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• only one Pareto solution can be found in one run

• preference-based (specify preference for trade-off solution)

• not all can be found in non-convex MOOPS

• all algorithms require a prior knowledge (weights, ε, targets)

• multiple Pareto solutions can be found in one run

• a posteriori articulation of preference

• “easier”: diversity in decision and objective space (non-linear mapping)
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History
[O.L. De Weck]

Rational people attempt to make the best decision within a specified set
of possible alternatives.

Multiobjective thinking originated in
economics: the best referred to
decisions taken by buyers and sellers
(micro-economics) or governments
(macro-economics), which
simultaneously optimise or balance
several criteria.

Taxation: an optimal, average level of
tax collected (% per $ of economic
activity) maximizes the revenue
available for the common good, while
maintaining a sufficient incentive for
individuals to earn income from their
own work.

Francis Y. Edgeworth (1845-1926), King’s College & Oxford
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History cont.

Pareto on the other hand was a contemporary of Edgeworth, born in
Paris in 1848, graduated from the University of Turin in 1870 (Civil
Engineering) with a thesis: The Fundamental Principles of Equilibrium in
Solid Bodies

Pareto took up the study of philosophy
and politics and was one of the first to
analyse economic problems with
mathematical tools

In 1893, Pareto became the Chair of
Political Economy at the University of
Lausanne, where he created his two
most famous theories:

1 Circulation of the Elites
2 The Pareto Optimum

Vilfredo Pareto (1848-1923)
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History cont.

The translation of Pareto’s work into English in 1971 spurred the
development of multiobjective methods in Applied Mathematics and
Engineering.

The growth of this field manifested itself particularly strongly in the
United States with pioneering contributions by (Stadler 1979),
(Steuer 1985) among many others.

Theoretical aspects of multiobjective optimisation can be found in
Japan (Sawaragi, Nakayama and Tanino, 1985).

Over the last three decades the applications of multiobjective
optimisation have grown steadily in many areas of Engineering and
Design including the Particle Accelerator Community

A particularly remarkable resource in this area is the website
http://delta.cs.cinvestav.mx/~ccoello/EMOO/ created and
maintained by C.A. Coello.
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Buying a Car
Conflicting criteria → Trade-offs

Conflicting criteria → Trade-offs

objective 2

objective 1

car 1

car 2

car 3

car 4

Set of optimal candidate cars

Subjective decision using
higher level information
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High Dimensional Data
Root (CERN)
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Formulation of the Multiobjective Optimisation Problem

Denoting the feasible domain by S ∈ IRn, the
problem is to minimise – simultaneously – all
elements of the objective vector,

min fm(x) ∈ IR and x ∈ S, m = 1 . . .M

s.t. gj(x) ≥ 0, j = 0 . . . J

hk(x) = 0, k = 0 . . . K

xLi ≤ x = xi ≤ xUi . i = 0 . . . n

Objectives Design variables

Constraints
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Formulation of the Multiobjective Optimisation Problem

x1

x2

design space f1(x1, x2)

f2(x1, x2)

min
min

objective space

f : Rn → RM

s1
f(s1)

s2
f(s2)

s∗3
f(s∗3)

The (non-linear) mapping f : Rn → RM from design to objective space.
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Formulation of the Multiobjective Optimisation Problem

Multiobjective optimisation methods can be broadly
decomposed into two categories

1 Scalarisation approaches: the multiobjective
problem is solved by translating it back to a
single (or a series of) objective, scalar problems.
This requires the formation of an overarching
objective function which contains contributions
from the sub-objectives in vector J .

2 Pareto approaches
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Scalarization I
Weighted Sum Approach

Scalarization methods are based on the assumptions that

1 designer or decision-maker preferences are known before design
solutions are found and that

2 the M objectives can be meaningfully combined to express a utility,
U , dimensionless scalar quantity expressing the goodness of a
particular design.

min U{fm(x)} ∈ IR and x ∈ S, m = 1 . . .M

where U =

M∑

q=1

wqfq(x),with wq > 0 and
M∑

q=1

wq = 1

s.t. gj(x) ≥ 0, j = 0 . . . J

hk(x) = 0, k = 0 . . .K

xLi ≤ x = xi ≤ xUi . i = 0 . . . n
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Scalarization II
Weighted Sum Approach

Formulated in this way the aggregate objective U always forms a
strictly convex combination of objectives

One of the issues in this method is the appropriate choice of λ

In the case of two equally scaled objectives we get

U = λJ1 + (1− λ)J2. (1)

Finding optima for U as λ is changed gradually, in equal inter-
vals, from 0 . . . 1 reveals a set of optimal solutions as the weight is
gradually shifted from one objective to another.
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Formulation of the Pareto Optimal Condition

A point x1 is dominating x2

1 the solution x1 is no worse than x2 in all objectives
2 the solution x1 is strytictly better than x2 in at least one objective.

x1 � x2 iff

{
fm(x1) ≥ fm(x2), ∀m ∈ 1 . . .M
fj(x1) > fj(x2), ∃j ∈ 1 . . .M

The properties of the dominance relation include transitivity

x1 � x2 ∧ x2 � x3 ⇒ x1 � x3,

and asymmetry, which is necessary for an unambiguous order relation

x1 � x2 ⇒ x2 6� x1.

Using the concept of dominance, the sought-after set of Pareto
optimal solution points can be approximated iteratively as the set
of non-dominated solutions.
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Formulation of the Pareto Optimal Condition
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Remarks on Pareto Optimality I
Deciding if a point truly belongs to the set of Pareto optimal
solutions is NP-hard1 however many efficient heuristics exists.

A comprehensive or full-factorial evaluation of the design space is
often impossible due to the n-dimensionality of the design vector, x,
and the required computational effort for obtaining f, g and h.

Solutions obtained are mere approximations of the Pareto Front.

Among the Pareto approaches two in particular have gained increased
acceptance and use in recent years:

1 Multiobjective Genetic Algorithms

2 Multiobjective Swarm Optimisation Algorithms

1A problem is NP-hard if an algorithm for solving it can be translated into one for
solving any NP-problem (nondeterministic polynomial time) problem. NP-hard
therefore means ”at least as hard as any NP-problem,” although it might, in fact, be
harder
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Genetic Algoritms an Overview I

A genetic algorithm (GA) is a metaheuristic inspired by the process
of natural selection that belongs to the larger class of evolutionary
algorithms (EA)

Directed search algorithms based on the mechanics of biological
evolution Developed by John Holland, University of Michigan
(1970’s)

Holland, J.H., ”Adaptation in Natural and Artificial Systems”, MIT
Press, 1975.

To understand the adaptive processes of natural systems

To design artificial systems software that retains the robustness of
natural systems

Provide efficient, effective techniques for optimization and machine
learning applications

Widely-used today in business, science and engineering
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Genetic Algoritms an Overview cont. I

GA can be viewed as a general-purpose search method, an
optimization method, or a learning mechanism, based loosely on
Darwinian principles of biological evolution reproduction and the
survival of the fittest

GA maintains a set of candidate solutions called population and
repeatedly modifies them

At each step, the GA selects individuals from the current population
to be parents and uses them to produce the children for the next
generation

In general, the fittest individuals of any population tend to
reproduce and survive to the next generation with the goal to
improve successive generations

However, inferior individuals can, by chance, survive and also
reproduce
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Genetic Algoritms an Overview cont. II

GA is well suited to and has been extensively applied to solve
complex design optimization problems because

it can handle both discrete and continuous variables
on-linear objective and constrain functions
no gradient information needed
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Evolutionary Algorithms I
Evolutionary algorithms (EA) are loosely based on nature’s
evolutionary principles to guide a population of individuals towards
an improved solution by honoring the “survival of the fittest”
practice.

This “simulated” evolutionary process preserves entropy (or diversity
in biological terms) by applying genetic operators, such as mutation
and crossover, to remix the fittest individuals in a population.

A generic evolutionary algorithms consists of the following components:

Genes: traits defining an individual (design variables)

Fitness: a mapping from genes to a set of numeric values (evaluating
each objective function) describing the fitness of an individual,

Selector : selecting the k fittest individuals of a population based on
some sort of ordering,

Variator : recombination (mutations and crossover) operators for
offspring generation.
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Evolutionary Algorithms I
Non-dominated sorting

Algorithm: ∀ generations

1 initially random population of individuals Ii with a unique set of
genes and corresponding fitness

2 In a next step the population is processed by the Selector
determining the k fittest individuals.

3 While the k fittest individuals are passed to the Variator, the
remaining n− k individuals are eliminated from the population.

4 The Variator mates the k fittest individuals to generate new
offspring and applies the recombination operators.

Check convergence

5 After evaluating the fitness of all the freshly born individuals a
generation cycle has completed

Complexity upper bound: O(GMN logN) with M number of genes, N
the population size and G the number of generations.
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Evolutionary Algorithms
A Platform and Programming Language Independent Interface for Search Algorithms 2

Population

I1
Ik

I2I3
I4

Selector

1. I4
2. Ik
3. I2
4. I3
5. I1
. . .

n. In
removed

Variator
I4 · Ik = In+1:

=

I2 · I3 = In+2:
=

In+1

In+2

2NSGA-II: http://www.tik.ee.ethz.ch/pisa/
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OPAL in a Nutshell I

OPAL is an open-source tool for charged-particle optics in large
accelerator structures and beam lines including 3D space charge,
particle matter interaction, partial GPU support and
multi-objective optimisation.

OPAL is built from the ground up as a parallel application
exemplifying the fact that HPC (High Performance Computing) is
the third leg of science, complementing theory and the experiment

OPAL runs on your laptop as well as on the largest HPC clusters

OPAL uses the MAD language with extensions

OPAL is written in C++, uses design patterns, easy to extend

Webpage: https://gitlab.psi.ch/OPAL/src/wikis/home

the OPAL Discussion Forum:
https://lists.web.psi.ch/mailman/listinfo/opal

O(40) users
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Software Architecture
MPI based + HW accelerators + Optimiser

OPAL

MAD-Parser Flavors: t,Cycl Distributions

Solvers: Direct,MG Integrators PMI, WFC

FFT D-Operators NGP,CIC,TSI

Fields Mesh Particles

Load Balancing Domain Decomp. Communication

Particle-Cache PETE Trillions Interface

cl
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5
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Trilinos & GSL

DKS

D
K
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P
I

CUDA

MC

cuFFT cuBLAS

Multi-Objective
Optimizer

P
il
o
t

Genetic Optimiza-

tion Algorithms

(NSGA-II)

[Y. Ineichen et al., CS-R&D (2012), Y. Ineichen et al., arXiv:1302.2889]
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Master/Worker Model

Optimizers

O1

Oi

Pilot
job
queue

j2 j1j3 j4

r1

Workers

W1

Wj

Asynchronous finite state machine (MPI)

Multi-Scale optimisation
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Island-based Master Model

Comp. Domain
Master Islandi

1 Core

Forward Solver
OPAL Workers

eval forward problem

Optimiser

using techniques from social network theory

can solve very challenging problems using largest HPC resources

PRACE 3 award 2012

3Partnership for Advanced Computing in Europe
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Solution Exchange

Introduces additional synchronization points

Large sets of solutions have to be sent across the network

This severly limits scalability

Avoiding global synchronization: One-sided communication

Using put/collect operations (MPI “shared variables”)

Solution set revision information to prevent unnecessary collects

Local solution exchange on “special” graphs

Implementation of “communication graph” exposes a set of
neighbors

“Route” messages between masters on imposed neighboring network

xli / 91



Solution Exchange

Introduces additional synchronization points

Large sets of solutions have to be sent across the network

This severly limits scalability

Avoiding global synchronization: One-sided communication

Using put/collect operations (MPI “shared variables”)

Solution set revision information to prevent unnecessary collects

Local solution exchange on “special” graphs

Implementation of “communication graph” exposes a set of
neighbors

“Route” messages between masters on imposed neighboring network

xlii / 91



Solution Exchange

Introduces additional synchronization points

Large sets of solutions have to be sent across the network

This severly limits scalability

Avoiding global synchronization: One-sided communication

Using put/collect operations (MPI “shared variables”)

Solution set revision information to prevent unnecessary collects

Local solution exchange on “special” graphs

Implementation of “communication graph” exposes a set of
neighbors

“Route” messages between masters on imposed neighboring network

xliii / 91



1 History

2 A Simple but Instructive Example

3 Theoretical considerations

4 A Modern GA Implementation

5 Example 0: A Test Problem

6 Example 1: Argonne Wakefield Accelerator

7 Example 2: PSI Trim Coils - Simulation meets Reality

8 Example 3: Cavity Optimization

9 Now it is your Turn

xliv / 91



The FON Problem I

min

[
1− exp

(
−1

((
x1 −

1√
3

)2

+

(
x2 −

1√
3

)2

+

(
x3 −

1√
3

)2
))

,

(2)

1− exp

(
−1

((
x1 +

1√
3

)2

+

(
x2 +

1√
3

)2

+

(
x3 +

1√
3

)2
))]T

s.t. − 1 ≤ xi ≤ 1, i = 1, 2, 3.
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The FON Problem II

f2

f1

x0

x1

x2

x3

po

The hypervolume for a two-objective optimization problem corresponds to the
shaded area formed by the dashed rectangles spanned by all points on the
Pareto front and an arbitrary selected origin po.
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The FON Problem III

To that end, we use a metric for comparing the quality of a Paret
front.

Given a point in the Pareto set, we compute the m dimensional
volume (for m objectives) of the dominated space, relative a chosen
origin.
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The FON Problem IV

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

obj1

ob
j 2

Reference Front
First Generation
1200th Generation
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The FON Problem V

Variator benchmark after 1100 function evaluations using binary crossover and

independent gene mutations (each gene mutates with probability p =
1

2
) on a

population of 100 individuals.

Table: Convergence of benchmark problem with errors relative to hypervolume
of sampled reference solution.

tot. function hyper volume relative error
evaluations

100 0.859753 3.076× 10−1

200 0.784943 1.938× 10−1

500 0.685183 4.210× 10−2

900 0.661898 6.689× 10−3

1100 0.657615 1.749× 10−4
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Full Staging
curtesy of Dr. Neveu

Gun

S1 S2
Acc. Cavities

L1L2L3L4L5L6

Quads
Drive Line

Witness Line

Kicker

Septum

Dipole

PETS2

PETS1

ACC2 ACC1 Gun

S1S2

L1

Maintain modular design

Maximize power in each stage

Plug and play various structures

PETS: Power Extraction and Transfer Structures
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TBA Beam Line Under Design

Gun

S1 S2

L1 L2 L3 L4 L5 L6

QuadsDrive Line

Kicker
Septum

Dipole

PETS

Requirements and Mechanical Constraints:

100% transmission, i.e. reasonable beam size at structure

Reasonable bunch length at structure (maximize power)

1m between kicker and septum

for separation ≥ 50mm in septum.

1.8m between septum and dipole

for separation ≥ 0.5m of beam lines.

15cm between quads for easy installation.

0.3m between quads and PETS for yag screen.
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GA applied to TBA Beam Line

Variable Range Unit

Buck Focusing Solenoid Strength 300 ≤ S1 ≤ 500 amps
Matching Solenoid Strength 180 ≤ S2 ≤ 280 amps
Quadrupole Strength −8.0 ≤ Ki

4 ≤ 8.0 T/m

Simulation Inputs:
6 design variables

Laser radius is 9 cm

Laser FWHM 10 ps

All cavities at −20◦

Objectives:

Transverse beam size, σx,y

Transverse momentum, σpx,py

Bunch length, σz

Energy spread, dE

4Ki = [K1, . . . ,K4]
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Sketch of an OPAL Inputfile (only optimiser cmd’s) I
TBA Beamline

dv0: DVAR , VARIABLE=S1 , LOWERBOUND =300..

dv1: DVAR , VARIABLE=S2 , LOWERBOUND =180 ..

dv2: DVAR , VARIABLE=K1 , LOWERBOUND =-8 ..

dv3: DVAR , VARIABLE=K2 , LOWERBOUND =-8 ..

dv4: DVAR , VARIABLE=K3 , LOWERBOUND =-8 ..

dv5: DVAR , VARIABLE=K4 , LOWERBOUND =-8 ..

rmsx: OBJECTIVE ,EXPR=statVariableAt(rms_x ,3.1);

rmsy: OBJECTIVE ,EXPR=statVariableAt(rms_y ,3.1);

rmspx: OBJECTIVE ,EXPR=statVariableAt(rms_px ,3.1);

rmspy: OBJECTIVE ,EXPR=statVariableAt(rms_py ,3.1);

rmss: OBJECTIVE ,EXPR=statVariableAt(rms_s ,3.1);

de: OBJECTIVE ,EXPR=fabs(statVariableAt(dE ,3.1));
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Sketch of an OPAL Inputfile (only optimiser cmd’s) II
TBA Beamline

OPTIMIZE , INPUT="tmpl/ga-model.tmpl",

OUTPUT="ga-model", OUTDIR="results",

OBJECTIVES = {rmsx ,rmsy ,rmspx ,rmspy ,rmss ,de},

DVARS = {dv0 ,dv1 ,dv2 ,dv3 ,dv4 ,dv5 ,dv6},

INITIALPOPULATION =656,

MAXGENERATIONS =100,

NUM_MASTERS =1,

NUM_COWORKERS =8,

...

NUM_IND_GEN =328,

GENE_MUTATION_PROBABILITY =0.8,

MUTATION_PROBABILITY =0.8,

RECOMBINATION_PROBABILITY =0.2;

https://gitlab.psi.ch/OPAL/Manual-2.0/wikis/optimiser
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TBA Pareto Fronts
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Looking at entrance of 5th quad

Location between septum and dipole

Optimizing here will reduce beam size growth in dipole
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Beam Size Results in Optimized Solutions
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Best Solution

Symmetric beam not necessary, if transmission is good.

PETS aperture = 17.6 mm

Need to adjust matching and quads.

Energy ≈ 65 MeV

Quad Value Unit

Q1 -0.8 amps
Q2 0.9 amps
Q3 0.8 amps
Q4 -1.0 amps

2D Field Maps only
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Adjusted 3D/CSR Solution
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Quad Value Unit

Q1 -1.5 amps
Q2 1.6 amps
Q3 1.5 amps
Q4 -1.7 amps
Q5 -2.0 amps
Q6 1.25 amps

Strengthened all quads by 0.7 A

No quad strengths are near limits!
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Disturbed Isochronicity in Cyclotrons
M. Frey
http://www.bt.pa.msu.edu/CPO-10/talks/23Tue/AM1/S1G/23Tue_AM1_1015_S1G_Frey.pdf

Discrepancies in

magnetic field construction
inaccuracies

injection parameters (Ekin, r, pr, ...)

element positioning (RF cavities)

etc.

In reality:

Additional B-field with trimcoils

=⇒ phase shift

=⇒ turn radius shift
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New Trimcoil Model in OPAL

Radially rational TC profile description

TC(r) = Bmax

∑n
i=0 air

i

∑m
j=0 bjr

j
n,m ∈ N0 ∧ TC(r) ∈ [rmin, rmax]

t c 1 : TRIMCOIL , TYPE = ”PSI−PHASE” ,
RMIN = . . . , // i n n e r r a d i u s [mm]
RMAX = . . . , // o u t e r r a d i u s [mm]
BMAX = . . . , // B− f i e l d peak v a l u e [T]
COEFNUM = {a0 , a1 , a2 , a3 } ,
COEFDENOM = {b0 , b1 , b2 , b3 , b4 , b5 } ;

Ring : CYCLOTRON, TRIMCOILTHRESHOLD = . . . ,
// l o w e r l i m i t o f TC c o n t r i b u t i o n [T]
TRIMCOIL = { tc1 , tc2 , tc3 , . . . }
. . .
;
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PSI-Ring Trimcoil Model

Starting point: Measurement of phase shift effect5

∆B ∼ −d∆ sin(φ)

dr

5S. Adam and W. Joho, PSI Technical Report No. TM-11-13, 1974. lxiii / 91



PSI-Ring Trimcoil Model - Example TC6
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Multi-Objective Optimisation (MOO) in OPAL

Built-in MOO6:

min f(x), dim(f) = M ∈ N>0

s.t. g(x) ≥ 0, dim(g) = J ∈ N0

−∞ ≤ xLi ≤ x = xi ≤ xUi ≤ ∞, x ∈ X ⊂ Rn, n ∈ N>0

Design variables x: Ekin, pr, ϕ, TC1 - TC16 max. B-field, etc.

Objectives: Measure between simulation and real data

Note: f is our PSI-Ring model + evaluation of objectives!

6Toward massively parallel multi-objective optimisation with application to particle
accelerators. PhD Thesis. Y. Ineichen. 2013
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Radial Profile Measurement

Measurements: Peak intensity of radial profile of probes to
distinguish turns
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Trimcoil Optimisation in OPAL

Simulations:

Single particle ⇒ probe hit = turn

Multi particles ⇒ peak finder
routine

Good setting: Radial peak of
measurement and simulation at probes
are close!

RRI2: turns 1 - 16

RRL: turns 9 - 182

RRE4: turns 177(8) - 188(9)

188(9) turns ⇒ Infeasible number of
objectives!

OPAL simulations of the PSI ring cyclotron and a design
for a higher order mode flat top cavity. N. J. Pogue,
A. Adelmann. Proceedings of IPAC2017. THPAB077.
2017.
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Problem Reduction

Turn - Aggregation:

L2-norm

err =
1

Nturns

√√√√Nturns∑
i=1

(pi,meas − pi,sim)2

L∞-norm
err = max

i=1,...Nturns

|pi,meas − pi,sim|
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Problem Reduction

TC support reduction:
Feasible assumption for neighbouring TCs ⇒ Cancellation of B-field
tails
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Problem Reduction

Optimise on sub-problems:
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Trimcoil Optimisation in OPAL - Trial 1

Goal:
Find initial injection
values

Design variables:

beam energy Ekin

injection angle
injection momentum
injection radius
TC1 - TC4

MOO: (504 cores)
#generations 500 +
#individuals 502

5000 particles per
individual

peak 1 - 3 peak 4 - 6 peak 7 - 9 peak 10-12 peak 13 - 16

objectives
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Issue of Divergence - Trial 1

Optimising a few TCs after the others lead to divergence!
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Model Simplification + Design Variable Extension

Single particle tracking instead of bunch (5000 particles) tracking

=⇒ full PSI-Ring simulation in 1 - 2 s

Design variables:

injection angle, radius, momentum and energy

main cavity voltages

phase of Flat-Top cavity

voltage of Flat-Top cavity

radial position of main cavities

radial position of Flat-Top cavity

Turn number constraint to guarantee feasible solutions
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Injection Probe RRI2

Huge bump!

lxxiv / 91



Long Probe RRL1 - No divergence anymore!
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Scanning instead of MOO

Issues:

Optimiser suffered with individual selection

No further improvements!

Changing all parameters at same time might be disadvantageous

Idea: Do simple parameter scanning!

Starting from best MOO result

Iteratively find worst turn and vary parameters to obtain better
individual

(check L∞- and L2-norm)
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Long Probe RRL1
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Shape optimization of RF cavities, FCC related

M. Kranjčević, P. Arbenz, ETH Zurich A. Adelmann, Paul Scherrer
Institut (PSI), S. Gorgi Zadeh, U. van Rienen, University of Rostock

ADMISSIBLE
EIGENMODES

- ACCELERATING
FREQUENCY

- SHAPE OF THE
EIGENFIELD

- PROPERTIES OF
THE ENTIRE
EIGENSPECTRUM

RF CAV-
ITY SHAPE

ACCELERATOR
PERFORMANCE

http://www.bt.pa.msu.edu/CPO-10/talks/23Tue/PM1/S1G/23Tue_

PM1_1515_S1G_Kranjcevic.pdf
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Single-cell elliptical cavity parameterization

A

B

Ri L

Req

a

b

α

axisymmetric, variables Ri, L,A,B, a, b, (Req)→ α
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Constrained multi-objective optimization problem

monopole and dipole modes major sources of beam instability

min
Ri,L,A,B,a,b

(

F1︷ ︸︸ ︷
f0 − f1,

F2︷ ︸︸ ︷
|f1 − f2|,

F3︷ ︸︸ ︷
R

Q⊥1
+
R

Q⊥2
,

F4︷ ︸︸ ︷
−G0 ·

R

Q 0

),

subject to f0 = 400.79 MHz, α ≥ 90◦

f0 . . . frequency of the fundamental mode

f1, f2 . . . frequency of the first and second dipole mode, resp.

R

Q⊥
. . . transverse shunt impedance for the dipole modes7

G0 . . . geometry factor 8

7B. P. Xiao et al., IPAC Richmond, VA, USA , 2015.
https://doi.org/10.18429/JACoW-IPAC2015-WEPWI059

8J. Sekutowicz et al., PAC, Portland, OR, USA, 2003.
https://doi.org/10.1109/PAC.2003.1289717
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Forward solver

Maxwell’s equations

frequency domain
axisymmetric domain in 3D9,10

vacuum; no external fields, sources or charges; PEC

FEM → a GEVP for each azimuthal mode number m ∈ N0

smallest eigenpair for (using half of the cross section)

m = 0, PEC → properties of the fundamental mode (TM010)
m = 1, PEC → properties of the dipole mode TM110

m = 1, PMC → properties of the dipole mode TE111

9P. Arbenz, et al., Appl. Numer. Math. 58 (4): 381-394, 2008.
https://doi.org/10.1016/j.apnum.2007.01.019

10O. Chinellato, ETH Zurich (Diss. ETH No. 16243), 2005.
https://doi.org/10.3929/ethz-a-005067691
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Evolutionary algorithm (EA)

evaluate a random population of individuals Ii, i = 1, . . . , N

for a predetermined number of generations do

variator: for pairs of individuals Ii, Ii+1, perform:

crossover(Ii, Ii+1), mutation(Ii), mutation(Ii+1)

evaluate new individuals

selector: choose N fittest individuals for the next generation

− massively parallel implementation11 same as in OPAL

− combined with the axisymmetric Maxwell eigensolver12

11Y. Ineichen et al., Comput. Sci. Res. Dev. 28 (2) (2013) 185-192.
https://doi.org/10.1007/s00450-012-0216-2

12M. Kranjčević et al., arXiv:1810.02990,2018
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Constraint handling

f0 = 400.79 MHz

given d = (Ri, L,A,B, a, b), find Req s.t. f0 = 400.79 MHz
if |f0 − 400.79 MHz| ≥ 1 MHz, fine mesh eigensolve avoided
(on average, 4 fine eigensolves for each d)

α ≥ 90◦ . . . otherwise, the individual is discarded
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Results

Euler cluster13 (Euler I and II) of ETH Zurich FORWARD SOLVE:

coarse eigensolves . . . 10’000 triangles, 2s

fine eigensolves . . . 300’000 triangles, 90s
(24s meshing, 64s eigenpairs, 2s objective function values)

4 fine eigensolves to find Req and the properties of TM010

2 fine eigensolves to find the properties of TM110 and TE111

(no remeshing)

OPTIMIZATION:

13h for 50 generations with N = 100 on 96 processes
(30% of the individuals discarded)

initial design variable bounds:
Variable Ri L A B a b

Lower bound [mm] 145 120 40 40 10 10

Upper bound [mm] 160 190 140 140 70 70

13https://scicomp.ethz.ch/wiki/Euler
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Fundamental mode of the chosen RF cavity

E/Eacc
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Hands-on: Python Implementation

DEAP a novel evolutionary computation framework for rapid
prototyping and testing of ideas.

It seeks to make algorithms explicit and data structures transparent.

It works in perfect harmony with parallelisation mechanism such as
multiprocessing.

https://github.com/deap/deap
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