance

red points are “equally optimal”:
cannot improve one point without
hurting at least one other solution
— Pareto optimality

14 is dominated by x; and x5

Pareto front
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High Dimensional Data
Root (CERN)
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© History
© A Simple but Instructive Example

© Theoretical considerations
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Formulation of the Multiobjective Optimisation Problem

Denoting the feasible domain by S € IR", the
problem is to minimise — simultaneously - all
elements of the objective vector,

min fm(x)EIRandeS, m=1...M
s.t. gj(x) > jg=0...J
hi(x) = k=0.. K

n

xigx:xigxg. 1=20...



Xro

-
.
.
£
£ ‘\
e >
£
P S9 Y
£
. (]
e
P (]
’ *k
e
. 53
.
e
£
e
L4 4
’
\ . .
v S1a o
\ @ 1 o ’
. ] 1 4
\ 1 r—
1’
\\ 1 ;
!
W
¥

€Zq

design space

Z1,Z2) T
)
[}
i f(s2)
o °
o f(s3)
I\
.
N
N
‘\
| f(s1)
. e
9
fi(zy, @)

objective space

The (non-linear) mapping f : R™ — R from design to objective space.
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Formulation of the Multiobjective Optimisation Problem

Multiobjective optimisation methods can be broadly
decomposed into two categories

@ Scalarisation approaches: the multiobjective
problem is solved by translating it back to a
single (or a series of) objective, scalar problems.
This requires the formation of an overarching
objective function which contains contributions
from the sub-objectives in vector J.

@ Pareto approaches
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Scalarization |
Weighted Sum Approach

Scalarization methods are based on the assumptions that

@ designer or decision-maker preferences are known before design
solutions are found and that

@ the M objectives can be meaningfully combined to express a utility,
U, dimensionless scalar quantity expressing the goodness of a
particular design.

min U{fm(x)} e Randx € S, m=1...M
M M
where U= qufq(x),with wq > 0 and qu =
q=1 q=1
s.t. gj(x) >0, j=0...J
hi(x) =0, k=0...K
fox:xinZU. 1=0...n
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Scalarization |l
Weighted Sum Approach

@ Formulated in this way the aggregate objective U always forms a
strictly convex combination of objectives

@ One of the issues in this method is the appropriate choice of A

@ In the case of two equally scaled objectives we get
U:)\J1+(1—/\)J2. (1)

Finding optima for U as A is changed gradually, in equal inter-
vals, from 0...1 reveals a set of optimal solutions as the weight is
gradually shifted from one objective to another.
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Formulation of the Pareto Optimal Condition

A point x; is dominating x5
@ the solution x; is no worse than x5 in all objectives
@ the solution x; is strytictly better than x5 in at least one objective.

. fm(X)me(X), Ymel... M
X1 = iff { fj(lxl) >fj()22), Jjel...M

The properties of the dominance relation include transitivity
Ty X T2 N2 XT3 = 21 2 T3,
and asymmetry, which is necessary for an unambiguous order relation

$1j$2:>(£2ﬁx1.

Using the concept of dominance, the sought-after set of Pareto
optimal solution points can be approximated iteratively as the set
of non-dominated solutions.

xxvi / 91
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Formulation of the Pareto Optimal Condition
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Remarks on Pareto Optimality |
@ Deciding if a point truly belongs to the set of Pareto optimal
solutions is NP-hard! however many efficient heuristics exists.

@ A comprehensive or full-factorial evaluation of the design space is
often impossible due to the n-dimensionality of the design vector, x,
and the required computational effort for obtaining f, g and h.

Solutions obtained are mere approximations of the Pareto Front.

Among the Pareto approaches two in particular have gained increased
acceptance and use in recent years:

@ Multiobjective Genetic Algorithms
@ Multiobjective Swarm Optimisation Algorithms

LA problem is NP-hard if an algorithm for solving it can be translated into one for
solving any NP-problem (nondeterministic polynomial time) problem. NP-hard
therefore means "at least as hard as any NP-problem,” although it might, in fact, be
harder

xxviii /91



PAULSCHERRER INSTITUT

Genetic Algoritms an Overview |

o A genetic algorithm (GA) is a metaheuristic inspired by the process

of natural selection that belongs to the larger class of evolutionary
algorithms (EA)

Directed search algorithms based on the mechanics of biological
evolution Developed by John Holland, University of Michigan
(1970's)
e Holland, J.H., "Adaptation in Natural and Artificial Systems”, MIT
Press, 1975.

To understand the adaptive processes of natural systems

To design artificial systems software that retains the robustness of
natural systems

Provide efficient, effective techniques for optimization and machine
learning applications

Widely-used today in business, science and engineering

XXiX
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Naturally inspired

Metaheuristics
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Evolutionary
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evolution algorithm %
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Scatter search 3
J v} o
Simulated 5 '2
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| Tabu search | -,
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Trajectory [Var\able neighborhood searca :\ Guided local searcEﬁ

Dynamic objective function
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Genetic Algoritms an Overview cont. |

GA can be viewed as a general-purpose search method, an
optimization method, or a learning mechanism, based loosely on
Darwinian principles of biological evolution reproduction and the
survival of the fittest

GA maintains a set of candidate solutions called population and
repeatedly modifies them

At each step, the GA selects individuals from the current population
to be parents and uses them to produce the children for the next
generation

In general, the fittest individuals of any population tend to
reproduce and survive to the next generation with the goal to
improve successive generations

However, inferior individuals can, by chance, survive and also
reproduce

XXXi
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Genetic Algoritms an Overview cont. |l

@ GA is well suited to and has been extensively applied to solve
complex design optimization problems because

e it can handle both discrete and continuous variables
e on-linear objective and constrain functions
e no gradient information needed

xxxii /91
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Evolutionary Algorithms |

@ Evolutionary algorithms (EA) are loosely based on nature’s
evolutionary principles to guide a population of individuals towards
an improved solution by honoring the “survival of the fittest”
practice.

@ This “simulated” evolutionary process preserves entropy (or diversity
in biological terms) by applying genetic operators, such as mutation
and crossover, to remix the fittest individuals in a population.

A generic evolutionary algorithms consists of the following components:
o Genes: traits defining an individual (design variables)

e Fitness: a mapping from genes to a set of numeric values (evaluating
each objective function) describing the fitness of an individual,

@ Selector: selecting the k fittest individuals of a population based on
some sort of ordering,

@ Variator: recombination (mutations and crossover) operators for
offspring generation.

xxxiii /91
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Evolutionary Algorithms |

Non-dominated sorting

Algorithm: V generations
@ initially random population of individuals I; with a unique set of
genes and corresponding fitness
@ In a next step the population is processed by the SELECTOR
determining the k fittest individuals.
© While the k fittest individuals are passed to the VARIATOR, the
remaining n — k individuals are eliminated from the population.
()

The VARIATOR mates the k fittest individuals to generate new
offspring and applies the recombination operators.

o Check convergence
@ After evaluating the fitness of all the freshly born individuals a
generation cycle has completed

Complexity upper bound: O(GM N log N) with M number of genes, N
the population size and G the number of generations.

xxxiv /91



uuuuuuuuuuuuuuuuuu

Evolutionary Algorithms
A Platform and Programming Language Independent Interface for Search Algorithms 2

r

- -POPULATION

¢ ‘\ l "N ’ I ,
\L"I~ i | .% :Zn 2’
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, 50
SELECTOR f VARIATOR ' : ]
1. 74 /——)I4‘Ik =ZIpy1: M
2 T} [ o B
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n ‘l'_n}removed \ 1

2NSGA-II: http://www.tik.ee.ethz.ch/pisa/
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© History
© A Simple but Instructive Example

© Theoretical considerations

© A Modern GA Implementation
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OPAL in a Nutshell |

OPAL is an open-source tool for charged-particle optics in large
accelerator structures and beam lines including 3D space charge,
particle matter interaction, partial GPU support and
multi-objective optimisation.

@ OPAL is built from the ground up as a parallel application
exemplifying the fact that HPC (High Performance Computing) is
the third leg of science, complementing theory and the experiment

OPAL runs on your laptop as well as on the largest HPC clusters
OPAL uses the MAD language with extensions

OPAL is written in C++, uses design patterns, easy to extend
Webpage: https://gitlab.psi.ch/0PAL/src/wikis/home

the OPAL Discussion Forum:
https://lists.web.psi.ch/mailman/listinfo/opal

O(40) users
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Software Architecture
MPI based + HW accelerators + Optimiser

OPAL DKS
© MAD-Parser Flavors: t,Cycl Distributions
2 MC
L& CUDA
© Solvers: Direct,MG Integrators PMI, WFC uFFT cuBLAS
= FFT D-Operators NGP,CIC, TSI
=
io
as Fields Mesh Particles
('7, Load Balancing Domain Decomp. Communication
o OPTIMIZER
8 Particle-Cache PETE Trillions Interface

Trilinos & GSL

Genetic Optimiza-
tion Algorithms
(NSGA-Il)

[Y. Ineichen et al., CS-R&D (2012), Y. Ineichen et al., arXiv:1302.2889]
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% Asynchronous finite state machine (MPI)

% Multi-Scale optimisation

xxxix / 91



PAULSCHERRER INSTITUT

Island-based Master Model

Master Island; Comp. Domain
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@ using techniques from social network theory

@ can solve very challenging problems using largest HPC resources
o PRACE 3 award 2012

3Partnership for Advanced Computing in Europe
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Solution Exchange

@ Introduces additional synchronization points
@ Large sets of solutions have to be sent across the network

@ This severly limits scalability

-

xli /91



uuuuuuuuuuuuuuuuuu

Solution Exchange

@ Introduces additional synchronization points
@ Large sets of solutions have to be sent across the network

@ This severly limits scalability

| g Avoiding global synchronization: One-sided communication
@ Using put/collect operations (MPI “shared variables”)

@ Solution set revision information to prevent unnecessary collects

b
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Solution Exchange

@ Introduces additional synchronization points
@ Large sets of solutions have to be sent across the network

@ This severly limits scalability

| g Avoiding global synchronization: One-sided communication
@ Using put/collect operations (MPI “shared variables”)

@ Solution set revision information to prevent unnecessary collects

% Local solution exchange on “special” graphs

@ Implementation of “communication graph” exposes a set of
neighbors

@ “Route” messages between masters on imposed neighboring network

xliii /91
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© History
© A Simple but Instructive Example

© Theoretical considerations
© A Modern GA Implementation
© Example 0: A Test Problem
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s.t. —1<z; <1, i=1,2,3.
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———————— 03

! fi

The hypervolume for a two-objective optimization problem corresponds to the
shaded area formed by the dashed rectangles spanned by all points on the
Pareto front and an arbitrary selected origin p,.
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The FON Problem Il

@ To that end, we use a metric for comparing the quality of a Paret
front.

@ Given a point in the Pareto set, we compute the m dimensional
volume (for m objectives) of the dominated space, relative a chosen
origin.

xlvii /91
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The FON Problem V

Variator benchmark after 1100 function evaluations using binary crossover and
. . . . 1
independent gene mutations (each gene mutates with probability p = 5) on a
population of 100 individuals.

Table: Convergence of benchmark problem with errors relative to hypervolume
of sampled reference solution.

tot. function hyper volume  relative error

evaluations

100 0.859753 3.076 x 1071
200 0.784943 1.938 x 101
500 0.685183 4.210 x 1072
900 0.661898 6.689 x 1073

1100 0.657615 1.749 x 10~4
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© History
© A Simple but Instructive Example

© Theoretical considerations

© A Modern GA Implementation

© Example 0: A Test Problem

@ Example 1: Argonne Wakefield Accelerator
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Full Staging

curtesy of Dr. Neveu

Drive Line

Septum
Dipole

Witness Line

@ Maintain modular design
@ Maximize power in each stage
@ Plug and play various structures

PETS: Power Extraction and Transfer Structures

91



uuuuuuuuuuuuuuuu

Drive Line

Quads

Requirements and Mechanical Constraints: Dipole
@ 100% transmission, i.e. reasonable beam size at structure
@ Reasonable bunch length at structure (maximize power)

@ 1m between kicker and septum
o for separation > 50mm in septum.

@ 1.8m between septum and dipole
o for separation > 0.5m of beam lines.
@ 15cm between quads for easy installation.

0.3m between quads and PETS for yag screen.
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GA applied to TBA Beam Line

Variable Range Unit
Buck Focusing Solenoid Strength 300 < S; <500  amps
Matching Solenoid Strength 180 < .55 <280  amps
Quadrupole Strength —80< K;*<80 T/m

Simulation Inputs:
@ 6 design variables

@ Laser radius is 9 cm
@ Laser FWHM 10 ps
@ All cavities at —20°

Objectives:

@ Transverse beam size, o, ,

@ Transverse momentum, 0py py

@ Bunch length, o,
@ Energy spread, dE

K = [Ka,..., K4]

91
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Sketch of an OPAL Inputfile (only optimiser cmd’s) |

TBA Beamline

dvO: DVAR, VARIABLE=S1 , LOWERBOUND=300. .
dvl: DVAR, VARIABLE=S52 , LOWERBOUND=180
dv2: DVAR, VARIABLE=KI1 , LOWERBOUND=-8
dv3: DVAR, VARIABLE=K2, LOWERBOUND=-8
dv4: DVAR, VARIABLE=K3, LOWERBOUND=-8
dv5: DVAR, VARIABLE=KZ, LOWERBOUND=-8

rmsx: OBJECTIVE ,EXPR=statVariableAt(rms_x ,3.1);
rmsy: OBJECTIVE ,EXPR=statVariableAt(rms_y,3.1);

rmspx: OBJECTIVE ,EXPR=statVariableAt(rms_px,3.1);
rmspy: OBJECTIVE ,EXPR=statVariableAt (rms_py,3.1);

rmss: OBJECTIVE ,EXPR=statVariableAt(rms_s,3.1);
de: OBJECTIVE,EXPR=fabs(statVariableAt(dE,3.1));
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Sketch of an OPAL Inputfile (only optimiser cmd’s)

TBA Beamline

OPTIMIZE, INPUT="tmp1/ga—model.tmpl",
0UTPUT="ga-model", OUTDIR="results",
OBJECTIVES = {rmsx,rmsy,rmspx,rmspy,rmss,de},
DVARS = {dv0,dvl,dv2,dv3,dv4,dv5,dv6},
INITIALPOPULATION=656,

MAXGENERATIONS=100,
NUM_MASTERS=1,
NUM_COWORKERS=8,

NUM_IND_GEN=328,
GENE_MUTATION_PROBABILITY=0.8,
MUTATION_PROBABILITY=0.8,
RECOMBINATION_PROBABILITY=0.2;

https://gitlab.psi.ch/0PAL/Manual-2.0/wikis/optimiser
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TBA Pareto Fronts

Pareto Front After Kicker and Septum Pareto Front After Kicker and Septum

Og,z VS. Opx Ozy VS. Opy

17.5 175

g 15.0 é 15.0
£ £

8125 =125
S &

5 100 5 100
= N

@R, 0
£ =
<

g s g w
M M

25 < 25

R P I -
ok om 0w owm om_ om  oh ok om 0w om  om_ om  on
Momentum: ,, [vf ] Momentum: o, [vf ]

@ Looking at entrance of 5th quad
@ Location between septum and dipole

@ Optimizing here will reduce beam size growth in dipole
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Beam Size Results in Optimized Solutions

Max Beam Sizes [m]

;

Max Beam Sizes [m]

M=197A BF=478A

M=209A BF=395A

— maxx
maxy

Beam pipe aperture

Quadrupole 5

3

icker
Quadrupole 1-4
dipole

.>i||

e
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— maxx
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— Quadrupole 5
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Best

Max Beam Sizes [m]

Solution

Quad Value Unit
@ Symmetric beam not necessary, if transmission is good.
Q1 -0.8 amps
@ PETS aperture = 17.6 mm Q 0.9 amps
@ Need to adjust matching and quads. Q3 0.8 amps
Q4 -1.0 amps
@ Energy ~ 65 MeV P
2D Field Maps only 3D Maps and CSR included
M=197A BF=478A M=197A BF=478A
— maxx — maxx
0057 —— maxy — 0051 — maxy -
—— Beam pipe aperture 'E —— Beam pipe aperture
—— Quadrupole 5 = —— Quadrupole 5
0.04 - —@— kicker n 0.04 1 —8— kicker
A Quadrupole 1-4 O A Quadrupole 1-4
e dipole N e dipole
003 W 003
£
@©
0.02 Q 0.02
m
3
0.01 0.01
= |
0.00 0.00
00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
z[m] z[m]
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Adjusted 3D/CSR Solution

0.05

m]

Max Beam Sizes [

M=210A BF=500A

Bunch Length

max x 0.0025
max y
—— Beam pipe aperture
—— Quadrupole 5
—o— kicker 0.0020
A Quadrupole 1-4
® dipole J
0.0015 Fr
N
[s)
0.0010
0.0005
0.0000
0 5 10 15 20
z[m] z[m]

Quad Value Unit

Q1 15 amps
Q2 1.6 amps
Q3 1.5 amps
Q4 -1.7 amps
Q5 -2.0 amps
Q6 1.25 amps

@ Strengthened all quads by 0.7 A

@ No quad strengths are near limits!

lix /91



uuuuuuuuuuuuuuuuuu

© History

© A Simple but Instructive Example

© Theoretical considerations

© A Modern GA Implementation

© Example 0: A Test Problem

@ Example 1: Argonne Wakefield Accelerator

@ Example 2: PSI Trim Coils - Simulation meets Reality
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Disturbed Isochronicity in Cyclotrons

M. Frey
http://www.bt.pa.msu.edu/CP0-10/talks/23Tue/AM1/S1G/23Tue_AM1_1015_S1G_Frey.pdf

o Discrepancies in

e magpnetic field construction
inaccuracies

e injection parameters (Egin, 7, pr,
o element positioning (RF cavities)

e etc.

o In reality:
Additional B-field with trimcoils

= phase shift

— turn radius shift
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New Trimcoil Model in OPAL

@ Radially rational TC profile description

r)= maxl_im n,m € No A 7) € [Tmin; "max
TC B 2iz0 % No ANTC

Z;‘R:Objrj
tcl: TRIMCOIL, TYPE = " PSI-PHASE" ,
RMIN = ..., // inner radius [mm]
RMAX = ..., // outer radius [mm]
BMAX = ..., // B—field peak value [T]
COEFNUM = {a0, al, a2, a3},

COEFDENOM = {b0, bl, b2, b3, b4, b5};
Ring: CYCLOTRON, TRIMCOILTHRESHOLD = ...,

// lower limit of TC contribution [T]
TRIMCOIL = {tcl, tc2, tc3, ...}
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PSI-Ring Trimcoil Model

e Starting point: Measurement of phase shift effect®

AB ~ dA sin(¢)
dr

Asin(¢)
o
o
8

-0.25

-0.50

-0.75

-1.00

2.0 25 3.0 35 4.0
radius [m]

55. Adam and W. Joho, PSI Technical Report No. TM-11-13, 1974.

4.5
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PSI-Ring Trimcoil Model - Example TC6

4l 401
3

— 31 = 20
35 e
5 &

o2 o 0
KT} [}
& 2

® 2 201
@
©

0 _40_

1 2 3 4 5 1 2 3 4 5 6
radius [m] radius [m]
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Multi-Objective Optimisation (MOO) in OPAL

o Built-in MOQ¢:

min f(x), dim(f) = M € N*°
s.t. g(x) >0, dim(g) = J € NV
—ooga:iLSXingarggoo, x e X C R", ne N0

o Design variables x: Fy;,, p,, ¢, TCL - TC16 max. B-field, etc.

@ Objectives: Measure between simulation and real data

Note: f is our PSI-Ring model + evaluation of objectives!

5Toward massively parallel multi-objective optimisation with application to particle
accelerators. PhD Thesis. Y. Ineichen. 2013
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Radial Profile Measurement

o Measurements: Peak intensity of radial profile of probes to
distinguish turns

1.01 RRI2 (hist)
* RRI2 (peak) H

o n ﬂ
g

Sos6

2

§04 o L L o |of |o||o |d o ou o o ° o |of |[o
S

._g

0.2

0.01 —.—J—J—J_IJUJL‘LILL_LJJ_‘L

2050 2100 2150 2200 2250 2300 2350 2400 2450
radius Tmm]1 Ixvi /91
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Trimcoil Optimisation in OPAL

e Simulations:

e Single particle = probe hit = turn

o Multi particles = peak finder
routine

@ Good setting: Radial peak of
measurement and simulation at probes bt
are closel!

@ RRI2: turns 1-16
@ RRL: turns 9 - 182

e RRE4: turns 177(8) - 188(9) N

OPAL simulations of the PSI ring cyclotron and a design

188(9) turns = Infeasible number of 3.5 5 to Lt S0 vibaserr.
objectives! 2017

2700
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Problem Reduction

o Turn - Aggregation:

e Ls-norm
1
Nturns
err = 2 (pi,meas - pi,sim)Q
turns ;
=1
o Lo.-norm
err = max ‘pi,meas - pi,sim|
i=1,...Nturns
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Problem Reduction

@ TC support reduction:
Feasible assumption for neighbouring TCs = Cancellation of B-field

tails
—— TC support (small)
4 TC support (full)
— 31
)
5,
- 2
o
oM 1
T e—

1 2 3 4 5 6
radius [m]
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Problem Reduction

e Optimise on sub-problems:

trimcoil

11 4

10 4

A
m%ﬁ
POWOR. 1A N
| T LI,
P N, W
i i
bt i
rdririeniviird
-
2500 3000 3500

radius [mm]
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Trimcoil Optimisation in OPAL - Trial 1

e Goal:
Find initial injection
values

@ Design variables:
o beam energy Eyin
e injection angle
e injection momentum
e injection radius
e TC1-TC4
e MOO: (504 cores)
#generations 500 +
#individuals 502

@ 5000 particles per
individual

bin count (normalized)

1.0

4
©

4
o

o
>

o
N

0.0

—— RRI2 (sim)
RRI2 (hist)
* RRI2 (peak)

IR/ VLI

2050 2100 2130 2200 2250 2300 2350 2400 24
adius [mm]

peak 1-3 peak 4 - 6 | peak 7-9 | peak 10-12 peak 13 - 16

objectives
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PAULSCHERRER INSTITUT

Issue of Divergence - Trial 1

@ Optimising a few TCs after the others lead to divergence!

Qe o °
5 ° :0'. ..o
. ee e
P '00.’ S %'
) . N
T 0 R I Vot
E. o 0.. J \
.
g -5 o.. . .‘”
E s’
= L]
> * e,
8 -10 [
o
-15

9 19 29 39 49 59 69 79 89 99 109119129139149159169179189 199

peak number
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Model Simplification + Design Variable Extension

e Single particle tracking instead of bunch (5000 particles) tracking

= full PSI-Ring simulation in1-2s

o Design variables:

injection angle, radius, momentum and energy
main cavity voltages

phase of Flat-Top cavity

voltage of Flat-Top cavity

radial position of main cavities

radial position of Flat-Top cavity

@ Turn number constraint to guarantee feasible solutions
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PAULSCHERRER INSTITUT

Injection Probe RRI2

0 Huge bump!

peak difference [mm]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
peak number
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PAULSCHERRER INSTITUT

Long Probe RRL1 - No divergence anymore!

L
7.5 *
5.0 ° e

E o Poe o ° o° ° .. .
E ® 0 L] L] L] PSS
= 2.51 ~ T * e ..'. °® ® e ®% o o o 1 5
o . [ X) . o, 8
g ol I°° °. o S ©° o (& 4
19 0.01 b I | o o -
ng_, °°, ol . > .'. .o L) ° o o
° o |® ° o® & oo o | L .
~ T25 e o e %o ° * %o * |°
3 o | o [ o ° O ® .0
a o o || @ ® e

-5.0 o Py ... o o L

o o e °
L]
—-7.51 ° | ° : o® °
L] * °
—10.0+

9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189
peak number
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Scanning instead of MOO

@ Issues:

o Optimiser suffered with individual selection
o No further improvements!

o Changing all parameters at same time might be disadvantageous
@ ldea: Do simple parameter scanning!

e Starting from best MOO result

o lteratively find worst turn and vary parameters to obtain better
individual

(check Loo- and La-norm)
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PAULSCHERRER INSTITUT

Long Probe RRL1

44—%
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© History

© A Simple but Instructive Example

© Theoretical considerations

© A Modern GA Implementation

© Example 0: A Test Problem

@ Example 1: Argonne Wakefield Accelerator

@ Example 2: PSI Trim Coils - Simulation meets Reality
© Example 3: Cavity Optimization
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Shape optimization of RF cavities, FCC related

M. Kranj€evi¢, P. Arbenz, ETH Zurich A. Adelmann, Paul Scherrer
Institut (PSI), S. Gorgi Zadeh, U. van Rienen, University of Rostock

RF CAV- ADMISSIBLE
ITY SHAPE EIGENMODES

l

4 )

- ACCELERATING
FREQUENCY

- SHAPE OF THE
EIGENFIELD

- PROPERTIES OF
THE ENTIRE
EIGENSPECTRUM

ACCELERATOR
PERFORMANCE

http://www.bt.pa.msu.edu/CP0-10/talks/23Tue/PM1/S1G/23Tue_
PM1_1515_S1G_Kranjcevic.pdf
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@ axisymmetric, variables R;, L, A, B,a,b, (Req) = «
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Constrained multi-objective optimization problem

@ monopole and dipole modes major sources of beam instability

Fs F.

Fy s —_—— /—/;
min Go i fh s+ —Go-2)
| 0 — J1,|J1 — J2|) ~ 2y sy T YU0 T 5 )
R;,L,A,B.ab Qi Qi Qo
subject to fo =400.79 MHz, « > 90°
@ fo ... frequency of the fundamental mode
@ f1, fa ... frequency of the first and second dipole mode, resp.
° g ... transverse shunt impedance for the dipole modes’
1

@ Go ... geometry factor ®

7B. P. Xiao et al., IPAC Richmond, VA, USA , 2015.
https://doi.org/10.18429/JACoW-IPAC2015-WEPWIO059

8], Sekutowicz et al., PAC, Portland, OR, USA, 2003.
https://doi.org/10.1109/PAC.2003.1289717
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Forward solver

o Maxwell's equations

o frequency domain

o axisymmetric domain in 3D%1°

e vacuum; no external fields, sources or charges; PEC
@ FEM — a GEVP for each azimuthal mode number m € Ny
@ smallest eigenpair for (using half of the cross section)

e m =0, PEC — properties of the fundamental mode (TMo10)
o m =1, PEC — properties of the dipole mode TMj1g
o m =1, PMC — properties of the dipole mode TE111

9P. Arbenz, et al., Appl. Numer. Math. 58 (4): 381-394, 2008.
https://doi.org/10.1016/j.apnum.2007.01.019

100, Chinellato, ETH Zurich (Diss. ETH No. 16243), 2005.
https://doi.org/10.3929/ethz-a-005067691
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PAULSCHERRER INSTITUT

Evolutionary algorithm (EA)

@ evaluate a random population of individuals I;, i =1,..., N
o for a predetermined number of generations do

e variator: for pairs of individuals I;, I; 11, perform:
crossover(I;, Iiy1), mutation(I;), mutation(Ii1)

e evaluate new individuals

o selector: choose N fittest individuals for the next generation

— massively parallel implementation!! same as in OPAL

— combined with the axisymmetric Maxwell eigensolver!?

Y. Ineichen et al., Comput. Sci. Res. Dev. 28 (2) (2013) 185-192.
https://doi.org/10.1007/500450-012-0216-2
12M. Kranjéevi¢ et al., arXiv:1810.02990,2018
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vvvvvvvvvvvvvvvvvv

Constraint handling

o fo =400.79 MHz
e given d = (R;, L, A, B,a,b), find Req s.t. fo = 400.79 MHz
e if |fo —400.79 MHz| > 1 MHz, fine mesh eigensolve avoided
(on average, 4 fine eigensolves for each d)

@ o >90° ... otherwise, the individual is discarded
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Euler cluster'® (Euler | and 11) of ETH Zurich FORWARD SOLVE:

@ coarse eigensolves ... 10’000 triangles, 2s
o fine eigensolves ... 300’000 triangles, 90s

(24s meshing, 64s eigenpairs, 2s objective function values)
@ 4 fine eigensolves to find R, and the properties of TMg;q
@ 2 fine eigensolves to find the properties of TM11g and TEq1;

(no remeshing)
OPTIMIZATION:

@ 13h for 50 generations with N = 100 on 96 processes

(30% of the individuals discarded)

@ initial design variable bounds:

Variable R; L A B a b
Lower bound [mm] | 145 | 120 | 40 | 40 | 10 | 10
Upper bound [mm] | 160 | 190 | 140 | 140 | 70 | 70

Bhttps://scicomp.ethz.ch /wiki/Euler
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Generation 50

Fy = —147.03
Fy, =0.40
F3 =36.3

F4 = —2.13e3

—150
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Generation 50

Fy, = —147.03
Fy, =0.40
F3 =36.3
Fy = —2.13e3
\ “HJ;‘Y“DH\‘J o AR
I e [RRe &
ul
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Fundamental mode of the chosen RF cavity

E/Eqce
E] 930e+00
1.4475

0965

EO.4825
0.000e+00
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© History

© A Simple but Instructive Example

© Theoretical considerations

© A Modern GA Implementation

© Example 0: A Test Problem

@ Example 1: Argonne Wakefield Accelerator

@ Example 2: PSI Trim Coils - Simulation meets Reality
© Example 3: Cavity Optimization

© Now it is your Turn
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Hands-on: Python Implementation

@ DEAP a novel evolutionary computation framework for rapid
prototyping and testing of ideas.

@ It seeks to make algorithms explicit and data structures transparent.

@ It works in perfect harmony with parallelisation mechanism such as
multiprocessing.

@ https://github.com/deap/deap
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